/*
******************************************************************************
* Copyright (C) 1999-2004, International Business Machines Corporation and *
* others. All Rights Reserved. *
******************************************************************************
* Date Name Description
* 10/22/99 alan Creation.
**********************************************************************
*/
#include "uvector.h"
#include "cmemory.h"
U_NAMESPACE_BEGIN
#define DEFUALT_CAPACITY 8
/*
* Constants for hinting whether a key is an integer
* or a pointer. If a hint bit is zero, then the associated
* token is assumed to be an integer. This is needed for iSeries
*/
#define HINT_KEY_POINTER (1)
#define HINT_KEY_INTEGER (0)
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UVector)
UVector::UVector(UErrorCode &status) :
count(0),
capacity(0),
elements(0),
deleter(0),
comparer(0)
{
_init(DEFUALT_CAPACITY, status);
}
UVector::UVector(int32_t initialCapacity, UErrorCode &status) :
count(0),
capacity(0),
elements(0),
deleter(0),
comparer(0)
{
_init(initialCapacity, status);
}
UVector::UVector(UObjectDeleter *d, UKeyComparator *c, UErrorCode &status) :
count(0),
capacity(0),
elements(0),
deleter(d),
comparer(c)
{
_init(DEFUALT_CAPACITY, status);
}
UVector::UVector(UObjectDeleter *d, UKeyComparator *c, int32_t initialCapacity, UErrorCode &status) :
count(0),
capacity(0),
elements(0),
deleter(d),
comparer(c)
{
_init(initialCapacity, status);
}
void UVector::_init(int32_t initialCapacity, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
// Fix bogus initialCapacity values; avoid malloc(0)
if (initialCapacity < 1) {
initialCapacity = DEFUALT_CAPACITY;
}
elements = (UHashTok *)uprv_malloc(sizeof(UHashTok)*initialCapacity);
if (elements == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
} else {
capacity = initialCapacity;
}
}
UVector::~UVector() {
removeAllElements();
uprv_free(elements);
elements = 0;
}
/**
* Assign this object to another (make this a copy of 'other').
* Use the 'assign' function to assign each element.
*/
void UVector::assign(const UVector& other, UTokenAssigner *assign, UErrorCode &ec) {
if (ensureCapacity(other.count, ec)) {
setSize(other.count);
for (int32_t i=0; i<other.count; ++i) {
if (elements[i].pointer != 0 && deleter != 0) {
(*deleter)(elements[i].pointer);
}
(*assign)(&elements[i], &other.elements[i]);
}
}
}
// This only does something sensible if this object has a non-null comparer
UBool UVector::operator==(const UVector& other) {
int32_t i;
if (count != other.count) return FALSE;
if (comparer != NULL) {
// Compare using this object's comparer
for (i=0; i<count; ++i) {
if (!(*comparer)(elements[i], other.elements[i])) {
return FALSE;
}
}
}
return TRUE;
}
void UVector::addElement(void* obj, UErrorCode &status) {
if (ensureCapacity(count + 1, status)) {
elements[count++].pointer = obj;
}
}
void UVector::addElement(int32_t elem, UErrorCode &status) {
if (ensureCapacity(count + 1, status)) {
elements[count].pointer = NULL; // Pointers may be bigger than ints.
elements[count].integer = elem;
count++;
}
}
void UVector::setElementAt(void* obj, int32_t index) {
if (0 <= index && index < count) {
if (elements[index].pointer != 0 && deleter != 0) {
(*deleter)(elements[index].pointer);
}
elements[index].pointer = obj;
}
/* else index out of range */
}
void UVector::setElementAt(int32_t elem, int32_t index) {
if (0 <= index && index < count) {
if (elements[index].pointer != 0 && deleter != 0) {
// TODO: this should be an error. mixing up ints and pointers.
(*deleter)(elements[index].pointer);
}
elements[index].pointer = NULL;
elements[index].integer = elem;
}
/* else index out of range */
}
void UVector::insertElementAt(void* obj, int32_t index, UErrorCode &status) {
// must have 0 <= index <= count
if (0 <= index && index <= count && ensureCapacity(count + 1, status)) {
for (int32_t i=count; i>index; --i) {
elements[i] = elements[i-1];
}
elements[index].pointer = obj;
++count;
}
/* else index out of range */
}
void UVector::insertElementAt(int32_t elem, int32_t index, UErrorCode &status) {
// must have 0 <= index <= count
if (0 <= index && index <= count && ensureCapacity(count + 1, status)) {
for (int32_t i=count; i>index; --i) {
elements[i] = elements[i-1];
}
elements[index].pointer = NULL;
elements[index].integer = elem;
++count;
}
/* else index out of range */
}
void* UVector::elementAt(int32_t index) const {
return (0 <= index && index < count) ? elements[index].pointer : 0;
}
int32_t UVector::elementAti(int32_t index) const {
return (0 <= index && index < count) ? elements[index].integer : 0;
}
UBool UVector::containsAll(const UVector& other) const {
for (int32_t i=0; i<other.size(); ++i) {
if (indexOf(other.elements[i]) < 0) {
return FALSE;
}
}
return TRUE;
}
UBool UVector::containsNone(const UVector& other) const {
for (int32_t i=0; i<other.size(); ++i) {
if (indexOf(other.elements[i]) >= 0) {
return FALSE;
}
}
return TRUE;
}
UBool UVector::removeAll(const UVector& other) {
UBool changed = FALSE;
for (int32_t i=0; i<other.size(); ++i) {
int32_t j = indexOf(other.elements[i]);
if (j >= 0) {
removeElementAt(j);
changed = TRUE;
}
}
return changed;
}
UBool UVector::retainAll(const UVector& other) {
UBool changed = FALSE;
for (int32_t j=size()-1; j>=0; --j) {
int32_t i = other.indexOf(elements[j]);
if (i < 0) {
removeElementAt(j);
changed = TRUE;
}
}
return changed;
}
void UVector::removeElementAt(int32_t index) {
void* e = orphanElementAt(index);
if (e != 0 && deleter != 0) {
(*deleter)(e);
}
}
UBool UVector::removeElement(void* obj) {
int32_t i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
return TRUE;
}
return FALSE;
}
void UVector::removeAllElements(void) {
if (deleter != 0) {
for (int32_t i=0; i<count; ++i) {
if (elements[i].pointer != 0) {
(*deleter)(elements[i].pointer);
}
}
}
count = 0;
}
UBool UVector::equals(const UVector &other) const {
int i;
if (this->count != other.count) {
return FALSE;
}
if (comparer == 0) {
for (i=0; i<count; i++) {
if (elements[i].pointer != other.elements[i].pointer) {
return FALSE;
}
}
} else {
UHashTok key;
for (i=0; i<count; i++) {
key.pointer = &other.elements[i];
if (!(*comparer)(key, elements[i])) {
return FALSE;
}
}
}
return TRUE;
}
int32_t UVector::indexOf(void* obj, int32_t startIndex) const {
UHashTok key;
key.pointer = obj;
return indexOf(key, startIndex, HINT_KEY_POINTER);
}
int32_t UVector::indexOf(int32_t obj, int32_t startIndex) const {
UHashTok key;
key.integer = obj;
return indexOf(key, startIndex, HINT_KEY_INTEGER);
}
// This only works if this object has a non-null comparer
int32_t UVector::indexOf(UHashTok key, int32_t startIndex, int8_t hint) const {
int32_t i;
if (comparer != 0) {
for (i=startIndex; i<count; ++i) {
if ((*comparer)(key, elements[i])) {
return i;
}
}
} else {
for (i=startIndex; i<count; ++i) {
/* Pointers are not always the same size as ints so to perform
* a valid comparision we need to know whether we are being
* provided an int or a pointer. */
if (hint & HINT_KEY_POINTER) {
if (key.pointer == elements[i].pointer) {
return i;
}
} else {
if (key.integer == elements[i].integer) {
return i;
}
}
}
}
return -1;
}
UBool UVector::ensureCapacity(int32_t minimumCapacity, UErrorCode &status) {
if (capacity >= minimumCapacity) {
return TRUE;
} else {
int32_t newCap = capacity * 2;
if (newCap < minimumCapacity) {
newCap = minimumCapacity;
}
UHashTok* newElems = (UHashTok *)uprv_malloc(sizeof(UHashTok)*newCap);
if (newElems == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return FALSE;
}
uprv_memcpy(newElems, elements, sizeof(elements[0]) * count);
uprv_free(elements);
elements = newElems;
capacity = newCap;
return TRUE;
}
}
/**
* Change the size of this vector as follows: If newSize is smaller,
* then truncate the array, possibly deleting held elements for i >=
* newSize. If newSize is larger, grow the array, filling in new
* slots with NULL.
*/
void UVector::setSize(int32_t newSize) {
int32_t i;
if (newSize < 0) {
return;
}
if (newSize > count) {
UErrorCode ec = U_ZERO_ERROR;
if (!ensureCapacity(newSize, ec)) {
return;
}
UHashTok empty;
empty.pointer = NULL;
empty.integer = 0;
for (i=count; i<newSize; ++i) {
elements[i] = empty;
}
} else {
/* Most efficient to count down */
for (i=count-1; i>=newSize; --i) {
removeElementAt(i);
}
}
count = newSize;
}
/**
* Fill in the given array with all elements of this vector.
*/
void** UVector::toArray(void** result) const {
void** a = result;
for (int i=0; i<count; ++i) {
*a++ = elements[i].pointer;
}
return result;
}
UObjectDeleter *UVector::setDeleter(UObjectDeleter *d) {
UObjectDeleter *old = deleter;
deleter = d;
return old;
}
UKeyComparator *UVector::setComparer(UKeyComparator *d) {
UKeyComparator *old = comparer;
comparer = d;
return old;
}
/**
* Removes the element at the given index from this vector and
* transfer ownership of it to the caller. After this call, the
* caller owns the result and must delete it and the vector entry
* at 'index' is removed, shifting all subsequent entries back by
* one index and shortening the size of the vector by one. If the
* index is out of range or if there is no item at the given index
* then 0 is returned and the vector is unchanged.
*/
void* UVector::orphanElementAt(int32_t index) {
void* e = 0;
if (0 <= index && index < count) {
e = elements[index].pointer;
for (int32_t i=index; i<count-1; ++i) {
elements[i] = elements[i+1];
}
--count;
}
/* else index out of range */
return e;
}
/**
* Insert the given object into this vector at its sorted position
* as defined by 'compare'. The current elements are assumed to
* be sorted already.
*/
void UVector::sortedInsert(void* obj, USortComparator *compare, UErrorCode& ec) {
UHashTok tok;
tok.pointer = obj;
sortedInsert(tok, compare, ec);
}
/**
* Insert the given integer into this vector at its sorted position
* as defined by 'compare'. The current elements are assumed to
* be sorted already.
*/
void UVector::sortedInsert(int32_t obj, USortComparator *compare, UErrorCode& ec) {
UHashTok tok;
tok.integer = obj;
sortedInsert(tok, compare, ec);
}
// ASSUME elements[] IS CURRENTLY SORTED
void UVector::sortedInsert(UHashTok tok, USortComparator *compare, UErrorCode& ec) {
// Perform a binary search for the location to insert tok at. Tok
// will be inserted between two elements a and b such that a <=
// tok && tok < b, where there is a 'virtual' elements[-1] always
// less than tok and a 'virtual' elements[count] always greater
// than tok.
int32_t min = 0, max = count;
while (min != max) {
int32_t probe = (min + max) / 2;
int8_t c = (*compare)(elements[probe], tok);
if (c > 0) {
max = probe;
} else {
// assert(c <= 0);
min = probe + 1;
}
}
if (ensureCapacity(count + 1, ec)) {
for (int32_t i=count; i>min; --i) {
elements[i] = elements[i-1];
}
elements[min] = tok;
++count;
}
}
U_NAMESPACE_END