C++程序  |  2738行  |  63.75 KB

/*
 * Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl>
 * Copyright (c) 1993 Branko Lankester <branko@hacktic.nl>
 * Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com>
 * Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl>
 * Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
 *                     Linux for s390 port by D.J. Barrow
 *                    <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *	$Id: syscall.c,v 1.79 2005/06/08 20:45:28 roland Exp $
 */

#include "defs.h"

#include <signal.h>
#include <time.h>
#include <errno.h>
#ifndef HAVE_ANDROID_OS
#include <sys/user.h>
#endif
#include <sys/syscall.h>
#include <sys/param.h>

#if HAVE_ASM_REG_H
#if defined (SPARC) || defined (SPARC64)
#  define fpq kernel_fpq
#  define fq kernel_fq
#  define fpu kernel_fpu
#endif
#include <asm/reg.h>
#if defined (SPARC) || defined (SPARC64)
#  undef fpq
#  undef fq
#  undef fpu
#endif
#endif

#ifdef HAVE_SYS_REG_H
#include <sys/reg.h>
#ifndef PTRACE_PEEKUSR
# define PTRACE_PEEKUSR PTRACE_PEEKUSER
#endif
#elif defined(HAVE_LINUX_PTRACE_H)
#undef PTRACE_SYSCALL
# ifdef HAVE_STRUCT_IA64_FPREG
#  define ia64_fpreg XXX_ia64_fpreg
# endif
# ifdef HAVE_STRUCT_PT_ALL_USER_REGS
#  define pt_all_user_regs XXX_pt_all_user_regs
# endif
#include <linux/ptrace.h>
# undef ia64_fpreg
# undef pt_all_user_regs
#endif

#if defined (LINUX) && defined (SPARC64)
# define r_pc r_tpc
# undef PTRACE_GETREGS
# define PTRACE_GETREGS PTRACE_GETREGS64
# undef PTRACE_SETREGS
# define PTRACE_SETREGS PTRACE_SETREGS64
#endif /* LINUX && SPARC64 */

#if defined(LINUX) && defined(IA64)
# include <asm/ptrace_offsets.h>
# include <asm/rse.h>
#endif

#define NR_SYSCALL_BASE 0
#ifdef LINUX
#ifndef ERESTARTSYS
#define ERESTARTSYS	512
#endif
#ifndef ERESTARTNOINTR
#define ERESTARTNOINTR	513
#endif
#ifndef ERESTARTNOHAND
#define ERESTARTNOHAND	514	/* restart if no handler.. */
#endif
#ifndef ENOIOCTLCMD
#define ENOIOCTLCMD	515	/* No ioctl command */
#endif
#ifndef ERESTART_RESTARTBLOCK
#define ERESTART_RESTARTBLOCK 516	/* restart by calling sys_restart_syscall */
#endif
#ifndef NSIG
#define NSIG 32
#endif
#ifdef ARM
#undef NSIG
#define NSIG 32
#undef NR_SYSCALL_BASE
#define NR_SYSCALL_BASE __NR_SYSCALL_BASE
#endif
#endif /* LINUX */

#include "syscall-android.h"
#include "syscall.h"

/* Define these shorthand notations to simplify the syscallent files. */
#define TF TRACE_FILE
#define TI TRACE_IPC
#define TN TRACE_NETWORK
#define TP TRACE_PROCESS
#define TS TRACE_SIGNAL

static const struct sysent sysent0[] = {
#include "syscallent.h"
};
static const int nsyscalls0 = sizeof sysent0 / sizeof sysent0[0];

#if SUPPORTED_PERSONALITIES >= 2
static const struct sysent sysent1[] = {
#include "syscallent1.h"
};
static const int nsyscalls1 = sizeof sysent1 / sizeof sysent1[0];
#endif /* SUPPORTED_PERSONALITIES >= 2 */

#if SUPPORTED_PERSONALITIES >= 3
static const struct sysent sysent2[] = {
#include "syscallent2.h"
};
static const int nsyscalls2 = sizeof sysent2 / sizeof sysent2[0];
#endif /* SUPPORTED_PERSONALITIES >= 3 */

const struct sysent *sysent;
int nsyscalls;

/* Now undef them since short defines cause wicked namespace pollution. */
#undef TF
#undef TI
#undef TN
#undef TP
#undef TS

static const char *const errnoent0[] = {
#include "errnoent.h"
};
static const int nerrnos0 = sizeof errnoent0 / sizeof errnoent0[0];

#if SUPPORTED_PERSONALITIES >= 2
static const char *const errnoent1[] = {
#include "errnoent1.h"
};
static const int nerrnos1 = sizeof errnoent1 / sizeof errnoent1[0];
#endif /* SUPPORTED_PERSONALITIES >= 2 */

#if SUPPORTED_PERSONALITIES >= 3
static const char *const errnoent2[] = {
#include "errnoent2.h"
};
static const int nerrnos2 = sizeof errnoent2 / sizeof errnoent2[0];
#endif /* SUPPORTED_PERSONALITIES >= 3 */

const char *const *errnoent;
int nerrnos;

int current_personality;

int
set_personality(personality)
int personality;
{
	switch (personality) {
	case 0:
		errnoent = errnoent0;
		nerrnos = nerrnos0;
		sysent = sysent0;
		nsyscalls = nsyscalls0;
		ioctlent = ioctlent0;
		nioctlents = nioctlents0;
		signalent = signalent0;
		nsignals = nsignals0;
		break;

#if SUPPORTED_PERSONALITIES >= 2
	case 1:
		errnoent = errnoent1;
		nerrnos = nerrnos1;
		sysent = sysent1;
		nsyscalls = nsyscalls1;
		ioctlent = ioctlent1;
		nioctlents = nioctlents1;
		signalent = signalent1;
		nsignals = nsignals1;
		break;
#endif /* SUPPORTED_PERSONALITIES >= 2 */

#if SUPPORTED_PERSONALITIES >= 3
	case 2:
		errnoent = errnoent2;
		nerrnos = nerrnos2;
		sysent = sysent2;
		nsyscalls = nsyscalls2;
		ioctlent = ioctlent2;
		nioctlents = nioctlents2;
		signalent = signalent2;
		nsignals = nsignals2;
		break;
#endif /* SUPPORTED_PERSONALITIES >= 3 */

	default:
		return -1;
	}

	current_personality = personality;
	return 0;
}

int qual_flags[MAX_QUALS];


struct call_counts {
	struct timeval time;
	int calls, errors;
};

static struct call_counts *counts;

static struct timeval shortest = { 1000000, 0 };

static int qual_syscall(), qual_signal(), qual_fault(), qual_desc();

static const struct qual_options {
	int bitflag;
	char *option_name;
	int (*qualify)();
	char *argument_name;
} qual_options[] = {
	{ QUAL_TRACE,	"trace",	qual_syscall,	"system call"	},
	{ QUAL_TRACE,	"t",		qual_syscall,	"system call"	},
	{ QUAL_ABBREV,	"abbrev",	qual_syscall,	"system call"	},
	{ QUAL_ABBREV,	"a",		qual_syscall,	"system call"	},
	{ QUAL_VERBOSE,	"verbose",	qual_syscall,	"system call"	},
	{ QUAL_VERBOSE,	"v",		qual_syscall,	"system call"	},
	{ QUAL_RAW,	"raw",		qual_syscall,	"system call"	},
	{ QUAL_RAW,	"x",		qual_syscall,	"system call"	},
	{ QUAL_SIGNAL,	"signal",	qual_signal,	"signal"	},
	{ QUAL_SIGNAL,	"signals",	qual_signal,	"signal"	},
	{ QUAL_SIGNAL,	"s",		qual_signal,	"signal"	},
	{ QUAL_FAULT,	"fault",	qual_fault,	"fault"		},
	{ QUAL_FAULT,	"faults",	qual_fault,	"fault"		},
	{ QUAL_FAULT,	"m",		qual_fault,	"fault"		},
	{ QUAL_READ,	"read",		qual_desc,	"descriptor"	},
	{ QUAL_READ,	"reads",	qual_desc,	"descriptor"	},
	{ QUAL_READ,	"r",		qual_desc,	"descriptor"	},
	{ QUAL_WRITE,	"write",	qual_desc,	"descriptor"	},
	{ QUAL_WRITE,	"writes",	qual_desc,	"descriptor"	},
	{ QUAL_WRITE,	"w",		qual_desc,	"descriptor"	},
	{ 0,		NULL,		NULL,		NULL		},
};

static void
qualify_one(n, opt, not)
	int n;
	const struct qual_options *opt;
	int not;
{
	if (not)
		qual_flags[n] &= ~opt->bitflag;
	else
		qual_flags[n] |= opt->bitflag;
}

static int
qual_syscall(s, opt, not)
	char *s;
	const struct qual_options *opt;
	int not;
{
	int i;
	int rc = -1;

	for (i = 0; i < nsyscalls; i++) {
		if (strcmp(s, sysent[i].sys_name) == 0) {
			qualify_one(i, opt, not);
			rc = 0;
		}
	}
	return rc;
}

static int
qual_signal(s, opt, not)
	char *s;
	const struct qual_options *opt;
	int not;
{
	int i;
	char buf[32];

  	if (s && *s && isdigit((unsigned char)*s)) {
 		int signo = atoi(s);
 		if (signo < 0 || signo >= MAX_QUALS)
 			return -1;
 		qualify_one(signo, opt, not);
 		return 0;
	}
	if (strlen(s) >= sizeof buf)
		return -1;
	strcpy(buf, s);
	s = buf;
	for (i = 0; s[i]; i++)
		s[i] = toupper((unsigned char)(s[i]));
	if (strncmp(s, "SIG", 3) == 0)
		s += 3;
	for (i = 0; i <= NSIG; i++)
		if (strcmp(s, signame(i) + 3) == 0) {
			qualify_one(i, opt, not);
			return 0;
		}
	return -1;
}

static int
qual_fault(s, opt, not)
	char *s;
	const struct qual_options *opt;
	int not;
{
	return -1;
}

static int
qual_desc(s, opt, not)
	char *s;
	const struct qual_options *opt;
	int not;
{
	if (s && *s && isdigit((unsigned char)*s)) {
		int desc = atoi(s);
		if (desc < 0 || desc >= MAX_QUALS)
			return -1;
		qualify_one(desc, opt, not);
		return 0;
	}
	return -1;
}

static int
lookup_class(s)
	char *s;
{
	if (strcmp(s, "file") == 0)
		return TRACE_FILE;
	if (strcmp(s, "ipc") == 0)
		return TRACE_IPC;
	if (strcmp(s, "network") == 0)
		return TRACE_NETWORK;
	if (strcmp(s, "process") == 0)
		return TRACE_PROCESS;
	if (strcmp(s, "signal") == 0)
		return TRACE_SIGNAL;
	return -1;
}

void
qualify(s)
char *s;
{
	const struct qual_options *opt;
	int not;
	char *p;
	int i, n;

	opt = &qual_options[0];
	for (i = 0; (p = qual_options[i].option_name); i++) {
		n = strlen(p);
		if (strncmp(s, p, n) == 0 && s[n] == '=') {
			opt = &qual_options[i];
			s += n + 1;
			break;
		}
	}
	not = 0;
	if (*s == '!') {
		not = 1;
		s++;
	}
	if (strcmp(s, "none") == 0) {
		not = 1 - not;
		s = "all";
	}
	if (strcmp(s, "all") == 0) {
		for (i = 0; i < MAX_QUALS; i++) {
			if (not)
				qual_flags[i] &= ~opt->bitflag;
			else
				qual_flags[i] |= opt->bitflag;
		}
		return;
	}
	for (i = 0; i < MAX_QUALS; i++) {
		if (not)
			qual_flags[i] |= opt->bitflag;
		else
			qual_flags[i] &= ~opt->bitflag;
	}
	for (p = strtok(s, ","); p; p = strtok(NULL, ",")) {
		if (opt->bitflag == QUAL_TRACE && (n = lookup_class(p)) > 0) {
			for (i = 0; i < MAX_QUALS; i++) {
				if (sysent[i].sys_flags & n) {
					if (not)
						qual_flags[i] &= ~opt->bitflag;
					else
						qual_flags[i] |= opt->bitflag;
				}
			}
			continue;
		}
		if (opt->qualify(p, opt, not)) {
			fprintf(stderr, "strace: invalid %s `%s'\n",
				opt->argument_name, p);
			exit(1);
		}
	}
	return;
}

static void
dumpio(tcp)
struct tcb *tcp;
{
	if (syserror(tcp))
		return;
	if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= MAX_QUALS)
		return;
	switch (known_scno(tcp)) {
	case SYS_read:
#ifdef SYS_pread64
	case SYS_pread64:
#endif
#if defined SYS_pread && SYS_pread64 != SYS_pread
	case SYS_pread:
#endif
#ifdef SYS_recv
	case SYS_recv:
#elif defined SYS_sub_recv
	case SYS_sub_recv:
#endif
#ifdef SYS_recvfrom
	case SYS_recvfrom:
#elif defined SYS_sub_recvfrom
	case SYS_sub_recvfrom:
#endif
		if (qual_flags[tcp->u_arg[0]] & QUAL_READ)
			dumpstr(tcp, tcp->u_arg[1], tcp->u_rval);
		break;
	case SYS_write:
#ifdef SYS_pwrite64
	case SYS_pwrite64:
#endif
#if defined SYS_pwrite && SYS_pwrite64 != SYS_pwrite
	case SYS_pwrite:
#endif
#ifdef SYS_send
	case SYS_send:
#elif defined SYS_sub_send
	case SYS_sub_send:
#endif
#ifdef SYS_sendto
	case SYS_sendto:
#elif defined SYS_sub_sendto
	case SYS_sub_sendto:
#endif
		if (qual_flags[tcp->u_arg[0]] & QUAL_WRITE)
			dumpstr(tcp, tcp->u_arg[1], tcp->u_arg[2]);
		break;
#ifdef SYS_readv
        case SYS_readv:
                if (qual_flags[tcp->u_arg[0]] & QUAL_READ)
                        dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]);
                break;
#endif
#ifdef SYS_writev
        case SYS_writev:

                if (qual_flags[tcp->u_arg[0]] & QUAL_WRITE)
                        dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]);
                break;
#endif
	}
}

#ifndef FREEBSD
enum subcall_style { shift_style, deref_style, mask_style, door_style };
#else /* FREEBSD */
enum subcall_style { shift_style, deref_style, mask_style, door_style, table_style };

struct subcall {
  int call;
  int nsubcalls;
  int subcalls[5];
};

static const struct subcall subcalls_table[] = {
  { SYS_shmsys, 5, { SYS_shmat, SYS_shmctl, SYS_shmdt, SYS_shmget, SYS_shmctl } },
#ifdef SYS_semconfig
  { SYS_semsys, 4, { SYS___semctl, SYS_semget, SYS_semop, SYS_semconfig } },
#else
  { SYS_semsys, 3, { SYS___semctl, SYS_semget, SYS_semop } },
#endif
  { SYS_msgsys, 4, { SYS_msgctl, SYS_msgget, SYS_msgsnd, SYS_msgrcv } },
};
#endif /* FREEBSD */

#if !(defined(LINUX) && ( defined(ALPHA) || defined(MIPS) ))

static const int socket_map [] = {
	       /* SYS_SOCKET      */ 97,
	       /* SYS_BIND        */ 104,
	       /* SYS_CONNECT     */ 98,
	       /* SYS_LISTEN      */ 106,
	       /* SYS_ACCEPT      */ 99,
	       /* SYS_GETSOCKNAME */ 150,
	       /* SYS_GETPEERNAME */ 141,
	       /* SYS_SOCKETPAIR  */ 135,
	       /* SYS_SEND        */ 101,
	       /* SYS_RECV        */ 102,
	       /* SYS_SENDTO      */ 133,
	       /* SYS_RECVFROM    */ 125,
	       /* SYS_SHUTDOWN    */ 134,
	       /* SYS_SETSOCKOPT  */ 105,
	       /* SYS_GETSOCKOPT  */ 118,
	       /* SYS_SENDMSG     */ 114,
	       /* SYS_RECVMSG     */ 113
};

#if defined (SPARC) || defined (SPARC64)
static void
sparc_socket_decode (tcp)
struct tcb *tcp;
{
	volatile long addr;
	volatile int i, n;

	if (tcp->u_arg [0] < 1 || tcp->u_arg [0] > sizeof(socket_map)/sizeof(int)+1){
		return;
	}
	tcp->scno = socket_map [tcp->u_arg [0]-1];
	n = tcp->u_nargs = sysent [tcp->scno].nargs;
	addr = tcp->u_arg [1];
	for (i = 0; i < n; i++){
	        int arg;
		if (umoven (tcp, addr, sizeof (arg), (void *) &arg) < 0)
			arg = 0;
		tcp->u_arg [i] = arg;
		addr += sizeof (arg);
	}
}
#endif

static void
decode_subcall(tcp, subcall, nsubcalls, style)
struct tcb *tcp;
int subcall;
int nsubcalls;
enum subcall_style style;
{
	long addr, mask, arg;
	int i;

	switch (style) {
	case shift_style:
		if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= nsubcalls)
			return;
		tcp->scno = subcall + tcp->u_arg[0];
		if (sysent[tcp->scno].nargs != -1)
			tcp->u_nargs = sysent[tcp->scno].nargs;
		else
			tcp->u_nargs--;
		for (i = 0; i < tcp->u_nargs; i++)
			tcp->u_arg[i] = tcp->u_arg[i + 1];
		break;
	case deref_style:
		if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= nsubcalls)
			return;
		tcp->scno = subcall + tcp->u_arg[0];
		addr = tcp->u_arg[1];
		for (i = 0; i < sysent[tcp->scno].nargs; i++) {
			if (umove(tcp, addr, &arg) < 0)
				arg = 0;
			tcp->u_arg[i] = arg;
			addr += sizeof(arg);
		}
		tcp->u_nargs = sysent[tcp->scno].nargs;
		break;
	case mask_style:
		mask = (tcp->u_arg[0] >> 8) & 0xff;
		for (i = 0; mask; i++)
			mask >>= 1;
		if (i >= nsubcalls)
			return;
		tcp->u_arg[0] &= 0xff;
		tcp->scno = subcall + i;
		if (sysent[tcp->scno].nargs != -1)
			tcp->u_nargs = sysent[tcp->scno].nargs;
		break;
	case door_style:
		/*
		 * Oh, yuck.  The call code is the *sixth* argument.
		 * (don't you mean the *last* argument? - JH)
		 */
		if (tcp->u_arg[5] < 0 || tcp->u_arg[5] >= nsubcalls)
			return;
		tcp->scno = subcall + tcp->u_arg[5];
		if (sysent[tcp->scno].nargs != -1)
			tcp->u_nargs = sysent[tcp->scno].nargs;
		else
			tcp->u_nargs--;
		break;
#ifdef FREEBSD
	case table_style:
		for (i = 0; i < sizeof(subcalls_table) / sizeof(struct subcall); i++)
			if (subcalls_table[i].call == tcp->scno) break;
		if (i < sizeof(subcalls_table) / sizeof(struct subcall) &&
		    tcp->u_arg[0] >= 0 && tcp->u_arg[0] < subcalls_table[i].nsubcalls) {
			tcp->scno = subcalls_table[i].subcalls[tcp->u_arg[0]];
			for (i = 0; i < tcp->u_nargs; i++)
				tcp->u_arg[i] = tcp->u_arg[i + 1];
		}
		break;
#endif /* FREEBSD */
	}
}
#endif

struct tcb *tcp_last = NULL;

static int
internal_syscall(tcp)
struct tcb *tcp;
{
	/*
	 * We must always trace a few critical system calls in order to
	 * correctly support following forks in the presence of tracing
	 * qualifiers.
	 */
	switch (known_scno(tcp)) {
#ifdef SYS_fork
	case SYS_fork:
#endif
#ifdef SYS_vfork
	case SYS_vfork:
#endif
#ifdef SYS_fork1
	case SYS_fork1:
#endif
#ifdef SYS_forkall
	case SYS_forkall:
#endif
#ifdef SYS_rfork1
	case SYS_rfork1:
#endif
#ifdef SYS_rforkall
	case SYS_rforkall:
#endif
#ifdef SYS_rfork
	case SYS_rfork:
#endif
		internal_fork(tcp);
		break;
#ifdef SYS_clone
	case SYS_clone:
		internal_clone(tcp);
		break;
#endif
#ifdef SYS_clone2
	case SYS_clone2:
		internal_clone(tcp);
		break;
#endif
#ifdef SYS_execv
	case SYS_execv:
#endif
#ifdef SYS_execve
	case SYS_execve:
#endif
#ifdef SYS_rexecve
	case SYS_rexecve:
#endif
		internal_exec(tcp);
		break;

#ifdef SYS_wait
	case SYS_wait:
#endif
#ifdef SYS_wait4
	case SYS_wait4:
#endif
#ifdef SYS32_wait4
	case SYS32_wait4:
#endif
#ifdef SYS_waitpid
	case SYS_waitpid:
#endif
#ifdef SYS_waitsys
	case SYS_waitsys:
#endif
		internal_wait(tcp, 2);
		break;
#ifdef SYS_waitid
	case SYS_waitid:
		internal_wait(tcp, 3);
		break;
#endif

#ifdef SYS_exit
	case SYS_exit:
#endif
#ifdef SYS32_exit
	case SYS32_exit:
#endif
#ifdef __NR_exit_group
	case __NR_exit_group:
#endif
#ifdef IA64
	case 252: /* IA-32 __NR_exit_group */
#endif
		internal_exit(tcp);
		break;
	}
	return 0;
}


#ifdef LINUX
#if defined (I386)
	static long eax;
#elif defined (IA64)
	long r8, r10, psr;
	long ia32 = 0;
#elif defined (POWERPC)
	static long result,flags;
#elif defined (M68K)
	static int d0;
#elif defined (ARM)
	static struct pt_regs regs;
#elif defined (ALPHA)
	static long r0;
	static long a3;
#elif defined (SPARC) || defined (SPARC64)
	static struct regs regs;
	static unsigned long trap;
#elif defined(MIPS)
	static long a3;
	static long r2;
#elif defined(S390) || defined(S390X)
	static long gpr2;
	static long pc;
	static long syscall_mode;
#elif defined(HPPA)
	static long r28;
#elif defined(SH)
       static long r0;
#elif defined(SH64)
       static long r9;
#elif defined(X86_64)
       static long rax;
#endif
#endif /* LINUX */
#ifdef FREEBSD
	struct reg regs;
#endif /* FREEBSD */

int
get_scno(tcp)
struct tcb *tcp;
{
	long scno = 0;
#ifndef USE_PROCFS
	int pid = tcp->pid;
#endif /* !PROCFS */

#ifdef LINUX
#if defined(S390) || defined(S390X)
	if (tcp->flags & TCB_WAITEXECVE) {
		/*
		 * When the execve system call completes successfully, the
		 * new process still has -ENOSYS (old style) or __NR_execve
		 * (new style) in gpr2.  We cannot recover the scno again
		 * by disassembly, because the image that executed the
		 * syscall is gone now.  Fortunately, we don't want it.  We
		 * leave the flag set so that syscall_fixup can fake the
		 * result.
		 */
		if (tcp->flags & TCB_INSYSCALL)
			return 1;
		/*
		 * This is the SIGTRAP after execve.  We cannot try to read
		 * the system call here either.
		 */
		tcp->flags &= ~TCB_WAITEXECVE;
		return 0;
	}

	if (upeek(pid, PT_GPR2, &syscall_mode) < 0)
			return -1;

	if (syscall_mode != -ENOSYS) {
		/*
 		 * Since kernel version 2.5.44 the scno gets passed in gpr2.
		 */
		scno = syscall_mode;
	} else {
	       	/*
		 * Old style of "passing" the scno via the SVC instruction.
		 */

		long opcode, offset_reg, tmp;
		void * svc_addr;
		int gpr_offset[16] = {PT_GPR0,  PT_GPR1,  PT_ORIGGPR2, PT_GPR3,
				      PT_GPR4,  PT_GPR5,  PT_GPR6,     PT_GPR7,
				      PT_GPR8,  PT_GPR9,  PT_GPR10,    PT_GPR11,
				      PT_GPR12, PT_GPR13, PT_GPR14,    PT_GPR15};

		if (upeek(pid, PT_PSWADDR, &pc) < 0)
			return -1;
		errno = 0;
		opcode = ptrace(PTRACE_PEEKTEXT, pid, (char *)(pc-sizeof(long)), 0);
		if (errno) {
			perror("peektext(pc-oneword)");
			return -1;
		}

		/*
		 *  We have to check if the SVC got executed directly or via an
		 *  EXECUTE instruction. In case of EXECUTE it is necessary to do
		 *  instruction decoding to derive the system call number.
		 *  Unfortunately the opcode sizes of EXECUTE and SVC are differently,
		 *  so that this doesn't work if a SVC opcode is part of an EXECUTE
		 *  opcode. Since there is no way to find out the opcode size this
		 *  is the best we can do...
		 */

		if ((opcode & 0xff00) == 0x0a00) {
			/* SVC opcode */
			scno = opcode & 0xff;
		}
		else {
			/* SVC got executed by EXECUTE instruction */

			/*
			 *  Do instruction decoding of EXECUTE. If you really want to
			 *  understand this, read the Principles of Operations.
			 */
			svc_addr = (void *) (opcode & 0xfff);

			tmp = 0;
			offset_reg = (opcode & 0x000f0000) >> 16;
			if (offset_reg && (upeek(pid, gpr_offset[offset_reg], &tmp) < 0))
				return -1;
			svc_addr += tmp;

			tmp = 0;
			offset_reg = (opcode & 0x0000f000) >> 12;
			if (offset_reg && (upeek(pid, gpr_offset[offset_reg], &tmp) < 0))
				return -1;
			svc_addr += tmp;

			scno = ptrace(PTRACE_PEEKTEXT, pid, svc_addr, 0);
			if (errno)
				return -1;
#if defined(S390X)
			scno >>= 48;
#else
			scno >>= 16;
#endif
			tmp = 0;
			offset_reg = (opcode & 0x00f00000) >> 20;
			if (offset_reg && (upeek(pid, gpr_offset[offset_reg], &tmp) < 0))
				return -1;

			scno = (scno | tmp) & 0xff;
		}
	}
#elif defined (POWERPC)
	if (upeek(pid, sizeof(unsigned long)*PT_R0, &scno) < 0)
		return -1;
	if (!(tcp->flags & TCB_INSYSCALL)) {
		/* Check if we return from execve. */
		if (scno == 0 && (tcp->flags & TCB_WAITEXECVE)) {
			tcp->flags &= ~TCB_WAITEXECVE;
			return 0;
		}
	}
#elif defined (I386)
	if (upeek(pid, 4*ORIG_EAX, &scno) < 0)
		return -1;
#elif defined (X86_64)
	if (upeek(pid, 8*ORIG_RAX, &scno) < 0)
		return -1;

	if (!(tcp->flags & TCB_INSYSCALL)) {
	  	static int currpers=-1;
		long val;

		/* Check CS register value. On x86-64 linux it is:
		 * 	0x33	for long mode (64 bit)
		 * 	0x23	for compatibility mode (32 bit)
		 * It takes only one ptrace and thus doesn't need
		 * to be cached.
		 */
		if (upeek(pid, 8*CS, &val) < 0)
			return -1;
		switch(val)
		{
			case 0x23: currpers = 1; break;
			case 0x33: currpers = 0; break;
			default:
				fprintf(stderr, "Unknown value CS=0x%02X while "
					 "detecting personality of process "
					 "PID=%d\n", (int)val, pid);
				currpers = current_personality;
				break;
		}
#if 0
		/* This version analyzes the opcode of a syscall instruction.
		 * (int 0x80 on i386 vs. syscall on x86-64)
		 * It works, but is too complicated.
		 */
		unsigned long val, rip, i;

		if(upeek(pid, 8*RIP, &rip)<0)
			perror("upeek(RIP)");

		/* sizeof(syscall) == sizeof(int 0x80) == 2 */
		rip-=2;
		errno = 0;

		call = ptrace(PTRACE_PEEKTEXT,pid,(char *)rip,0);
		if (errno)
			printf("ptrace_peektext failed: %s\n",
					strerror(errno));
		switch (call & 0xffff)
		{
			/* x86-64: syscall = 0x0f 0x05 */
			case 0x050f: currpers = 0; break;
			/* i386: int 0x80 = 0xcd 0x80 */
			case 0x80cd: currpers = 1; break;
			default:
				currpers = current_personality;
				fprintf(stderr,
					"Unknown syscall opcode (0x%04X) while "
					"detecting personality of process "
					"PID=%d\n", (int)call, pid);
				break;
		}
#endif
		if(currpers != current_personality)
		{
			char *names[]={"64 bit", "32 bit"};
			set_personality(currpers);
			printf("[ Process PID=%d runs in %s mode. ]\n",
					pid, names[current_personality]);
		}
	}
#elif defined(IA64)
#	define IA64_PSR_IS	((long)1 << 34)
	if (upeek (pid, PT_CR_IPSR, &psr) >= 0)
		ia32 = (psr & IA64_PSR_IS) != 0;
	if (!(tcp->flags & TCB_INSYSCALL)) {
		if (ia32) {
			if (upeek(pid, PT_R1, &scno) < 0)	/* orig eax */
				return -1;
		} else {
			if (upeek (pid, PT_R15, &scno) < 0)
				return -1;
		}
		/* Check if we return from execve. */
		if (tcp->flags & TCB_WAITEXECVE) {
			tcp->flags &= ~TCB_WAITEXECVE;
			return 0;
		}
	} else {
		/* syscall in progress */
		if (upeek (pid, PT_R8, &r8) < 0)
			return -1;
		if (upeek (pid, PT_R10, &r10) < 0)
			return -1;
	}
#elif defined (ARM)
	/*
	 * Read complete register set in one go.
	 */
	if (ptrace(PTRACE_GETREGS, pid, NULL, (void *)&regs) == -1)
		return -1;

	/*
	 * We only need to grab the syscall number on syscall entry.
	 */
	if (regs.ARM_ip == 0) {
		/*
		 * Note: we only deal with only 32-bit CPUs here.
		 */
		if (regs.ARM_cpsr & 0x20) {
			/*
			 * Get the Thumb-mode system call number
			 */
			scno = regs.ARM_r7;
		} else {
			/*
			 * Get the ARM-mode system call number
			 */
			errno = 0;
			scno = ptrace(PTRACE_PEEKTEXT, pid, (void *)(regs.ARM_pc - 4), NULL);
			if (errno)
				return -1;

			if (scno == 0 && (tcp->flags & TCB_WAITEXECVE)) {
				tcp->flags &= ~TCB_WAITEXECVE;
				return 0;
			}

			/* Handle the EABI syscall convention.  We do not
			   bother converting structures between the two
			   ABIs, but basic functionality should work even
			   if strace and the traced program have different
			   ABIs.  */
			if (scno == 0xef000000) {
				scno = regs.ARM_r7;
			} else {
				if ((scno & 0x0ff00000) != 0x0f900000) {
					fprintf(stderr, "syscall: unknown syscall trap 0x%08lx\n",
						scno);
					return -1;
				}

				/*
				 * Fixup the syscall number
				 */
				scno &= 0x000fffff;
			}
		}

		if (tcp->flags & TCB_INSYSCALL) {
			fprintf(stderr, "pid %d stray syscall entry\n", tcp->pid);
			tcp->flags &= ~TCB_INSYSCALL;
		}
	} else {
		if (!(tcp->flags & TCB_INSYSCALL)) {
			fprintf(stderr, "pid %d stray syscall exit\n", tcp->pid);
			tcp->flags |= TCB_INSYSCALL;
		}
	}
#elif defined (M68K)
	if (upeek(pid, 4*PT_ORIG_D0, &scno) < 0)
		return -1;
#elif defined (MIPS)
	if (upeek(pid, REG_A3, &a3) < 0)
	  	return -1;

	if(!(tcp->flags & TCB_INSYSCALL)) {
	  	if (upeek(pid, REG_V0, &scno) < 0)
		  	return -1;

		if (scno < 0 || scno > nsyscalls) {
			if(a3 == 0 || a3 == -1) {
				if(debug)
					fprintf (stderr, "stray syscall exit: v0 = %ld\n", scno);
				return 0;
			}
		}
	} else {
	  	if (upeek(pid, REG_V0, &r2) < 0)
	    		return -1;
	}
#elif defined (ALPHA)
	if (upeek(pid, REG_A3, &a3) < 0)
		return -1;

	if (!(tcp->flags & TCB_INSYSCALL)) {
		if (upeek(pid, REG_R0, &scno) < 0)
			return -1;

		/* Check if we return from execve. */
		if (scno == 0 && tcp->flags & TCB_WAITEXECVE) {
			tcp->flags &= ~TCB_WAITEXECVE;
			return 0;
		}

		/*
		 * Do some sanity checks to figure out if it's
		 * really a syscall entry
		 */
		if (scno < 0 || scno > nsyscalls) {
			if (a3 == 0 || a3 == -1) {
				if (debug)
					fprintf (stderr, "stray syscall exit: r0 = %ld\n", scno);
				return 0;
			}
		}
	}
	else {
		if (upeek(pid, REG_R0, &r0) < 0)
			return -1;
	}
#elif defined (SPARC) || defined (SPARC64)
	/* Everything we need is in the current register set. */
	if (ptrace(PTRACE_GETREGS,pid,(char *)&regs,0) < 0)
		return -1;

        /* If we are entering, then disassemble the syscall trap. */
	if (!(tcp->flags & TCB_INSYSCALL)) {
		/* Retrieve the syscall trap instruction. */
		errno = 0;
		trap = ptrace(PTRACE_PEEKTEXT,pid,(char *)regs.r_pc,0);
#if defined(SPARC64)
		trap >>= 32;
#endif
		if (errno)
			return -1;

		/* Disassemble the trap to see what personality to use. */
		switch (trap) {
		case 0x91d02010:
			/* Linux/SPARC syscall trap. */
			set_personality(0);
			break;
		case 0x91d0206d:
			/* Linux/SPARC64 syscall trap. */
			set_personality(2);
			break;
		case 0x91d02000:
			/* SunOS syscall trap. (pers 1) */
			fprintf(stderr,"syscall: SunOS no support\n");
			return -1;
		case 0x91d02008:
			/* Solaris 2.x syscall trap. (per 2) */
			set_personality(1);
			break;
		case 0x91d02009:
			/* NetBSD/FreeBSD syscall trap. */
			fprintf(stderr,"syscall: NetBSD/FreeBSD not supported\n");
			return -1;
		case 0x91d02027:
			/* Solaris 2.x gettimeofday */
			set_personality(1);
			break;
		default:
			/* Unknown syscall trap. */
			if(tcp->flags & TCB_WAITEXECVE) {
				tcp->flags &= ~TCB_WAITEXECVE;
				return 0;
			}
#if defined (SPARC64)
			fprintf(stderr,"syscall: unknown syscall trap %08lx %016lx\n", trap, regs.r_tpc);
#else
			fprintf(stderr,"syscall: unknown syscall trap %08x %08x\n", trap, regs.r_pc);
#endif
			return -1;
		}

		/* Extract the system call number from the registers. */
		if (trap == 0x91d02027)
			scno = 156;
		else
			scno = regs.r_g1;
		if (scno == 0) {
			scno = regs.r_o0;
			memmove (&regs.r_o0, &regs.r_o1, 7*sizeof(regs.r_o0));
		}
	}
#elif defined(HPPA)
	if (upeek(pid, PT_GR20, &scno) < 0)
		return -1;
	if (!(tcp->flags & TCB_INSYSCALL)) {
		/* Check if we return from execve. */
		if ((tcp->flags & TCB_WAITEXECVE)) {
			tcp->flags &= ~TCB_WAITEXECVE;
			return 0;
		}
	}
#elif defined(SH)
       /*
        * In the new syscall ABI, the system call number is in R3.
        */
       if (upeek(pid, 4*(REG_REG0+3), &scno) < 0)
               return -1;

       if (scno < 0) {
           /* Odd as it may seem, a glibc bug has been known to cause
              glibc to issue bogus negative syscall numbers.  So for
              our purposes, make strace print what it *should* have been */
           long correct_scno = (scno & 0xff);
           if (debug)
               fprintf(stderr,
                   "Detected glibc bug: bogus system call number = %ld, "
		   "correcting to %ld\n",
                   scno,
                   correct_scno);
           scno = correct_scno;
       }


       if (!(tcp->flags & TCB_INSYSCALL)) {
               /* Check if we return from execve. */
               if (scno == 0 && tcp->flags & TCB_WAITEXECVE) {
                       tcp->flags &= ~TCB_WAITEXECVE;
                       return 0;
               }
       }
#elif defined(SH64)
	if (upeek(pid, REG_SYSCALL, &scno) < 0)
		return -1;
        scno &= 0xFFFF;

	if (!(tcp->flags & TCB_INSYSCALL)) {
		/* Check if we return from execve. */
		if (tcp->flags & TCB_WAITEXECVE) {
			tcp->flags &= ~TCB_WAITEXECVE;
			return 0;
		}
	}
#endif /* SH64 */
#endif /* LINUX */
#ifdef SUNOS4
	if (upeek(pid, uoff(u_arg[7]), &scno) < 0)
		return -1;
#elif defined(SH)
        /* new syscall ABI returns result in R0 */
        if (upeek(pid, 4*REG_REG0, (long *)&r0) < 0)
                return -1;
#elif defined(SH64)
        /* ABI defines result returned in r9 */
        if (upeek(pid, REG_GENERAL(9), (long *)&r9) < 0)
                return -1;

#endif
#ifdef USE_PROCFS
#ifdef HAVE_PR_SYSCALL
	scno = tcp->status.PR_SYSCALL;
#else /* !HAVE_PR_SYSCALL */
#ifndef FREEBSD
	scno = tcp->status.PR_WHAT;
#else /* FREEBSD */
	if (pread(tcp->pfd_reg, &regs, sizeof(regs), 0) < 0) {
	        perror("pread");
                return -1;
        }
	switch (regs.r_eax) {
	case SYS_syscall:
	case SYS___syscall:
    	        pread(tcp->pfd, &scno, sizeof(scno), regs.r_esp + sizeof(int));
	        break;
	default:
	        scno = regs.r_eax;
	        break;
	}
#endif /* FREEBSD */
#endif /* !HAVE_PR_SYSCALL */
#endif /* USE_PROCFS */
	if (!(tcp->flags & TCB_INSYSCALL))
		tcp->scno = scno;
	return 1;
}


long
known_scno(tcp)
struct tcb *tcp;
{
	long scno = tcp->scno;
	if (scno >= 0 && scno < nsyscalls && sysent[scno].native_scno != 0)
		scno = sysent[scno].native_scno;
	else
		scno += NR_SYSCALL_BASE;
	return scno;
}

static int
syscall_fixup(tcp)
struct tcb *tcp;
{
#ifndef USE_PROCFS
	int pid = tcp->pid;
#else /* USE_PROCFS */
	int scno = known_scno(tcp);

	if (!(tcp->flags & TCB_INSYSCALL)) {
		if (tcp->status.PR_WHY != PR_SYSENTRY) {
			if (
			    scno == SYS_fork
#ifdef SYS_vfork
			    || scno == SYS_vfork
#endif /* SYS_vfork */
#ifdef SYS_fork1
			    || scno == SYS_fork1
#endif /* SYS_fork1 */
#ifdef SYS_forkall
			    || scno == SYS_forkall
#endif /* SYS_forkall */
#ifdef SYS_rfork1
			    || scno == SYS_rfork1
#endif /* SYS_fork1 */
#ifdef SYS_rforkall
			    || scno == SYS_rforkall
#endif /* SYS_rforkall */
			    ) {
				/* We are returning in the child, fake it. */
				tcp->status.PR_WHY = PR_SYSENTRY;
				trace_syscall(tcp);
				tcp->status.PR_WHY = PR_SYSEXIT;
			}
			else {
				fprintf(stderr, "syscall: missing entry\n");
				tcp->flags |= TCB_INSYSCALL;
			}
		}
	}
	else {
		if (tcp->status.PR_WHY != PR_SYSEXIT) {
			fprintf(stderr, "syscall: missing exit\n");
			tcp->flags &= ~TCB_INSYSCALL;
		}
	}
#endif /* USE_PROCFS */
#ifdef SUNOS4
	if (!(tcp->flags & TCB_INSYSCALL)) {
		if (scno == 0) {
			fprintf(stderr, "syscall: missing entry\n");
			tcp->flags |= TCB_INSYSCALL;
		}
	}
	else {
		if (scno != 0) {
			if (debug) {
				/*
				 * This happens when a signal handler
				 * for a signal which interrupted a
				 * a system call makes another system call.
				 */
				fprintf(stderr, "syscall: missing exit\n");
			}
			tcp->flags &= ~TCB_INSYSCALL;
		}
	}
#endif /* SUNOS4 */
#ifdef LINUX
#if defined (I386)
	if (upeek(pid, 4*EAX, &eax) < 0)
		return -1;
	if (eax != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) {
		if (debug)
			fprintf(stderr, "stray syscall exit: eax = %ld\n", eax);
		return 0;
	}
#elif defined (X86_64)
	if (upeek(pid, 8*RAX, &rax) < 0)
		return -1;
	if (current_personality == 1)
		rax = (long int)(int)rax; /* sign extend from 32 bits */
	if (rax != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) {
		if (debug)
			fprintf(stderr, "stray syscall exit: rax = %ld\n", rax);
		return 0;
	}
#elif defined (S390) || defined (S390X)
	if (upeek(pid, PT_GPR2, &gpr2) < 0)
		return -1;
	if (syscall_mode != -ENOSYS)
		syscall_mode = tcp->scno;
	if (gpr2 != syscall_mode && !(tcp->flags & TCB_INSYSCALL)) {
		if (debug)
			fprintf(stderr, "stray syscall exit: gpr2 = %ld\n", gpr2);
		return 0;
	}
	else if (((tcp->flags & (TCB_INSYSCALL|TCB_WAITEXECVE))
		  == (TCB_INSYSCALL|TCB_WAITEXECVE))
		 && (gpr2 == -ENOSYS || gpr2 == tcp->scno)) {
		/*
		 * Fake a return value of zero.  We leave the TCB_WAITEXECVE
		 * flag set for the post-execve SIGTRAP to see and reset.
		 */
		gpr2 = 0;
	}
#elif defined (POWERPC)
# define SO_MASK 0x10000000
	if (upeek(pid, sizeof(unsigned long)*PT_CCR, &flags) < 0)
		return -1;
	if (upeek(pid, sizeof(unsigned long)*PT_R3, &result) < 0)
		return -1;
	if (flags & SO_MASK)
		result = -result;
#elif defined (M68K)
	if (upeek(pid, 4*PT_D0, &d0) < 0)
		return -1;
	if (d0 != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) {
		if (debug)
			fprintf(stderr, "stray syscall exit: d0 = %ld\n", d0);
		return 0;
	}
#elif defined (ARM)
	/*
	 * Nothing required
	 */
#elif defined (HPPA)
	if (upeek(pid, PT_GR28, &r28) < 0)
		return -1;
#elif defined(IA64)
	if (upeek(pid, PT_R10, &r10) < 0)
		return -1;
	if (upeek(pid, PT_R8, &r8) < 0)
		return -1;
	if (ia32 && r8 != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) {
		if (debug)
			fprintf(stderr, "stray syscall exit: r8 = %ld\n", r8);
		return 0;
	}
#endif
#endif /* LINUX */
	return 1;
}

static int
get_error(tcp)
struct tcb *tcp;
{
	int u_error = 0;
#ifdef LINUX
#if defined(S390) || defined(S390X)
		if (gpr2 && (unsigned) -gpr2 < nerrnos) {
			tcp->u_rval = -1;
			u_error = -gpr2;
		}
		else {
			tcp->u_rval = gpr2;
			u_error = 0;
		}
#else /* !S390 && !S390X */
#ifdef I386
		if (eax < 0 && -eax < nerrnos) {
			tcp->u_rval = -1;
			u_error = -eax;
		}
		else {
			tcp->u_rval = eax;
			u_error = 0;
		}
#else /* !I386 */
#ifdef X86_64
		if (rax < 0 && -rax < nerrnos) {
			tcp->u_rval = -1;
			u_error = -rax;
		}
		else {
			tcp->u_rval = rax;
			u_error = 0;
		}
#else
#ifdef IA64
		if (ia32) {
			int err;

			err = (int)r8;
			if (err < 0 && -err < nerrnos) {
				tcp->u_rval = -1;
				u_error = -err;
			}
			else {
				tcp->u_rval = err;
				u_error = 0;
			}
		} else {
			if (r10) {
				tcp->u_rval = -1;
				u_error = r8;
			} else {
				tcp->u_rval = r8;
				u_error = 0;
			}
		}
#else /* !IA64 */
#ifdef MIPS
		if (a3) {
		  	tcp->u_rval = -1;
			u_error = r2;
		} else {
		  	tcp->u_rval = r2;
			u_error = 0;
		}
#else
#ifdef POWERPC
		if (result && (unsigned long) -result < nerrnos) {
			tcp->u_rval = -1;
			u_error = -result;
		}
		else {
			tcp->u_rval = result;
			u_error = 0;
		}
#else /* !POWERPC */
#ifdef M68K
		if (d0 && (unsigned) -d0 < nerrnos) {
			tcp->u_rval = -1;
			u_error = -d0;
		}
		else {
			tcp->u_rval = d0;
			u_error = 0;
		}
#else /* !M68K */
#ifdef ARM
		if (regs.ARM_r0 && (unsigned) -regs.ARM_r0 < nerrnos) {
			tcp->u_rval = -1;
			u_error = -regs.ARM_r0;
		}
		else {
			tcp->u_rval = regs.ARM_r0;
			u_error = 0;
		}
#else /* !ARM */
#ifdef ALPHA
		if (a3) {
			tcp->u_rval = -1;
			u_error = r0;
		}
		else {
			tcp->u_rval = r0;
			u_error = 0;
		}
#else /* !ALPHA */
#ifdef SPARC
		if (regs.r_psr & PSR_C) {
			tcp->u_rval = -1;
			u_error = regs.r_o0;
		}
		else {
			tcp->u_rval = regs.r_o0;
			u_error = 0;
		}
#else /* !SPARC */
#ifdef SPARC64
		if (regs.r_tstate & 0x1100000000UL) {
			tcp->u_rval = -1;
			u_error = regs.r_o0;
		}
		else {
			tcp->u_rval = regs.r_o0;
			u_error = 0;
		}
#else /* !SPARC64 */
#ifdef HPPA
		if (r28 && (unsigned) -r28 < nerrnos) {
			tcp->u_rval = -1;
			u_error = -r28;
		}
		else {
			tcp->u_rval = r28;
			u_error = 0;
		}
#else
#ifdef SH
               /* interpret R0 as return value or error number */
               if (r0 && (unsigned) -r0 < nerrnos) {
                       tcp->u_rval = -1;
                       u_error = -r0;
               }
               else {
                       tcp->u_rval = r0;
                       u_error = 0;
               }
#else
#ifdef SH64
                /* interpret result as return value or error number */
                if (r9 && (unsigned) -r9 < nerrnos) {
	                tcp->u_rval = -1;
	                u_error = -r9;
                }
                else {
                        tcp->u_rval = r9;
	                u_error = 0;
                }
#endif /* SH64 */
#endif /* SH */
#endif /* HPPA */
#endif /* SPARC */
#endif /* SPARC64 */
#endif /* ALPHA */
#endif /* ARM */
#endif /* M68K */
#endif /* POWERPC */
#endif /* MIPS */
#endif /* IA64 */
#endif /* X86_64 */
#endif /* I386 */
#endif /* S390 || S390X */
#endif /* LINUX */
#ifdef SUNOS4
		/* get error code from user struct */
		if (upeek(pid, uoff(u_error), &u_error) < 0)
			return -1;
		u_error >>= 24; /* u_error is a char */

		/* get system call return value */
		if (upeek(pid, uoff(u_rval1), &tcp->u_rval) < 0)
			return -1;
#endif /* SUNOS4 */
#ifdef SVR4
#ifdef SPARC
		/* Judicious guessing goes a long way. */
		if (tcp->status.pr_reg[R_PSR] & 0x100000) {
			tcp->u_rval = -1;
			u_error = tcp->status.pr_reg[R_O0];
		}
		else {
			tcp->u_rval = tcp->status.pr_reg[R_O0];
			u_error = 0;
		}
#endif /* SPARC */
#ifdef I386
		/* Wanna know how to kill an hour single-stepping? */
		if (tcp->status.PR_REG[EFL] & 0x1) {
			tcp->u_rval = -1;
			u_error = tcp->status.PR_REG[EAX];
		}
		else {
			tcp->u_rval = tcp->status.PR_REG[EAX];
#ifdef HAVE_LONG_LONG
			tcp->u_lrval =
				((unsigned long long) tcp->status.PR_REG[EDX] << 32) +
				tcp->status.PR_REG[EAX];
#endif
			u_error = 0;
		}
#endif /* I386 */
#ifdef X86_64
		/* Wanna know how to kill an hour single-stepping? */
		if (tcp->status.PR_REG[EFLAGS] & 0x1) {
			tcp->u_rval = -1;
			u_error = tcp->status.PR_REG[RAX];
		}
		else {
			tcp->u_rval = tcp->status.PR_REG[RAX];
			u_error = 0;
		}
#endif /* X86_64 */
#ifdef MIPS
		if (tcp->status.pr_reg[CTX_A3]) {
			tcp->u_rval = -1;
			u_error = tcp->status.pr_reg[CTX_V0];
		}
		else {
			tcp->u_rval = tcp->status.pr_reg[CTX_V0];
			u_error = 0;
		}
#endif /* MIPS */
#endif /* SVR4 */
#ifdef FREEBSD
		if (regs.r_eflags & PSL_C) {
 		        tcp->u_rval = -1;
		        u_error = regs.r_eax;
		} else {
		        tcp->u_rval = regs.r_eax;
			tcp->u_lrval =
			  ((unsigned long long) regs.r_edx << 32) +  regs.r_eax;
		        u_error = 0;
		}
#endif /* FREEBSD */
	tcp->u_error = u_error;
	return 1;
}

int
force_result(tcp, error, rval)
	struct tcb *tcp;
	int error;
	long rval;
{
#ifdef LINUX
#if defined(S390) || defined(S390X)
	gpr2 = error ? -error : rval;
	if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)PT_GPR2, gpr2) < 0)
		return -1;
#else /* !S390 && !S390X */
#ifdef I386
	eax = error ? -error : rval;
	if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(EAX * 4), eax) < 0)
		return -1;
#else /* !I386 */
#ifdef X86_64
	rax = error ? -error : rval;
	if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(RAX * 8), rax) < 0)
		return -1;
#else
#ifdef IA64
	if (ia32) {
		r8 = error ? -error : rval;
		if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_R8), r8) < 0)
			return -1;
	}
	else {
		if (error) {
			r8 = error;
			r10 = -1;
		}
		else {
			r8 = rval;
			r10 = 0;
		}
		if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_R8), r8) < 0 ||
		    ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_R10), r10) < 0)
			return -1;
	}
#else /* !IA64 */
#ifdef MIPS
	if (error) {
		r2 = error;
		a3 = -1;
	}
	else {
		r2 = rval;
		a3 = 0;
	}
	if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_A3), a3) < 0 ||
	    ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_V0), r2) < 0)
	    	return -1;
#else
#ifdef POWERPC
	if (upeek(tcp->pid, sizeof(unsigned long)*PT_CCR, &flags) < 0)
		return -1;
	if (error) {
		flags |= SO_MASK;
		result = error;
	}
	else {
		flags &= ~SO_MASK;
		result = rval;
	}
	if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(sizeof(unsigned long)*PT_CCR), flags) < 0 ||
	    ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(sizeof(unsigned long)*PT_R3), result) < 0)
		return -1;
#else /* !POWERPC */
#ifdef M68K
	d0 = error ? -error : rval;
	if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(4*PT_D0), d0) < 0)
		return -1;
#else /* !M68K */
#ifdef ARM
       regs.ARM_r0 = error ? -error : rval;
       if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(4*0), regs.ARM_r0) < 0)
		return -1;
#else /* !ARM */
#ifdef ALPHA
	if (error) {
		a3 = -1;
		r0 = error;
	}
	else {
		a3 = 0;
		r0 = rval;
	}
	if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_A3), a3) < 0 ||
	    ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_R0), r0) < 0)
		return -1;
#else /* !ALPHA */
#ifdef SPARC
	if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)&regs, 0) < 0)
		return -1;
	if (error) {
		regs.r_psr |= PSR_C;
		regs.r_o0 = error;
	}
	else {
		regs.r_psr &= ~PSR_C;
		regs.r_o0 = rval;
	}
	if (ptrace(PTRACE_SETREGS, tcp->pid, (char *)&regs, 0) < 0)
		return -1;
#else /* !SPARC */
#ifdef SPARC64
	if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)&regs, 0) < 0)
		return -1;
	if (error) {
		regs.r_tstate |= 0x1100000000UL;
		regs.r_o0 = error;
	}
	else {
		regs.r_tstate &= ~0x1100000000UL;
		regs.r_o0 = rval;
	}
	if (ptrace(PTRACE_SETREGS, tcp->pid, (char *)&regs, 0) < 0)
		return -1;
#else /* !SPARC64 */
#ifdef HPPA
	r28 = error ? -error : rval;
	if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_GR28), r28) < 0)
		return -1;
#else
#ifdef SH
	r0 = error ? -error : rval;
	if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(4*REG_REG0), r0) < 0)
		return -1;
#else
#ifdef SH64
        r9 = error ? -error : rval;
	if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)REG_GENERAL(9), r9) < 0)
		return -1;
#endif /* SH64 */
#endif /* SH */
#endif /* HPPA */
#endif /* SPARC */
#endif /* SPARC64 */
#endif /* ALPHA */
#endif /* ARM */
#endif /* M68K */
#endif /* POWERPC */
#endif /* MIPS */
#endif /* IA64 */
#endif /* X86_64 */
#endif /* I386 */
#endif /* S390 || S390X */
#endif /* LINUX */
#ifdef SUNOS4
	if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)uoff(u_error),
		   error << 24) < 0 ||
	    ptrace(PTRACE_POKEUSER, tcp->pid, (char*)uoff(u_rval1), rval) < 0)
		return -1;
#endif /* SUNOS4 */
#ifdef SVR4
	/* XXX no clue */
	return -1;
#endif /* SVR4 */
#ifdef FREEBSD
	if (pread(tcp->pfd_reg, &regs, sizeof(regs), 0) < 0) {
	        perror("pread");
                return -1;
        }
	if (error) {
		regs.r_eflags |= PSL_C;
		regs.r_eax = error;
	}
	else {
		regs.r_eflags &= ~PSL_C;
		regs.r_eax = rval;
	}
	if (pwrite(tcp->pfd_reg, &regs, sizeof(regs), 0) < 0) {
	        perror("pwrite");
                return -1;
        }
#endif /* FREEBSD */

	/* All branches reach here on success (only).  */
	tcp->u_error = error;
	tcp->u_rval = rval;
	return 0;
}

static int
syscall_enter(tcp)
struct tcb *tcp;
{
#ifndef USE_PROCFS
	int pid = tcp->pid;
#endif /* !USE_PROCFS */
#ifdef LINUX
#if defined(S390) || defined(S390X)
	{
		int i;
		if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
			tcp->u_nargs = sysent[tcp->scno].nargs;
		else
     	        	tcp->u_nargs = MAX_ARGS;
		for (i = 0; i < tcp->u_nargs; i++) {
			if (upeek(pid,i==0 ? PT_ORIGGPR2:PT_GPR2+i*sizeof(long), &tcp->u_arg[i]) < 0)
				return -1;
		}
	}
#elif defined (ALPHA)
	{
		int i;
		if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
			tcp->u_nargs = sysent[tcp->scno].nargs;
		else
     	        	tcp->u_nargs = MAX_ARGS;
		for (i = 0; i < tcp->u_nargs; i++) {
			/* WTA: if scno is out-of-bounds this will bomb. Add range-check
			 * for scno somewhere above here!
			 */
			if (upeek(pid, REG_A0+i, &tcp->u_arg[i]) < 0)
				return -1;
		}
	}
#elif defined (IA64)
	{
		if (!ia32) {
			unsigned long *out0, *rbs_end, cfm, sof, sol, i;
			/* be backwards compatible with kernel < 2.4.4... */
#			ifndef PT_RBS_END
#			  define PT_RBS_END	PT_AR_BSP
#			endif

			if (upeek(pid, PT_RBS_END, (long *) &rbs_end) < 0)
				return -1;
			if (upeek(pid, PT_CFM, (long *) &cfm) < 0)
				return -1;

			sof = (cfm >> 0) & 0x7f;
			sol = (cfm >> 7) & 0x7f;
			out0 = ia64_rse_skip_regs(rbs_end, -sof + sol);

			if (tcp->scno >= 0 && tcp->scno < nsyscalls
			    && sysent[tcp->scno].nargs != -1)
				tcp->u_nargs = sysent[tcp->scno].nargs;
			else
				tcp->u_nargs = MAX_ARGS;
			for (i = 0; i < tcp->u_nargs; ++i) {
				if (umoven(tcp, (unsigned long) ia64_rse_skip_regs(out0, i),
					   sizeof(long), (char *) &tcp->u_arg[i]) < 0)
					return -1;
			}
		} else {
			int i;

			if (/* EBX = out0 */
			    upeek(pid, PT_R11, (long *) &tcp->u_arg[0]) < 0
			    /* ECX = out1 */
			    || upeek(pid, PT_R9,  (long *) &tcp->u_arg[1]) < 0
			    /* EDX = out2 */
			    || upeek(pid, PT_R10, (long *) &tcp->u_arg[2]) < 0
			    /* ESI = out3 */
			    || upeek(pid, PT_R14, (long *) &tcp->u_arg[3]) < 0
			    /* EDI = out4 */
			    || upeek(pid, PT_R15, (long *) &tcp->u_arg[4]) < 0
			    /* EBP = out5 */
			    || upeek(pid, PT_R13, (long *) &tcp->u_arg[5]) < 0)
				return -1;

			for (i = 0; i < 6; ++i)
				/* truncate away IVE sign-extension */
				tcp->u_arg[i] &= 0xffffffff;

			if (tcp->scno >= 0 && tcp->scno < nsyscalls
			    && sysent[tcp->scno].nargs != -1)
				tcp->u_nargs = sysent[tcp->scno].nargs;
			else
				tcp->u_nargs = 5;
		}
	}
#elif defined (MIPS)
	{
	  	long sp;
	  	int i, nargs;

		if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
			nargs = tcp->u_nargs = sysent[tcp->scno].nargs;
		else
     	        	nargs = tcp->u_nargs = MAX_ARGS;
		if(nargs > 4) {
		  	if(upeek(pid, REG_SP, &sp) < 0)
			  	return -1;
			for(i = 0; i < 4; i++) {
			  	if (upeek(pid, REG_A0 + i, &tcp->u_arg[i])<0)
				  	return -1;
			}
			umoven(tcp, sp+16, (nargs-4) * sizeof(tcp->u_arg[0]),
			       (char *)(tcp->u_arg + 4));
		} else {
		  	for(i = 0; i < nargs; i++) {
			  	if (upeek(pid, REG_A0 + i, &tcp->u_arg[i]) < 0)
				  	return -1;
			}
		}
	}
#elif defined (POWERPC)
#ifndef PT_ORIG_R3
#define PT_ORIG_R3 34
#endif
	{
		int i;
		if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
			tcp->u_nargs = sysent[tcp->scno].nargs;
		else
     	        	tcp->u_nargs = MAX_ARGS;
		for (i = 0; i < tcp->u_nargs; i++) {
			if (upeek(pid, (i==0) ?
				(sizeof(unsigned long)*PT_ORIG_R3) :
				((i+PT_R3)*sizeof(unsigned long)),
					&tcp->u_arg[i]) < 0)
				return -1;
		}
	}
#elif defined (SPARC) || defined (SPARC64)
	{
		int i;

		if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
			tcp->u_nargs = sysent[tcp->scno].nargs;
		else
     	        	tcp->u_nargs = MAX_ARGS;
		for (i = 0; i < tcp->u_nargs; i++)
			tcp->u_arg[i] = *((&regs.r_o0) + i);
	}
#elif defined (HPPA)
	{
		int i;

		if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
			tcp->u_nargs = sysent[tcp->scno].nargs;
		else
     	        	tcp->u_nargs = MAX_ARGS;
		for (i = 0; i < tcp->u_nargs; i++) {
			if (upeek(pid, PT_GR26-4*i, &tcp->u_arg[i]) < 0)
				return -1;
		}
	}
#elif defined(ARM)
	{
		int i;

		if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
			tcp->u_nargs = sysent[tcp->scno].nargs;
		else
			tcp->u_nargs = MAX_ARGS;
		for (i = 0; i < tcp->u_nargs; i++)
			tcp->u_arg[i] = regs.uregs[i];
 	}
#elif defined(SH)
       {
               int i;
               static int syscall_regs[] = {
                   REG_REG0+4, REG_REG0+5, REG_REG0+6, REG_REG0+7,
                   REG_REG0, REG_REG0+1, REG_REG0+2
                   };

               tcp->u_nargs = sysent[tcp->scno].nargs;
               for (i = 0; i < tcp->u_nargs; i++) {
                       if (upeek(pid, 4*syscall_regs[i], &tcp->u_arg[i]) < 0)
                               return -1;
               }
        }
#elif defined(SH64)
	{
		int i;
                /* Registers used by SH5 Linux system calls for parameters */
		static int syscall_regs[] = { 2, 3, 4, 5, 6, 7 };

		/*
		 * TODO: should also check that the number of arguments encoded
		 *       in the trap number matches the number strace expects.
		 */
		/*
		    assert(sysent[tcp->scno].nargs <
		    	sizeof(syscall_regs)/sizeof(syscall_regs[0]));
		 */

		tcp->u_nargs = sysent[tcp->scno].nargs;
		for (i = 0; i < tcp->u_nargs; i++) {
			if (upeek(pid, REG_GENERAL(syscall_regs[i]), &tcp->u_arg[i]) < 0)
				return -1;
		}
	}

#elif defined(X86_64)
	{
		int i;
		static int argreg[SUPPORTED_PERSONALITIES][MAX_ARGS] = {
			{RDI,RSI,RDX,R10,R8,R9},	/* x86-64 ABI */
			{RBX,RCX,RDX,RSI,RDI,RBP}	/* i386 ABI */
		};

		if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
			tcp->u_nargs = sysent[tcp->scno].nargs;
		else
     	        	tcp->u_nargs = MAX_ARGS;
		for (i = 0; i < tcp->u_nargs; i++) {
			if (upeek(pid, argreg[current_personality][i]*8, &tcp->u_arg[i]) < 0)
				return -1;
		}
	}
#else /* Other architecture (like i386) (32bits specific) */
	{
		int i;
		if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
			tcp->u_nargs = sysent[tcp->scno].nargs;
		else
     	        	tcp->u_nargs = MAX_ARGS;
		for (i = 0; i < tcp->u_nargs; i++) {
			if (upeek(pid, i*4, &tcp->u_arg[i]) < 0)
				return -1;
		}
	}
#endif
#endif /* LINUX */
#ifdef SUNOS4
	{
		int i;
		if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
			tcp->u_nargs = sysent[tcp->scno].nargs;
		else
     	        	tcp->u_nargs = MAX_ARGS;
		for (i = 0; i < tcp->u_nargs; i++) {
			struct user *u;

			if (upeek(pid, uoff(u_arg[0]) +
			    (i*sizeof(u->u_arg[0])), &tcp->u_arg[i]) < 0)
				return -1;
		}
	}
#endif /* SUNOS4 */
#ifdef SVR4
#ifdef MIPS
	/*
	 * SGI is broken: even though it has pr_sysarg, it doesn't
	 * set them on system call entry.  Get a clue.
	 */
	if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
		tcp->u_nargs = sysent[tcp->scno].nargs;
	else
		tcp->u_nargs = tcp->status.pr_nsysarg;
	if (tcp->u_nargs > 4) {
		memcpy(tcp->u_arg, &tcp->status.pr_reg[CTX_A0],
			4*sizeof(tcp->u_arg[0]));
		umoven(tcp, tcp->status.pr_reg[CTX_SP] + 16,
			(tcp->u_nargs - 4)*sizeof(tcp->u_arg[0]), (char *) (tcp->u_arg + 4));
	}
	else {
		memcpy(tcp->u_arg, &tcp->status.pr_reg[CTX_A0],
			tcp->u_nargs*sizeof(tcp->u_arg[0]));
	}
#elif UNIXWARE >= 2
	/*
	 * Like SGI, UnixWare doesn't set pr_sysarg until system call exit
	 */
	if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
		tcp->u_nargs = sysent[tcp->scno].nargs;
	else
		tcp->u_nargs = tcp->status.pr_lwp.pr_nsysarg;
	umoven(tcp, tcp->status.PR_REG[UESP] + 4,
		tcp->u_nargs*sizeof(tcp->u_arg[0]), (char *) tcp->u_arg);
#elif defined (HAVE_PR_SYSCALL)
	if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
		tcp->u_nargs = sysent[tcp->scno].nargs;
	else
		tcp->u_nargs = tcp->status.pr_nsysarg;
	{
		int i;
		for (i = 0; i < tcp->u_nargs; i++)
			tcp->u_arg[i] = tcp->status.pr_sysarg[i];
	}
#elif defined (I386)
	if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
		tcp->u_nargs = sysent[tcp->scno].nargs;
	else
		tcp->u_nargs = 5;
	umoven(tcp, tcp->status.PR_REG[UESP] + 4,
		tcp->u_nargs*sizeof(tcp->u_arg[0]), (char *) tcp->u_arg);
#else
	I DONT KNOW WHAT TO DO
#endif /* !HAVE_PR_SYSCALL */
#endif /* SVR4 */
#ifdef FREEBSD
	if (tcp->scno >= 0 && tcp->scno < nsyscalls &&
	    sysent[tcp->scno].nargs > tcp->status.val)
		tcp->u_nargs = sysent[tcp->scno].nargs;
	else
	  	tcp->u_nargs = tcp->status.val;
	if (tcp->u_nargs < 0)
		tcp->u_nargs = 0;
	if (tcp->u_nargs > MAX_ARGS)
		tcp->u_nargs = MAX_ARGS;
	switch(regs.r_eax) {
	case SYS___syscall:
		pread(tcp->pfd, &tcp->u_arg, tcp->u_nargs * sizeof(unsigned long),
		      regs.r_esp + sizeof(int) + sizeof(quad_t));
	  break;
        case SYS_syscall:
		pread(tcp->pfd, &tcp->u_arg, tcp->u_nargs * sizeof(unsigned long),
		      regs.r_esp + 2 * sizeof(int));
	  break;
        default:
		pread(tcp->pfd, &tcp->u_arg, tcp->u_nargs * sizeof(unsigned long),
		      regs.r_esp + sizeof(int));
	  break;
	}
#endif /* FREEBSD */
	return 1;
}

int
trace_syscall(tcp)
struct tcb *tcp;
{
	int sys_res;
	struct timeval tv;
	int res;

	/* Measure the exit time as early as possible to avoid errors. */
	if (dtime && (tcp->flags & TCB_INSYSCALL))
		gettimeofday(&tv, NULL);

	res = get_scno(tcp);
	if (res != 1)
		return res;

	res = syscall_fixup(tcp);
	if (res != 1)
		return res;

	if (tcp->flags & TCB_INSYSCALL) {
		long u_error;
		res = get_error(tcp);
		if (res != 1)
			return res;

		internal_syscall(tcp);
		if (tcp->scno >= 0 && tcp->scno < nsyscalls &&
		    !(qual_flags[tcp->scno] & QUAL_TRACE)) {
			tcp->flags &= ~TCB_INSYSCALL;
			return 0;
		}

		if (tcp->flags & TCB_REPRINT) {
			printleader(tcp);
			tprintf("<... ");
			if (tcp->scno >= nsyscalls || tcp->scno < 0)
				tprintf("syscall_%lu", tcp->scno);
			else
				tprintf("%s", sysent[tcp->scno].sys_name);
			tprintf(" resumed> ");
		}

		if (cflag && tcp->scno < nsyscalls && tcp->scno >= 0) {
			if (counts == NULL) {
				counts = calloc(sizeof *counts, nsyscalls);
				if (counts == NULL) {
					fprintf(stderr, "\
strace: out of memory for call counts\n");
					exit(1);
				}
			}

			counts[tcp->scno].calls++;
			if (tcp->u_error)
				counts[tcp->scno].errors++;
			tv_sub(&tv, &tv, &tcp->etime);
#ifndef HAVE_ANDROID_OS
#ifdef LINUX
			if (tv_cmp(&tv, &tcp->dtime) > 0) {
				static struct timeval one_tick;
				if (one_tick.tv_usec == 0) {
					/* Initialize it.  */
					struct itimerval it;
					memset(&it, 0, sizeof it);
					it.it_interval.tv_usec = 1;
					setitimer(ITIMER_REAL, &it, NULL);
					getitimer(ITIMER_REAL, &it);
					one_tick = it.it_interval;
				}

				if (tv_nz(&tcp->dtime))
					tv = tcp->dtime;
				else if (tv_cmp(&tv, &one_tick) > 0) {
					if (tv_cmp(&shortest, &one_tick) < 0)
						tv = shortest;
					else
						tv = one_tick;
				}
			}
#endif /* LINUX */
#endif
			if (tv_cmp(&tv, &shortest) < 0)
				shortest = tv;
			tv_add(&counts[tcp->scno].time,
				&counts[tcp->scno].time, &tv);
			tcp->flags &= ~TCB_INSYSCALL;
			return 0;
		}

		if (tcp->scno >= nsyscalls || tcp->scno < 0
		    || (qual_flags[tcp->scno] & QUAL_RAW))
			sys_res = printargs(tcp);
		else {
			if (not_failing_only && tcp->u_error)
				return 0;	/* ignore failed syscalls */
			sys_res = (*sysent[tcp->scno].sys_func)(tcp);
		}
		u_error = tcp->u_error;
		tprintf(") ");
		tabto(acolumn);
		if (tcp->scno >= nsyscalls || tcp->scno < 0 ||
		    qual_flags[tcp->scno] & QUAL_RAW) {
			if (u_error)
				tprintf("= -1 (errno %ld)", u_error);
			else
				tprintf("= %#lx", tcp->u_rval);
		}
		else if (!(sys_res & RVAL_NONE) && u_error) {
			switch (u_error) {
#ifdef LINUX
			case ERESTARTSYS:
				tprintf("= ? ERESTARTSYS (To be restarted)");
				break;
			case ERESTARTNOINTR:
				tprintf("= ? ERESTARTNOINTR (To be restarted)");
				break;
			case ERESTARTNOHAND:
				tprintf("= ? ERESTARTNOHAND (To be restarted)");
				break;
			case ERESTART_RESTARTBLOCK:
				tprintf("= ? ERESTART_RESTARTBLOCK (To be restarted)");
				break;
#endif /* LINUX */
			default:
				tprintf("= -1 ");
				if (u_error < 0)
					tprintf("E??? (errno %ld)", u_error);
				else if (u_error < nerrnos)
					tprintf("%s (%s)", errnoent[u_error],
						strerror(u_error));
				else
					tprintf("ERRNO_%ld (%s)", u_error,
						strerror(u_error));
				break;
			}
		}
		else {
			if (sys_res & RVAL_NONE)
				tprintf("= ?");
			else {
				switch (sys_res & RVAL_MASK) {
				case RVAL_HEX:
					tprintf("= %#lx", tcp->u_rval);
					break;
				case RVAL_OCTAL:
					tprintf("= %#lo", tcp->u_rval);
					break;
				case RVAL_UDECIMAL:
					tprintf("= %lu", tcp->u_rval);
					break;
				case RVAL_DECIMAL:
					tprintf("= %ld", tcp->u_rval);
					break;
#ifdef HAVE_LONG_LONG
				case RVAL_LHEX:
					tprintf("= %#llx", tcp->u_lrval);
					break;
				case RVAL_LOCTAL:
					tprintf("= %#llo", tcp->u_lrval);
					break;
				case RVAL_LUDECIMAL:
					tprintf("= %llu", tcp->u_lrval);
					break;
				case RVAL_LDECIMAL:
					tprintf("= %lld", tcp->u_lrval);
					break;
#endif
				default:
					fprintf(stderr,
						"invalid rval format\n");
					break;
				}
			}
			if ((sys_res & RVAL_STR) && tcp->auxstr)
				tprintf(" (%s)", tcp->auxstr);
		}
		if (dtime) {
			tv_sub(&tv, &tv, &tcp->etime);
			tprintf(" <%ld.%06ld>",
				(long) tv.tv_sec, (long) tv.tv_usec);
		}
		printtrailer(tcp);

		dumpio(tcp);
		if (fflush(tcp->outf) == EOF)
			return -1;
		tcp->flags &= ~TCB_INSYSCALL;
		return 0;
	}

	/* Entering system call */
	res = syscall_enter(tcp);
	if (res != 1)
		return res;

	switch (known_scno(tcp)) {
#ifdef LINUX
#if !defined (ALPHA) && !defined(SPARC) && !defined(SPARC64) && !defined(MIPS) && !defined(HPPA) && !defined(__ARM_EABI__) //ANDROID
	case SYS_socketcall:
		decode_subcall(tcp, SYS_socket_subcall,
			SYS_socket_nsubcalls, deref_style);
		break;
	case SYS_ipc:
		decode_subcall(tcp, SYS_ipc_subcall,
			SYS_ipc_nsubcalls, shift_style);
		break;
#endif /* !ALPHA && !MIPS && !SPARC && !SPARC64 && !HPPA */
#if defined (SPARC) || defined (SPARC64)
	case SYS_socketcall:
		sparc_socket_decode (tcp);
		break;
#endif
#endif /* LINUX */
#ifdef SVR4
#ifdef SYS_pgrpsys_subcall
	case SYS_pgrpsys:
		decode_subcall(tcp, SYS_pgrpsys_subcall,
			SYS_pgrpsys_nsubcalls, shift_style);
		break;
#endif /* SYS_pgrpsys_subcall */
#ifdef SYS_sigcall_subcall
	case SYS_sigcall:
		decode_subcall(tcp, SYS_sigcall_subcall,
			SYS_sigcall_nsubcalls, mask_style);
		break;
#endif /* SYS_sigcall_subcall */
	case SYS_msgsys:
		decode_subcall(tcp, SYS_msgsys_subcall,
			SYS_msgsys_nsubcalls, shift_style);
		break;
	case SYS_shmsys:
		decode_subcall(tcp, SYS_shmsys_subcall,
			SYS_shmsys_nsubcalls, shift_style);
		break;
	case SYS_semsys:
		decode_subcall(tcp, SYS_semsys_subcall,
			SYS_semsys_nsubcalls, shift_style);
		break;
#if 0 /* broken */
	case SYS_utssys:
		decode_subcall(tcp, SYS_utssys_subcall,
			SYS_utssys_nsubcalls, shift_style);
		break;
#endif
	case SYS_sysfs:
		decode_subcall(tcp, SYS_sysfs_subcall,
			SYS_sysfs_nsubcalls, shift_style);
		break;
	case SYS_spcall:
		decode_subcall(tcp, SYS_spcall_subcall,
			SYS_spcall_nsubcalls, shift_style);
		break;
#ifdef SYS_context_subcall
	case SYS_context:
		decode_subcall(tcp, SYS_context_subcall,
			SYS_context_nsubcalls, shift_style);
		break;
#endif /* SYS_context_subcall */
#ifdef SYS_door_subcall
	case SYS_door:
		decode_subcall(tcp, SYS_door_subcall,
			SYS_door_nsubcalls, door_style);
		break;
#endif /* SYS_door_subcall */
#ifdef SYS_kaio_subcall
	case SYS_kaio:
		decode_subcall(tcp, SYS_kaio_subcall,
			SYS_kaio_nsubcalls, shift_style);
		break;
#endif
#endif /* SVR4 */
#ifdef FREEBSD
	case SYS_msgsys:
	case SYS_shmsys:
	case SYS_semsys:
		decode_subcall(tcp, 0, 0, table_style);
		break;
#endif
#ifdef SUNOS4
	case SYS_semsys:
		decode_subcall(tcp, SYS_semsys_subcall,
			SYS_semsys_nsubcalls, shift_style);
		break;
	case SYS_msgsys:
		decode_subcall(tcp, SYS_msgsys_subcall,
			SYS_msgsys_nsubcalls, shift_style);
		break;
	case SYS_shmsys:
		decode_subcall(tcp, SYS_shmsys_subcall,
			SYS_shmsys_nsubcalls, shift_style);
		break;
#endif
	}

	internal_syscall(tcp);
	if (tcp->scno >=0 && tcp->scno < nsyscalls && !(qual_flags[tcp->scno] & QUAL_TRACE)) {
		tcp->flags |= TCB_INSYSCALL;
		return 0;
	}

	if (cflag) {
		gettimeofday(&tcp->etime, NULL);
		tcp->flags |= TCB_INSYSCALL;
		return 0;
	}

	printleader(tcp);
	tcp->flags &= ~TCB_REPRINT;
	tcp_last = tcp;
	if (tcp->scno >= nsyscalls || tcp->scno < 0)
		tprintf("syscall_%lu(", tcp->scno);
	else
		tprintf("%s(", sysent[tcp->scno].sys_name);
	if (tcp->scno >= nsyscalls || tcp->scno < 0 ||
	    ((qual_flags[tcp->scno] & QUAL_RAW) && tcp->scno != SYS_exit))
		sys_res = printargs(tcp);
	else
		sys_res = (*sysent[tcp->scno].sys_func)(tcp);
	if (fflush(tcp->outf) == EOF)
		return -1;
	tcp->flags |= TCB_INSYSCALL;
	/* Measure the entrance time as late as possible to avoid errors. */
	if (dtime)
		gettimeofday(&tcp->etime, NULL);
	return sys_res;
}

int
printargs(tcp)
struct tcb *tcp;
{
	if (entering(tcp)) {
		int i;

		for (i = 0; i < tcp->u_nargs; i++)
			tprintf("%s%#lx", i ? ", " : "", tcp->u_arg[i]);
	}
	return 0;
}

long
getrval2(tcp)
struct tcb *tcp;
{
	long val = -1;

#ifdef LINUX
#if defined (SPARC) || defined (SPARC64)
	struct regs regs;
	if (ptrace(PTRACE_GETREGS,tcp->pid,(char *)&regs,0) < 0)
		return -1;
	val = regs.r_o1;
#elif defined(SH)
	if (upeek(tcp->pid, 4*(REG_REG0+1), &val) < 0)
		return -1;
#elif defined(IA64)
	if (upeek(tcp->pid, PT_R9, &val) < 0)
		return -1;
#endif /* SPARC || SPARC64 */
#endif /* LINUX */

#ifdef SUNOS4
	if (upeek(tcp->pid, uoff(u_rval2), &val) < 0)
		return -1;
#endif /* SUNOS4 */

#ifdef SVR4
#ifdef SPARC
	val = tcp->status.PR_REG[R_O1];
#endif /* SPARC */
#ifdef I386
	val = tcp->status.PR_REG[EDX];
#endif /* I386 */
#ifdef X86_64
	val = tcp->status.PR_REG[RDX];
#endif /* X86_64 */
#ifdef MIPS
	val = tcp->status.PR_REG[CTX_V1];
#endif /* MIPS */
#endif /* SVR4 */
#ifdef FREEBSD
	struct reg regs;
	pread(tcp->pfd_reg, &regs, sizeof(regs), 0);
	val = regs.r_edx;
#endif
	return val;
}

/*
 * Apparently, indirect system calls have already be converted by ptrace(2),
 * so if you see "indir" this program has gone astray.
 */
int
sys_indir(tcp)
struct tcb *tcp;
{
	int i, scno, nargs;

	if (entering(tcp)) {
		if ((scno = tcp->u_arg[0]) > nsyscalls) {
			fprintf(stderr, "Bogus syscall: %u\n", scno);
			return 0;
		}
		nargs = sysent[scno].nargs;
		tprintf("%s", sysent[scno].sys_name);
		for (i = 0; i < nargs; i++)
			tprintf(", %#lx", tcp->u_arg[i+1]);
	}
	return 0;
}

static int
time_cmp(a, b)
void *a;
void *b;
{
	return -tv_cmp(&counts[*((int *) a)].time, &counts[*((int *) b)].time);
}

static int
syscall_cmp(a, b)
void *a;
void *b;
{
	return strcmp(sysent[*((int *) a)].sys_name,
		sysent[*((int *) b)].sys_name);
}

static int
count_cmp(a, b)
void *a;
void *b;
{
	int m = counts[*((int *) a)].calls, n = counts[*((int *) b)].calls;

	return (m < n) ? 1 : (m > n) ? -1 : 0;
}

static int (*sortfun)();
static struct timeval overhead = { -1, -1 };

void
set_sortby(sortby)
char *sortby;
{
	if (strcmp(sortby, "time") == 0)
		sortfun = time_cmp;
	else if (strcmp(sortby, "calls") == 0)
		sortfun = count_cmp;
	else if (strcmp(sortby, "name") == 0)
		sortfun = syscall_cmp;
	else if (strcmp(sortby, "nothing") == 0)
		sortfun = NULL;
	else {
		fprintf(stderr, "invalid sortby: `%s'\n", sortby);
		exit(1);
	}
}

void set_overhead(n)
int n;
{
	overhead.tv_sec = n / 1000000;
	overhead.tv_usec = n % 1000000;
}

void
call_summary(outf)
FILE *outf;
{
	int i, j;
	int call_cum, error_cum;
	struct timeval tv_cum, dtv;
	double percent;
	char *dashes = "-------------------------";
	char error_str[16];

	int *sorted_count = malloc(nsyscalls * sizeof(int));

	call_cum = error_cum = tv_cum.tv_sec = tv_cum.tv_usec = 0;
	if (overhead.tv_sec == -1) {
		tv_mul(&overhead, &shortest, 8);
		tv_div(&overhead, &overhead, 10);
	}
	for (i = 0; i < nsyscalls; i++) {
		sorted_count[i] = i;
		if (counts == NULL || counts[i].calls == 0)
			continue;
		tv_mul(&dtv, &overhead, counts[i].calls);
		tv_sub(&counts[i].time, &counts[i].time, &dtv);
		call_cum += counts[i].calls;
		error_cum += counts[i].errors;
		tv_add(&tv_cum, &tv_cum, &counts[i].time);
	}
	if (counts && sortfun)
		qsort((void *) sorted_count, nsyscalls, sizeof(int), sortfun);
	fprintf(outf, "%6.6s %11.11s %11.11s %9.9s %9.9s %s\n",
		"% time", "seconds", "usecs/call",
		"calls", "errors", "syscall");
	fprintf(outf, "%6.6s %11.11s %11.11s %9.9s %9.9s %-16.16s\n",
		dashes, dashes, dashes, dashes, dashes, dashes);
	if (counts) {
		for (i = 0; i < nsyscalls; i++) {
			j = sorted_count[i];
			if (counts[j].calls == 0)
				continue;
			tv_div(&dtv, &counts[j].time, counts[j].calls);
			if (counts[j].errors)
				sprintf(error_str, "%d", counts[j].errors);
			else
				error_str[0] = '\0';
			percent = (100.0 * tv_float(&counts[j].time)
				   / tv_float(&tv_cum));
			fprintf(outf, "%6.2f %4ld.%06ld %11ld %9d %9.9s %s\n",
				percent, (long) counts[j].time.tv_sec,
				(long) counts[j].time.tv_usec,
				(long) 1000000 * dtv.tv_sec + dtv.tv_usec,
				counts[j].calls,
				error_str, sysent[j].sys_name);
		}
	}
	free(sorted_count);

	fprintf(outf, "%6.6s %11.11s %11.11s %9.9s %9.9s %-16.16s\n",
		dashes, dashes, dashes, dashes, dashes, dashes);
	if (error_cum)
		sprintf(error_str, "%d", error_cum);
	else
		error_str[0] = '\0';
	fprintf(outf, "%6.6s %4ld.%06ld %11.11s %9d %9.9s %s\n",
		"100.00", (long) tv_cum.tv_sec, (long) tv_cum.tv_usec, "",
		call_cum, error_str, "total");

}