
Guide to Supplying Decoder Buffers from the MIO Component
OpenCORE 2.02, ver 1

Mar 13, 2009

© 2009 PacketVideo Corporation
This document licensed under the Apache License, Version 2.0

http://www.apache.org/licenses/LICENSE-2.0

Guide to Supplying Decoder Buffers from the MIO Component
OpenCORE 2.02, ver 1

Table of Contents
1. Introduction ... 5
2. Overview of Graph Initialization .. 5
3. Sequence Diagrams .. 7
4. Buffer Allocator ... 10

 - Page 2 of 10 -

Guide to Supplying Decoder Buffers from the MIO Component
OpenCORE 2.02, ver 1

List of Figures
Figure 1: High-level Initialization Sequence (Part 1)...6
Figure 2: High-level Initialization Sequence (Part 2)...6
Figure 3: Video Buffer Allocation (Part 1)..7
Figure 4: Video Buffer Allocation (Part 2)..8
Figure 5: Buffer Allocation...9
Figure 6: Cleanup...9

 - Page 3 of 10 -

Guide to Supplying Decoder Buffers from the MIO Component
OpenCORE 2.02, ver 1

References
1 Media I/O Developer's Guide. OpenCORE 2.02, rev. 1. http://android.git.kernel.org/?

p=platform/external/opencore.git;a=summary
2 OpenMAX Integration Layer Application Programming Interface Specification. Version

1.1.2, http://www.khronos.org/openmax/

 - Page 4 of 10 -

http://android.git.kernel.org/?p=platform/external/opencore.git;a=summary
http://android.git.kernel.org/?p=platform/external/opencore.git;a=summary
http://www.khronos.org/openmax/

Guide to Supplying Decoder Buffers from the MIO Component
OpenCORE 2.02, ver 1

1. Introduction

In some situations it may be more efficient for the rendering component to allocate and supply the
decoder's output buffers, which are the inputs to the renderer. There may be constraints for the
input buffers to the rendering components such as the buffers must be physically contiguous,
reside in specific memory regions, etc. In order to avoid copying, which can be quite expensive
for video, the decoder must place its output directly into buffers that meet the constraints for the
renderer input buffers.

This document details the methods for providing decoder output buffers from the media I/O
component. Although the methods described are primarily useful for video, they are not limited to
video. Familiarity with media I/O components is assumed throughout the document. See the
Media I/O Developer's Guide[1] for those details.

2. Overview of Graph Initialization

During the initialization of the multimedia graph for playback, nodes implementing data sources,
decoding, and rendering are connected, parameters are configured, and buffers are allocated.
The buffer allocation is established as a part of the graph setup phase between each connected
pair of nodes. The media data in the basic playback graph tends to flow in one direction from
source to sink, and the typical case is for the upstream node to allocate and supply buffers to the
downstream node However, the scenario of interest here is one where the downstream sink
node allocates and supplies buffers to the upstream decoder node. The methods in this
document only concern the decoder and media output nodes, so the description and diagrams
will focus only on that portion of the multimedia graph for clarity.

Figure X and Figures Y illustrate a high-level overview of the sequence of messages involved in
the initialization of the decoder and media I/O nodes for video. The figures show the
communication between the nodes as well as the communication with each node's internal
components. Although the example mentions specific parameters for video, the process applies
generally with main difference being the parameters that are passed along with the desired
number of buffers and buffer size. For audio, those parameters would be number of channels,
sample rate, and bits per sample.

After passing the basic configuration information (e.g., format, width, height, etc for video)
including the desired number of buffers and buffer size, the decoder node will query the media
output node for an allocator object. The MIO component may optionally provide an allocator at
this point. If an allocator is provided, then the decoder will use it for allocating buffers.
Otherwise, the decoder node handles the buffer allocation internally. The decoder node will use
the standard OpenMAX[2] OMX_UseBuffer calls to notify the OpenMAX component about these
buffers, so no special handling is required within the OpenMAX component.

 - Page 5 of 10 -

Guide to Supplying Decoder Buffers from the MIO Component
OpenCORE 2.02, ver 1

 - Page 6 of 10 -

Figure 1: High-level Initialization Sequence (Part 1)

1. Parse input stream configuration information.

2. Use OMX SetParameter calls to set Width x Height information.

3. Use OMX GetParameter to query desired number of buffers and buffer size.

4. Pass Width x Height, number of buffers, buffer size over the port interface.

5. Pass Width x Height, number of buffers, buffersize over SetParameterSync call

OpenMAX Decoder
Node

port connection

Media Output
Node

OMX Decoder
MIO
Component

1

22 33

44

55

= Node / framework element

= Internal node component

Figure 2: High-level Initialization Sequence (Part 2)

6. Use GetParameterSync call over the port to query for buffer allocator.

7. Use GetParameterSync calls to query for buffer allocator.

8. After allocating buffers and wrapping inside memory pool, use
UseBuffer calls to pass buffers to OMX decoder.

9. At this point, buffer passing proceeds as usual using existing APIs.

OpenMAX Decoder
Node

port connection

Media Output
Node

OMX Decoder
MIO
Component

88

66

77

= Node / framework element

= Internal node component

= Node / framework element

= Internal node component

Guide to Supplying Decoder Buffers from the MIO Component
OpenCORE 2.02, ver 1

3. Sequence Diagrams
This section contains more detailed sequence diagrams showing the call flow between the
different components including the allocator object. Note that the allocator is only used initially to
obtain the buffers. During steady-state processing the buffer usage is tracked with other data
container objects and the buffers are recycled once they are done being rendered.

 - Page 7 of 10 -

Figure 3: Video Buffer Allocation (Part 1)

sd Video buffer allocation: part 1

PVM ediaOutputNode M IO Com ponentOM X Com ponent PVM FOM XVideoDecNode

Query the OpenM AX IL decoder
com ponent for param eters such as width
and height, buffersize, desired num ber
of buffers, etc.

T he form at-speci fic inform ation provides inform ation on the form at, width
and height (used to size the buffers), d isplay width and height, stride or p i tch,
desi red buffer size, and desired num ber of buffers. T oday, som e of these
param eters are provided as separate setParam eterSync cal ls. A change
would be m ade to set them as single SetParam eterSync cal l so that the M IO
has al l the param eters at once and can val idate im m ediate ly whether the
values can be supported. T his inform ation should a l low the M IO to val idate
that i t can handle the input and also determ ine the param eters for the buffer
a l locator.

OM X_GetParam eter(OM X_PARAM _PORT DEFINIT IONT YPE)

SetParam etersSync(form at_speci fi c_ info)

SetParam etersSync(form at_speci fi c_ info)

Guide to Supplying Decoder Buffers from the MIO Component
OpenCORE 2.02, ver 1

 - Page 8 of 10 -

Figure 4: Video Buffer Allocation (Part 2)

sd Video buffer allocation: part 2

PVM ediaOutputNode Buffer Al locator
Object

PVM FOM XVideoDecNodeOM X Component M IO Com ponent

If the M IO is able to provide a buffer al locator object then responds to the
GetParametersSync request wi th the BUFFER_ALLOCAT OR key by providing
a PVInterface pointer that wi l l be queried for the exact buffer al location
interface.

Query for exact interface

Release the param eters from the
previous getParam etersSync cal l .
T he buffe r al locator is sti l l active
because the queryInterface for the
speci fic interface ID wi l l increment
the ref counter for that interface.

Set the num ber of
buffers and buffer size
before cal l ing
UseBuffer

loop Allocate buffers

getParam etersSync(BUFFER_ALLOCAT OR)

getParam etersSync(BUFFER_ALLOCAT OR)

queryInterface(PVM FFixedSizeBufferAl locUUID)

releaseParam eters()

releaseParameters()

getNumBuffers()

getBufferSize()

OM X_SetParam eter(OMX_PARAM _PORT DEFINIT IONT YPE)

Guide to Supplying Decoder Buffers from the MIO Component
OpenCORE 2.02, ver 1

 - Page 9 of 10 -

Figure 5: Buffer Allocation

sd Buffer Allocation

PVM FOM XVideoDecNode Buffer Al locator
Object

OM X Com ponent

loop Buffer Allocation

[Num Al located < Num BuffersInAl locator]

al locate() :bufptr

OM X_UseBuffer(bufptr)

Figure 6: Cleanup

sd Cleanup

Buffer Al locator
Object

PVM FOMXVideoDecNodeOMX Com ponent

T he cal l to removeRef
signals that
PVMFOM XVideoDecNode
is done with the al locator
and decrements the
refcount. If no other
references are active then
the al locator is no longer
needed.

Deal location done for
each buffer that was
original ly al located.

loop

[NumDeallocated < Nu m BuffersInAl locator]

OMX_FreeBuffer()

deal locate()

removeRef()

Guide to Supplying Decoder Buffers from the MIO Component
OpenCORE 2.02, ver 1

4. Buffer Allocator

The buffer allocator has a very simple interface that provides a way to allocate and release
buffers of a fixed size. The interface also provides methods to get the fixed buffer size and the
number of buffers that the allocator can provide. The interface definition is provided below for
convenience, but the definition in the header file should be referenced for the most up-to-date
version.

/**
 * This interface is used to allocate a set of fixed-size buffers.
 */
class PVMFFixedSizeBufferAlloc
{
 public:

 virtual ~PVMFFixedSizeBufferAlloc() {};

 /**
 * This method allocates a fixed-size buffer as long as there are
 * buffers remaining. Once the maximum number of buffers have been
 * allocated, further requests will fail.
 *
 * @returns a ptr to a fixed-size buffer
 * or NULL if there is an error.
 */
 virtual OsclAny* allocate() = 0;

 /**
 * This method deallocates a buffer ptr that was previously
 * allocated through the allocate method.
 *
 * @param ptr is a ptr to the previously allocated buffer to release.
 */
 virtual void deallocate(OsclAny* ptr) = 0;

 /**
 * This method returns the size of the buffers that
 * will be allocated.
 *
 * @returns the fixed size used for all buffers.
 */
 virtual uint32 getBufferSize() = 0;

 /**
 * This method returns the maximum number of buffers
 * available for allocation
 *
 * @returns the max number of buffers available for allocation.
 */
 virtual uint32 getNumBuffers() = 0;
};

 - Page 10 of 10 -

	1. Introduction
	2. Overview of Graph Initialization
	3. Sequence Diagrams
	4. Buffer Allocator

