/* libs/graphics/sgl/SkString.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include "SkString.h"
#include "SkFixed.h"
#include "SkUtils.h"
#include <stdarg.h>
bool SkStrStartsWith(const char string[], const char prefix[])
{
SkASSERT(string);
SkASSERT(prefix);
return !strncmp(string, prefix, strlen(prefix));
}
bool SkStrEndsWith(const char string[], const char suffix[])
{
SkASSERT(string);
SkASSERT(suffix);
size_t strLen = strlen(string);
size_t suffixLen = strlen(suffix);
return strLen >= suffixLen &&
!strncmp(string + strLen - suffixLen, suffix, suffixLen);
}
int SkStrStartsWithOneOf(const char string[], const char prefixes[])
{
int index = 0;
do {
const char* limit = strchr(prefixes, '\0');
if (!strncmp(string, prefixes, limit - prefixes))
return index;
prefixes = limit + 1;
index++;
} while (prefixes[0]);
return -1;
}
char* SkStrAppendS32(char string[], int32_t dec)
{
SkDEBUGCODE(char* start = string;)
char buffer[SkStrAppendS32_MaxSize];
char* p = buffer + sizeof(buffer);
bool neg = false;
if (dec < 0)
{
neg = true;
dec = -dec;
}
do {
*--p = SkToU8('0' + dec % 10);
dec /= 10;
} while (dec != 0);
if (neg)
*--p = '-';
SkASSERT(p >= buffer);
char* stop = buffer + sizeof(buffer);
while (p < stop)
*string++ = *p++;
SkASSERT(string - start <= SkStrAppendS32_MaxSize);
return string;
}
char* SkStrAppendScalar(char string[], SkScalar value)
{
SkDEBUGCODE(char* start = string;)
SkFixed x = SkScalarToFixed(value);
if (x < 0)
{
*string++ = '-';
x = -x;
}
unsigned frac = x & 0xFFFF;
x >>= 16;
if (frac == 0xFFFF) // need to do this to "round up", since 65535/65536 is closer to 1 than to .9999
{
x += 1;
frac = 0;
}
string = SkStrAppendS32(string, x);
// now handle the fractional part (if any)
if (frac)
{
static const uint16_t gTens[] = { 1000, 100, 10, 1 };
const uint16_t* tens = gTens;
x = SkFixedRound(frac * 10000);
SkASSERT(x <= 10000);
if (x == 10000) {
x -= 1;
}
*string++ = '.';
do {
unsigned powerOfTen = *tens++;
*string++ = SkToU8('0' + x / powerOfTen);
x %= powerOfTen;
} while (x != 0);
}
SkASSERT(string - start <= SkStrAppendScalar_MaxSize);
return string;
}
////////////////////////////////////////////////////////////////////////////////////
#define kMaxRefCnt_SkString SK_MaxU16
// the 3 values are [length] [refcnt] [terminating zero data]
const SkString::Rec SkString::gEmptyRec = { 0, 0, 0 };
#define SizeOfRec() (gEmptyRec.data() - (const char*)&gEmptyRec)
SkString::Rec* SkString::AllocRec(const char text[], U16CPU len)
{
Rec* rec;
if (len == 0)
rec = const_cast<Rec*>(&gEmptyRec);
else
{
// add 1 for terminating 0, then align4 so we can have some slop when growing the string
rec = (Rec*)sk_malloc_throw(SizeOfRec() + SkAlign4(len + 1));
rec->fLength = SkToU16(len);
rec->fRefCnt = 1;
if (text)
memcpy(rec->data(), text, len);
rec->data()[len] = 0;
}
return rec;
}
SkString::Rec* SkString::RefRec(Rec* src)
{
if (src != &gEmptyRec)
{
if (src->fRefCnt == kMaxRefCnt_SkString) {
src = AllocRec(src->data(), src->fLength);
} else
src->fRefCnt += 1;
}
return src;
}
#ifdef SK_DEBUG
void SkString::validate() const
{
// make sure know one has written over our global
SkASSERT(gEmptyRec.fLength == 0);
SkASSERT(gEmptyRec.fRefCnt == 0);
SkASSERT(gEmptyRec.data()[0] == 0);
if (fRec != &gEmptyRec)
{
SkASSERT(fRec->fLength > 0);
SkASSERT(fRec->fRefCnt > 0);
SkASSERT(fRec->data()[fRec->fLength] == 0);
}
SkASSERT(fStr == c_str());
}
#endif
///////////////////////////////////////////////////////////////////////
SkString::SkString() : fRec(const_cast<Rec*>(&gEmptyRec)) {
#ifdef SK_DEBUG
fStr = fRec->data();
#endif
}
SkString::SkString(size_t len)
{
SkASSERT(SkToU16(len) == len); // can't handle larger than 64K
fRec = AllocRec(NULL, (U16CPU)len);
#ifdef SK_DEBUG
fStr = fRec->data();
#endif
}
SkString::SkString(const char text[])
{
size_t len = text ? strlen(text) : 0;
fRec = AllocRec(text, (U16CPU)len);
#ifdef SK_DEBUG
fStr = fRec->data();
#endif
}
SkString::SkString(const char text[], size_t len)
{
fRec = AllocRec(text, (U16CPU)len);
#ifdef SK_DEBUG
fStr = fRec->data();
#endif
}
SkString::SkString(const SkString& src)
{
src.validate();
fRec = RefRec(src.fRec);
#ifdef SK_DEBUG
fStr = fRec->data();
#endif
}
SkString::~SkString()
{
this->validate();
if (fRec->fLength)
{
SkASSERT(fRec->fRefCnt > 0);
if (--fRec->fRefCnt == 0)
sk_free(fRec);
}
}
bool SkString::equals(const SkString& src) const
{
return fRec == src.fRec || this->equals(src.c_str(), src.size());
}
bool SkString::equals(const char text[]) const
{
return this->equals(text, text ? strlen(text) : 0);
}
bool SkString::equals(const char text[], size_t len) const
{
SkASSERT(len == 0 || text != NULL);
return fRec->fLength == len && !memcmp(fRec->data(), text, len);
}
SkString& SkString::operator=(const SkString& src)
{
this->validate();
if (fRec != src.fRec)
{
SkString tmp(src);
this->swap(tmp);
}
return *this;
}
void SkString::reset()
{
this->validate();
if (fRec->fLength)
{
SkASSERT(fRec->fRefCnt > 0);
if (--fRec->fRefCnt == 0)
sk_free(fRec);
}
fRec = const_cast<Rec*>(&gEmptyRec);
#ifdef SK_DEBUG
fStr = fRec->data();
#endif
}
char* SkString::writable_str()
{
this->validate();
if (fRec->fLength)
{
if (fRec->fRefCnt > 1)
{
fRec->fRefCnt -= 1;
fRec = AllocRec(fRec->data(), fRec->fLength);
#ifdef SK_DEBUG
fStr = fRec->data();
#endif
}
}
return fRec->data();
}
void SkString::set(const char text[])
{
this->set(text, text ? strlen(text) : 0);
}
void SkString::set(const char text[], size_t len)
{
if (len == 0)
this->reset();
else if (fRec->fRefCnt == 1 && len <= fRec->fLength) // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1))
{
// just use less of the buffer without allocating a smaller one
char* p = this->writable_str();
if (text)
memcpy(p, text, len);
p[len] = 0;
fRec->fLength = SkToU16(len);
}
else if (fRec->fRefCnt == 1 && ((unsigned)fRec->fLength >> 2) == (len >> 2))
{
// we have spare room in the current allocation, so don't alloc a larger one
char* p = this->writable_str();
if (text)
memcpy(p, text, len);
p[len] = 0;
fRec->fLength = SkToU16(len);
}
else
{
SkString tmp(text, len);
this->swap(tmp);
}
}
void SkString::setUTF16(const uint16_t src[])
{
int count = 0;
while (src[count])
count += 1;
setUTF16(src, count);
}
void SkString::setUTF16(const uint16_t src[], size_t count)
{
if (count == 0)
this->reset();
else if (count <= fRec->fLength) // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1))
{
if (count < fRec->fLength)
this->resize(count);
char* p = this->writable_str();
for (size_t i = 0; i < count; i++)
p[i] = SkToU8(src[i]);
p[count] = 0;
}
else
{
SkString tmp(count); // puts a null terminator at the end of the string
char* p = tmp.writable_str();
for (size_t i = 0; i < count; i++)
p[i] = SkToU8(src[i]);
this->swap(tmp);
}
}
void SkString::insert(size_t offset, const char text[])
{
this->insert(offset, text, text ? strlen(text) : 0);
}
void SkString::insert(size_t offset, const char text[], size_t len)
{
if (len)
{
size_t length = fRec->fLength;
if (offset > length)
offset = length;
/* If we're the only owner, and we have room in our allocation for the insert,
do it in place, rather than allocating a new buffer.
To know we have room, compare the allocated sizes
beforeAlloc = SkAlign4(length + 1)
afterAlloc = SkAligh4(length + 1 + len)
but SkAlign4(x) is (x + 3) >> 2 << 2
which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2
and we can then eliminate the +1+3 since that doesn't affec the answer
*/
if (fRec->fRefCnt == 1 && (length >> 2) == ((length + len) >> 2))
{
char* dst = this->writable_str();
if (offset < length)
memmove(dst + offset + len, dst + offset, length - offset);
memcpy(dst + offset, text, len);
dst[length + len] = 0;
fRec->fLength = SkToU16(length + len);
}
else
{
/* Seems we should use realloc here, since that is safe if it fails
(we have the original data), and might be faster than alloc/copy/free.
*/
SkString tmp(fRec->fLength + len);
char* dst = tmp.writable_str();
if (offset > 0)
memcpy(dst, fRec->data(), offset);
memcpy(dst + offset, text, len);
if (offset < fRec->fLength)
memcpy(dst + offset + len, fRec->data() + offset, fRec->fLength - offset);
this->swap(tmp);
}
}
}
void SkString::insertUnichar(size_t offset, SkUnichar uni)
{
char buffer[kMaxBytesInUTF8Sequence];
size_t len = SkUTF8_FromUnichar(uni, buffer);
if (len)
this->insert(offset, buffer, len);
}
void SkString::insertS32(size_t offset, int32_t dec)
{
char buffer[SkStrAppendS32_MaxSize];
char* stop = SkStrAppendS32(buffer, dec);
this->insert(offset, buffer, stop - buffer);
}
void SkString::insertHex(size_t offset, uint32_t hex, int minDigits)
{
minDigits = SkPin32(minDigits, 0, 8);
static const char gHex[] = "0123456789ABCDEF";
char buffer[8];
char* p = buffer + sizeof(buffer);
do {
*--p = gHex[hex & 0xF];
hex >>= 4;
minDigits -= 1;
} while (hex != 0);
while (--minDigits >= 0)
*--p = '0';
SkASSERT(p >= buffer);
this->insert(offset, p, buffer + sizeof(buffer) - p);
}
void SkString::insertScalar(size_t offset, SkScalar value)
{
char buffer[SkStrAppendScalar_MaxSize];
char* stop = SkStrAppendScalar(buffer, value);
this->insert(offset, buffer, stop - buffer);
}
///////////////////////////////////////////////////////////////////////////
#include <stdio.h>
// number of bytes (on the stack) to receive the printf result
static const size_t kBufferSize = 256;
#ifdef SK_BUILD_FOR_WIN
#define VSNPRINTF _vsnprintf
#else
#define VSNPRINTF vsnprintf
#endif
#define ARGS_TO_BUFFER(format, buffer, size) \
do { \
va_list args; \
va_start(args, format); \
VSNPRINTF(buffer, size, format, args); \
va_end(args); \
} while (0)
void SkString::printf(const char format[], ...) {
char buffer[kBufferSize];
ARGS_TO_BUFFER(format, buffer, kBufferSize);
this->set(buffer, strlen(buffer));
}
void SkString::appendf(const char format[], ...) {
char buffer[kBufferSize];
ARGS_TO_BUFFER(format, buffer, kBufferSize);
this->append(buffer, strlen(buffer));
}
void SkString::prependf(const char format[], ...) {
char buffer[kBufferSize];
ARGS_TO_BUFFER(format, buffer, kBufferSize);
this->prepend(buffer, strlen(buffer));
}
#undef VSNPRINTF
///////////////////////////////////////////////////////////////////////////
void SkString::remove(size_t offset, size_t length)
{
size_t size = this->size();
if (offset < size)
{
if (offset + length > size)
length = size - offset;
if (length > 0)
{
SkASSERT(size > length);
SkString tmp(size - length);
char* dst = tmp.writable_str();
const char* src = this->c_str();
if (offset)
{
SkASSERT(offset <= tmp.size());
memcpy(dst, src, offset);
}
size_t tail = size - offset - length;
SkASSERT((int32_t)tail >= 0);
if (tail)
{
// SkASSERT(offset + length <= tmp.size());
memcpy(dst + offset, src + offset + length, tail);
}
SkASSERT(dst[tmp.size()] == 0);
this->swap(tmp);
}
}
}
void SkString::swap(SkString& other)
{
this->validate();
other.validate();
SkTSwap<Rec*>(fRec, other.fRec);
#ifdef SK_DEBUG
SkTSwap<const char*>(fStr, other.fStr);
#endif
}
/////////////////////////////////////////////////////////////////////////////////
SkAutoUCS2::SkAutoUCS2(const char utf8[])
{
size_t len = strlen(utf8);
fUCS2 = (uint16_t*)sk_malloc_throw((len + 1) * sizeof(uint16_t));
uint16_t* dst = fUCS2;
for (;;)
{
SkUnichar uni = SkUTF8_NextUnichar(&utf8);
*dst++ = SkToU16(uni);
if (uni == 0)
break;
}
fCount = (int)(dst - fUCS2);
}
SkAutoUCS2::~SkAutoUCS2()
{
delete[] fUCS2;
}