/* ********************************************************************** * Copyright (C) 2005-2006, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** */ #include "unicode/utypes.h" #if !UCONFIG_NO_CONVERSION #include "inputext.h" #include "cmemory.h" #include "cstring.h" #include <string.h> U_NAMESPACE_BEGIN #define BUFFER_SIZE 8192 #define ARRAY_SIZE(array) (sizeof array / sizeof array[0]) #define NEW_ARRAY(type,count) (type *) uprv_malloc((count) * sizeof(type)) #define DELETE_ARRAY(array) uprv_free((void *) (array)) InputText::InputText() : fInputBytes(NEW_ARRAY(uint8_t, BUFFER_SIZE)), // The text to be checked. Markup will have been // removed if appropriate. fByteStats(NEW_ARRAY(int16_t, 256)), // byte frequency statistics for the input text. // Value is percent, not absolute. fDeclaredEncoding(0), fRawInput(0), fRawLength(0) { } InputText::~InputText() { DELETE_ARRAY(fDeclaredEncoding); DELETE_ARRAY(fByteStats); DELETE_ARRAY(fInputBytes); } void InputText::setText(const char *in, int32_t len) { fInputLen = 0; fC1Bytes = FALSE; fRawInput = (const uint8_t *) in; fRawLength = len == -1? uprv_strlen(in) : len; } void InputText::setDeclaredEncoding(const char* encoding, int32_t len) { if(encoding) { if (len == -1) { len = uprv_strlen(encoding); } len += 1; // to make place for the \0 at the end. uprv_free(fDeclaredEncoding); fDeclaredEncoding = NEW_ARRAY(char, len); uprv_strncpy(fDeclaredEncoding, encoding, len); } } UBool InputText::isSet() const { return fRawInput != NULL; } /** * MungeInput - after getting a set of raw input data to be analyzed, preprocess * it by removing what appears to be html markup. * * @internal */ void InputText::MungeInput(UBool fStripTags) { int srci = 0; int dsti = 0; uint8_t b; bool inMarkup = FALSE; int32_t openTags = 0; int32_t badTags = 0; // // html / xml markup stripping. // quick and dirty, not 100% accurate, but hopefully good enough, statistically. // discard everything within < brackets > // Count how many total '<' and illegal (nested) '<' occur, so we can make some // guess as to whether the input was actually marked up at all. // TODO: Think about how this interacts with EBCDIC charsets that are detected. if (fStripTags) { for (srci = 0; srci < fRawLength && dsti < BUFFER_SIZE; srci += 1) { b = fRawInput[srci]; if (b == (uint8_t)0x3C) { /* Check for the ASCII '<' */ if (inMarkup) { badTags += 1; } inMarkup = TRUE; openTags += 1; } if (! inMarkup) { fInputBytes[dsti++] = b; } if (b == (uint8_t)0x3E) { /* Check for the ASCII '>' */ inMarkup = FALSE; } } fInputLen = dsti; } // // If it looks like this input wasn't marked up, or if it looks like it's // essentially nothing but markup abandon the markup stripping. // Detection will have to work on the unstripped input. // if (openTags<5 || openTags/5 < badTags || (fInputLen < 100 && fRawLength>600)) { int32_t limit = fRawLength; if (limit > BUFFER_SIZE) { limit = BUFFER_SIZE; } for (srci=0; srci<limit; srci++) { fInputBytes[srci] = fRawInput[srci]; } fInputLen = srci; } // // Tally up the byte occurence statistics. // These are available for use by the various detectors. // uprv_memset(fByteStats, 0, (sizeof fByteStats[0]) * 256); for (srci = 0; srci < fInputLen; srci += 1) { fByteStats[fInputBytes[srci]] += 1; } for (int32_t i = 0x80; i <= 0x9F; i += 1) { if (fByteStats[i] != 0) { fC1Bytes = TRUE; break; } } } U_NAMESPACE_END #endif