/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_mips64.h" #include "base/bit_utils.h" #include "base/casts.h" #include "base/memory_region.h" #include "entrypoints/quick/quick_entrypoints.h" #include "entrypoints/quick/quick_entrypoints_enum.h" #include "thread.h" namespace art { namespace mips64 { static_assert(static_cast<size_t>(kMips64PointerSize) == kMips64DoublewordSize, "Unexpected Mips64 pointer size."); static_assert(kMips64PointerSize == PointerSize::k64, "Unexpected Mips64 pointer size."); void Mips64Assembler::FinalizeCode() { for (auto& exception_block : exception_blocks_) { EmitExceptionPoll(&exception_block); } ReserveJumpTableSpace(); EmitLiterals(); PromoteBranches(); } void Mips64Assembler::FinalizeInstructions(const MemoryRegion& region) { EmitBranches(); EmitJumpTables(); Assembler::FinalizeInstructions(region); PatchCFI(); } void Mips64Assembler::PatchCFI() { if (cfi().NumberOfDelayedAdvancePCs() == 0u) { return; } using DelayedAdvancePC = DebugFrameOpCodeWriterForAssembler::DelayedAdvancePC; const auto data = cfi().ReleaseStreamAndPrepareForDelayedAdvancePC(); const std::vector<uint8_t>& old_stream = data.first; const std::vector<DelayedAdvancePC>& advances = data.second; // Refill our data buffer with patched opcodes. cfi().ReserveCFIStream(old_stream.size() + advances.size() + 16); size_t stream_pos = 0; for (const DelayedAdvancePC& advance : advances) { DCHECK_GE(advance.stream_pos, stream_pos); // Copy old data up to the point where advance was issued. cfi().AppendRawData(old_stream, stream_pos, advance.stream_pos); stream_pos = advance.stream_pos; // Insert the advance command with its final offset. size_t final_pc = GetAdjustedPosition(advance.pc); cfi().AdvancePC(final_pc); } // Copy the final segment if any. cfi().AppendRawData(old_stream, stream_pos, old_stream.size()); } void Mips64Assembler::EmitBranches() { CHECK(!overwriting_); // Switch from appending instructions at the end of the buffer to overwriting // existing instructions (branch placeholders) in the buffer. overwriting_ = true; for (auto& branch : branches_) { EmitBranch(&branch); } overwriting_ = false; } void Mips64Assembler::Emit(uint32_t value) { if (overwriting_) { // Branches to labels are emitted into their placeholders here. buffer_.Store<uint32_t>(overwrite_location_, value); overwrite_location_ += sizeof(uint32_t); } else { // Other instructions are simply appended at the end here. AssemblerBuffer::EnsureCapacity ensured(&buffer_); buffer_.Emit<uint32_t>(value); } } void Mips64Assembler::EmitR(int opcode, GpuRegister rs, GpuRegister rt, GpuRegister rd, int shamt, int funct) { CHECK_NE(rs, kNoGpuRegister); CHECK_NE(rt, kNoGpuRegister); CHECK_NE(rd, kNoGpuRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(rs) << kRsShift | static_cast<uint32_t>(rt) << kRtShift | static_cast<uint32_t>(rd) << kRdShift | shamt << kShamtShift | funct; Emit(encoding); } void Mips64Assembler::EmitRsd(int opcode, GpuRegister rs, GpuRegister rd, int shamt, int funct) { CHECK_NE(rs, kNoGpuRegister); CHECK_NE(rd, kNoGpuRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(rs) << kRsShift | static_cast<uint32_t>(ZERO) << kRtShift | static_cast<uint32_t>(rd) << kRdShift | shamt << kShamtShift | funct; Emit(encoding); } void Mips64Assembler::EmitRtd(int opcode, GpuRegister rt, GpuRegister rd, int shamt, int funct) { CHECK_NE(rt, kNoGpuRegister); CHECK_NE(rd, kNoGpuRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(ZERO) << kRsShift | static_cast<uint32_t>(rt) << kRtShift | static_cast<uint32_t>(rd) << kRdShift | shamt << kShamtShift | funct; Emit(encoding); } void Mips64Assembler::EmitI(int opcode, GpuRegister rs, GpuRegister rt, uint16_t imm) { CHECK_NE(rs, kNoGpuRegister); CHECK_NE(rt, kNoGpuRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(rs) << kRsShift | static_cast<uint32_t>(rt) << kRtShift | imm; Emit(encoding); } void Mips64Assembler::EmitI21(int opcode, GpuRegister rs, uint32_t imm21) { CHECK_NE(rs, kNoGpuRegister); CHECK(IsUint<21>(imm21)) << imm21; uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(rs) << kRsShift | imm21; Emit(encoding); } void Mips64Assembler::EmitI26(int opcode, uint32_t imm26) { CHECK(IsUint<26>(imm26)) << imm26; uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | imm26; Emit(encoding); } void Mips64Assembler::EmitFR(int opcode, int fmt, FpuRegister ft, FpuRegister fs, FpuRegister fd, int funct) { CHECK_NE(ft, kNoFpuRegister); CHECK_NE(fs, kNoFpuRegister); CHECK_NE(fd, kNoFpuRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | fmt << kFmtShift | static_cast<uint32_t>(ft) << kFtShift | static_cast<uint32_t>(fs) << kFsShift | static_cast<uint32_t>(fd) << kFdShift | funct; Emit(encoding); } void Mips64Assembler::EmitFI(int opcode, int fmt, FpuRegister ft, uint16_t imm) { CHECK_NE(ft, kNoFpuRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | fmt << kFmtShift | static_cast<uint32_t>(ft) << kFtShift | imm; Emit(encoding); } void Mips64Assembler::EmitMsa3R(int operation, int df, VectorRegister wt, VectorRegister ws, VectorRegister wd, int minor_opcode) { CHECK_NE(wt, kNoVectorRegister); CHECK_NE(ws, kNoVectorRegister); CHECK_NE(wd, kNoVectorRegister); uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | operation << kMsaOperationShift | df << kDfShift | static_cast<uint32_t>(wt) << kWtShift | static_cast<uint32_t>(ws) << kWsShift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode; Emit(encoding); } void Mips64Assembler::EmitMsaBIT(int operation, int df_m, VectorRegister ws, VectorRegister wd, int minor_opcode) { CHECK_NE(ws, kNoVectorRegister); CHECK_NE(wd, kNoVectorRegister); uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | operation << kMsaOperationShift | df_m << kDfMShift | static_cast<uint32_t>(ws) << kWsShift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode; Emit(encoding); } void Mips64Assembler::EmitMsaELM(int operation, int df_n, VectorRegister ws, VectorRegister wd, int minor_opcode) { CHECK_NE(ws, kNoVectorRegister); CHECK_NE(wd, kNoVectorRegister); uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | operation << kMsaELMOperationShift | df_n << kDfNShift | static_cast<uint32_t>(ws) << kWsShift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode; Emit(encoding); } void Mips64Assembler::EmitMsaMI10(int s10, GpuRegister rs, VectorRegister wd, int minor_opcode, int df) { CHECK_NE(rs, kNoGpuRegister); CHECK_NE(wd, kNoVectorRegister); CHECK(IsUint<10>(s10)) << s10; uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | s10 << kS10Shift | static_cast<uint32_t>(rs) << kWsShift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode << kS10MinorShift | df; Emit(encoding); } void Mips64Assembler::EmitMsaI10(int operation, int df, int i10, VectorRegister wd, int minor_opcode) { CHECK_NE(wd, kNoVectorRegister); CHECK(IsUint<10>(i10)) << i10; uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | operation << kMsaOperationShift | df << kDfShift | i10 << kI10Shift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode; Emit(encoding); } void Mips64Assembler::EmitMsa2R(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode) { CHECK_NE(ws, kNoVectorRegister); CHECK_NE(wd, kNoVectorRegister); uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | operation << kMsa2ROperationShift | df << kDf2RShift | static_cast<uint32_t>(ws) << kWsShift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode; Emit(encoding); } void Mips64Assembler::EmitMsa2RF(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode) { CHECK_NE(ws, kNoVectorRegister); CHECK_NE(wd, kNoVectorRegister); uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | operation << kMsa2RFOperationShift | df << kDf2RShift | static_cast<uint32_t>(ws) << kWsShift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode; Emit(encoding); } void Mips64Assembler::Addu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x21); } void Mips64Assembler::Addiu(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x9, rs, rt, imm16); } void Mips64Assembler::Daddu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x2d); } void Mips64Assembler::Daddiu(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x19, rs, rt, imm16); } void Mips64Assembler::Subu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x23); } void Mips64Assembler::Dsubu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x2f); } void Mips64Assembler::MulR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 2, 0x18); } void Mips64Assembler::MuhR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 3, 0x18); } void Mips64Assembler::DivR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 2, 0x1a); } void Mips64Assembler::ModR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 3, 0x1a); } void Mips64Assembler::DivuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 2, 0x1b); } void Mips64Assembler::ModuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 3, 0x1b); } void Mips64Assembler::Dmul(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 2, 0x1c); } void Mips64Assembler::Dmuh(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 3, 0x1c); } void Mips64Assembler::Ddiv(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 2, 0x1e); } void Mips64Assembler::Dmod(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 3, 0x1e); } void Mips64Assembler::Ddivu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 2, 0x1f); } void Mips64Assembler::Dmodu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 3, 0x1f); } void Mips64Assembler::And(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x24); } void Mips64Assembler::Andi(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0xc, rs, rt, imm16); } void Mips64Assembler::Or(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x25); } void Mips64Assembler::Ori(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0xd, rs, rt, imm16); } void Mips64Assembler::Xor(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x26); } void Mips64Assembler::Xori(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0xe, rs, rt, imm16); } void Mips64Assembler::Nor(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x27); } void Mips64Assembler::Bitswap(GpuRegister rd, GpuRegister rt) { EmitRtd(0x1f, rt, rd, 0x0, 0x20); } void Mips64Assembler::Dbitswap(GpuRegister rd, GpuRegister rt) { EmitRtd(0x1f, rt, rd, 0x0, 0x24); } void Mips64Assembler::Seb(GpuRegister rd, GpuRegister rt) { EmitR(0x1f, static_cast<GpuRegister>(0), rt, rd, 0x10, 0x20); } void Mips64Assembler::Seh(GpuRegister rd, GpuRegister rt) { EmitR(0x1f, static_cast<GpuRegister>(0), rt, rd, 0x18, 0x20); } void Mips64Assembler::Dsbh(GpuRegister rd, GpuRegister rt) { EmitRtd(0x1f, rt, rd, 0x2, 0x24); } void Mips64Assembler::Dshd(GpuRegister rd, GpuRegister rt) { EmitRtd(0x1f, rt, rd, 0x5, 0x24); } void Mips64Assembler::Dext(GpuRegister rt, GpuRegister rs, int pos, int size) { CHECK(IsUint<5>(pos)) << pos; CHECK(IsUint<5>(size - 1)) << size; EmitR(0x1f, rs, rt, static_cast<GpuRegister>(size - 1), pos, 0x3); } void Mips64Assembler::Ins(GpuRegister rd, GpuRegister rt, int pos, int size) { CHECK(IsUint<5>(pos)) << pos; CHECK(IsUint<5>(size - 1)) << size; CHECK(IsUint<5>(pos + size - 1)) << pos << " + " << size; EmitR(0x1f, rt, rd, static_cast<GpuRegister>(pos + size - 1), pos, 0x04); } void Mips64Assembler::Dinsm(GpuRegister rt, GpuRegister rs, int pos, int size) { CHECK(IsUint<5>(pos)) << pos; CHECK(2 <= size && size <= 64) << size; CHECK(IsUint<5>(pos + size - 33)) << pos << " + " << size; EmitR(0x1f, rs, rt, static_cast<GpuRegister>(pos + size - 33), pos, 0x5); } void Mips64Assembler::Dinsu(GpuRegister rt, GpuRegister rs, int pos, int size) { CHECK(IsUint<5>(pos - 32)) << pos; CHECK(IsUint<5>(size - 1)) << size; CHECK(IsUint<5>(pos + size - 33)) << pos << " + " << size; EmitR(0x1f, rs, rt, static_cast<GpuRegister>(pos + size - 33), pos - 32, 0x6); } void Mips64Assembler::Dins(GpuRegister rt, GpuRegister rs, int pos, int size) { CHECK(IsUint<5>(pos)) << pos; CHECK(IsUint<5>(size - 1)) << size; CHECK(IsUint<5>(pos + size - 1)) << pos << " + " << size; EmitR(0x1f, rs, rt, static_cast<GpuRegister>(pos + size - 1), pos, 0x7); } void Mips64Assembler::DblIns(GpuRegister rt, GpuRegister rs, int pos, int size) { if (pos >= 32) { Dinsu(rt, rs, pos, size); } else if ((static_cast<int64_t>(pos) + size - 1) >= 32) { Dinsm(rt, rs, pos, size); } else { Dins(rt, rs, pos, size); } } void Mips64Assembler::Lsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne) { CHECK(1 <= saPlusOne && saPlusOne <= 4) << saPlusOne; int sa = saPlusOne - 1; EmitR(0x0, rs, rt, rd, sa, 0x05); } void Mips64Assembler::Dlsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne) { CHECK(1 <= saPlusOne && saPlusOne <= 4) << saPlusOne; int sa = saPlusOne - 1; EmitR(0x0, rs, rt, rd, sa, 0x15); } void Mips64Assembler::Wsbh(GpuRegister rd, GpuRegister rt) { EmitRtd(0x1f, rt, rd, 2, 0x20); } void Mips64Assembler::Sc(GpuRegister rt, GpuRegister base, int16_t imm9) { CHECK(IsInt<9>(imm9)); EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x26); } void Mips64Assembler::Scd(GpuRegister rt, GpuRegister base, int16_t imm9) { CHECK(IsInt<9>(imm9)); EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x27); } void Mips64Assembler::Ll(GpuRegister rt, GpuRegister base, int16_t imm9) { CHECK(IsInt<9>(imm9)); EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x36); } void Mips64Assembler::Lld(GpuRegister rt, GpuRegister base, int16_t imm9) { CHECK(IsInt<9>(imm9)); EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x37); } void Mips64Assembler::Sll(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x00); } void Mips64Assembler::Srl(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x02); } void Mips64Assembler::Rotr(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(1), rt, rd, shamt, 0x02); } void Mips64Assembler::Sra(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x03); } void Mips64Assembler::Sllv(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 0, 0x04); } void Mips64Assembler::Rotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 1, 0x06); } void Mips64Assembler::Srlv(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 0, 0x06); } void Mips64Assembler::Srav(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 0, 0x07); } void Mips64Assembler::Dsll(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x38); } void Mips64Assembler::Dsrl(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3a); } void Mips64Assembler::Drotr(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(1), rt, rd, shamt, 0x3a); } void Mips64Assembler::Dsra(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3b); } void Mips64Assembler::Dsll32(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3c); } void Mips64Assembler::Dsrl32(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3e); } void Mips64Assembler::Drotr32(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(1), rt, rd, shamt, 0x3e); } void Mips64Assembler::Dsra32(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3f); } void Mips64Assembler::Dsllv(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 0, 0x14); } void Mips64Assembler::Dsrlv(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 0, 0x16); } void Mips64Assembler::Drotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 1, 0x16); } void Mips64Assembler::Dsrav(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 0, 0x17); } void Mips64Assembler::Lb(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x20, rs, rt, imm16); } void Mips64Assembler::Lh(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x21, rs, rt, imm16); } void Mips64Assembler::Lw(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x23, rs, rt, imm16); } void Mips64Assembler::Ld(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x37, rs, rt, imm16); } void Mips64Assembler::Lbu(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x24, rs, rt, imm16); } void Mips64Assembler::Lhu(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x25, rs, rt, imm16); } void Mips64Assembler::Lwu(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x27, rs, rt, imm16); } void Mips64Assembler::Lwpc(GpuRegister rs, uint32_t imm19) { CHECK(IsUint<19>(imm19)) << imm19; EmitI21(0x3B, rs, (0x01 << 19) | imm19); } void Mips64Assembler::Lwupc(GpuRegister rs, uint32_t imm19) { CHECK(IsUint<19>(imm19)) << imm19; EmitI21(0x3B, rs, (0x02 << 19) | imm19); } void Mips64Assembler::Ldpc(GpuRegister rs, uint32_t imm18) { CHECK(IsUint<18>(imm18)) << imm18; EmitI21(0x3B, rs, (0x06 << 18) | imm18); } void Mips64Assembler::Lui(GpuRegister rt, uint16_t imm16) { EmitI(0xf, static_cast<GpuRegister>(0), rt, imm16); } void Mips64Assembler::Aui(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0xf, rs, rt, imm16); } void Mips64Assembler::Daui(GpuRegister rt, GpuRegister rs, uint16_t imm16) { CHECK_NE(rs, ZERO); EmitI(0x1d, rs, rt, imm16); } void Mips64Assembler::Dahi(GpuRegister rs, uint16_t imm16) { EmitI(1, rs, static_cast<GpuRegister>(6), imm16); } void Mips64Assembler::Dati(GpuRegister rs, uint16_t imm16) { EmitI(1, rs, static_cast<GpuRegister>(0x1e), imm16); } void Mips64Assembler::Sync(uint32_t stype) { EmitR(0, static_cast<GpuRegister>(0), static_cast<GpuRegister>(0), static_cast<GpuRegister>(0), stype & 0x1f, 0xf); } void Mips64Assembler::Sb(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x28, rs, rt, imm16); } void Mips64Assembler::Sh(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x29, rs, rt, imm16); } void Mips64Assembler::Sw(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x2b, rs, rt, imm16); } void Mips64Assembler::Sd(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x3f, rs, rt, imm16); } void Mips64Assembler::Slt(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x2a); } void Mips64Assembler::Sltu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x2b); } void Mips64Assembler::Slti(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0xa, rs, rt, imm16); } void Mips64Assembler::Sltiu(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0xb, rs, rt, imm16); } void Mips64Assembler::Seleqz(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x35); } void Mips64Assembler::Selnez(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x37); } void Mips64Assembler::Clz(GpuRegister rd, GpuRegister rs) { EmitRsd(0, rs, rd, 0x01, 0x10); } void Mips64Assembler::Clo(GpuRegister rd, GpuRegister rs) { EmitRsd(0, rs, rd, 0x01, 0x11); } void Mips64Assembler::Dclz(GpuRegister rd, GpuRegister rs) { EmitRsd(0, rs, rd, 0x01, 0x12); } void Mips64Assembler::Dclo(GpuRegister rd, GpuRegister rs) { EmitRsd(0, rs, rd, 0x01, 0x13); } void Mips64Assembler::Jalr(GpuRegister rd, GpuRegister rs) { EmitR(0, rs, static_cast<GpuRegister>(0), rd, 0, 0x09); } void Mips64Assembler::Jalr(GpuRegister rs) { Jalr(RA, rs); } void Mips64Assembler::Jr(GpuRegister rs) { Jalr(ZERO, rs); } void Mips64Assembler::Auipc(GpuRegister rs, uint16_t imm16) { EmitI(0x3B, rs, static_cast<GpuRegister>(0x1E), imm16); } void Mips64Assembler::Addiupc(GpuRegister rs, uint32_t imm19) { CHECK(IsUint<19>(imm19)) << imm19; EmitI21(0x3B, rs, imm19); } void Mips64Assembler::Bc(uint32_t imm26) { EmitI26(0x32, imm26); } void Mips64Assembler::Balc(uint32_t imm26) { EmitI26(0x3A, imm26); } void Mips64Assembler::Jic(GpuRegister rt, uint16_t imm16) { EmitI(0x36, static_cast<GpuRegister>(0), rt, imm16); } void Mips64Assembler::Jialc(GpuRegister rt, uint16_t imm16) { EmitI(0x3E, static_cast<GpuRegister>(0), rt, imm16); } void Mips64Assembler::Bltc(GpuRegister rs, GpuRegister rt, uint16_t imm16) { CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x17, rs, rt, imm16); } void Mips64Assembler::Bltzc(GpuRegister rt, uint16_t imm16) { CHECK_NE(rt, ZERO); EmitI(0x17, rt, rt, imm16); } void Mips64Assembler::Bgtzc(GpuRegister rt, uint16_t imm16) { CHECK_NE(rt, ZERO); EmitI(0x17, static_cast<GpuRegister>(0), rt, imm16); } void Mips64Assembler::Bgec(GpuRegister rs, GpuRegister rt, uint16_t imm16) { CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x16, rs, rt, imm16); } void Mips64Assembler::Bgezc(GpuRegister rt, uint16_t imm16) { CHECK_NE(rt, ZERO); EmitI(0x16, rt, rt, imm16); } void Mips64Assembler::Blezc(GpuRegister rt, uint16_t imm16) { CHECK_NE(rt, ZERO); EmitI(0x16, static_cast<GpuRegister>(0), rt, imm16); } void Mips64Assembler::Bltuc(GpuRegister rs, GpuRegister rt, uint16_t imm16) { CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x7, rs, rt, imm16); } void Mips64Assembler::Bgeuc(GpuRegister rs, GpuRegister rt, uint16_t imm16) { CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x6, rs, rt, imm16); } void Mips64Assembler::Beqc(GpuRegister rs, GpuRegister rt, uint16_t imm16) { CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x8, std::min(rs, rt), std::max(rs, rt), imm16); } void Mips64Assembler::Bnec(GpuRegister rs, GpuRegister rt, uint16_t imm16) { CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x18, std::min(rs, rt), std::max(rs, rt), imm16); } void Mips64Assembler::Beqzc(GpuRegister rs, uint32_t imm21) { CHECK_NE(rs, ZERO); EmitI21(0x36, rs, imm21); } void Mips64Assembler::Bnezc(GpuRegister rs, uint32_t imm21) { CHECK_NE(rs, ZERO); EmitI21(0x3E, rs, imm21); } void Mips64Assembler::Bc1eqz(FpuRegister ft, uint16_t imm16) { EmitFI(0x11, 0x9, ft, imm16); } void Mips64Assembler::Bc1nez(FpuRegister ft, uint16_t imm16) { EmitFI(0x11, 0xD, ft, imm16); } void Mips64Assembler::Beq(GpuRegister rs, GpuRegister rt, uint16_t imm16) { EmitI(0x4, rs, rt, imm16); } void Mips64Assembler::Bne(GpuRegister rs, GpuRegister rt, uint16_t imm16) { EmitI(0x5, rs, rt, imm16); } void Mips64Assembler::Beqz(GpuRegister rt, uint16_t imm16) { Beq(rt, ZERO, imm16); } void Mips64Assembler::Bnez(GpuRegister rt, uint16_t imm16) { Bne(rt, ZERO, imm16); } void Mips64Assembler::Bltz(GpuRegister rt, uint16_t imm16) { EmitI(0x1, rt, static_cast<GpuRegister>(0), imm16); } void Mips64Assembler::Bgez(GpuRegister rt, uint16_t imm16) { EmitI(0x1, rt, static_cast<GpuRegister>(0x1), imm16); } void Mips64Assembler::Blez(GpuRegister rt, uint16_t imm16) { EmitI(0x6, rt, static_cast<GpuRegister>(0), imm16); } void Mips64Assembler::Bgtz(GpuRegister rt, uint16_t imm16) { EmitI(0x7, rt, static_cast<GpuRegister>(0), imm16); } void Mips64Assembler::EmitBcondR6(BranchCondition cond, GpuRegister rs, GpuRegister rt, uint32_t imm16_21) { switch (cond) { case kCondLT: Bltc(rs, rt, imm16_21); break; case kCondGE: Bgec(rs, rt, imm16_21); break; case kCondLE: Bgec(rt, rs, imm16_21); break; case kCondGT: Bltc(rt, rs, imm16_21); break; case kCondLTZ: CHECK_EQ(rt, ZERO); Bltzc(rs, imm16_21); break; case kCondGEZ: CHECK_EQ(rt, ZERO); Bgezc(rs, imm16_21); break; case kCondLEZ: CHECK_EQ(rt, ZERO); Blezc(rs, imm16_21); break; case kCondGTZ: CHECK_EQ(rt, ZERO); Bgtzc(rs, imm16_21); break; case kCondEQ: Beqc(rs, rt, imm16_21); break; case kCondNE: Bnec(rs, rt, imm16_21); break; case kCondEQZ: CHECK_EQ(rt, ZERO); Beqzc(rs, imm16_21); break; case kCondNEZ: CHECK_EQ(rt, ZERO); Bnezc(rs, imm16_21); break; case kCondLTU: Bltuc(rs, rt, imm16_21); break; case kCondGEU: Bgeuc(rs, rt, imm16_21); break; case kCondF: CHECK_EQ(rt, ZERO); Bc1eqz(static_cast<FpuRegister>(rs), imm16_21); break; case kCondT: CHECK_EQ(rt, ZERO); Bc1nez(static_cast<FpuRegister>(rs), imm16_21); break; case kUncond: LOG(FATAL) << "Unexpected branch condition " << cond; UNREACHABLE(); } } void Mips64Assembler::EmitBcondR2(BranchCondition cond, GpuRegister rs, GpuRegister rt, uint16_t imm16) { switch (cond) { case kCondLTZ: CHECK_EQ(rt, ZERO); Bltz(rs, imm16); break; case kCondGEZ: CHECK_EQ(rt, ZERO); Bgez(rs, imm16); break; case kCondLEZ: CHECK_EQ(rt, ZERO); Blez(rs, imm16); break; case kCondGTZ: CHECK_EQ(rt, ZERO); Bgtz(rs, imm16); break; case kCondEQ: Beq(rs, rt, imm16); break; case kCondNE: Bne(rs, rt, imm16); break; case kCondEQZ: CHECK_EQ(rt, ZERO); Beqz(rs, imm16); break; case kCondNEZ: CHECK_EQ(rt, ZERO); Bnez(rs, imm16); break; case kCondF: case kCondT: case kCondLT: case kCondGE: case kCondLE: case kCondGT: case kCondLTU: case kCondGEU: case kUncond: LOG(FATAL) << "Unexpected branch condition " << cond; UNREACHABLE(); } } void Mips64Assembler::AddS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x0); } void Mips64Assembler::SubS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x1); } void Mips64Assembler::MulS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x2); } void Mips64Assembler::DivS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x3); } void Mips64Assembler::AddD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x0); } void Mips64Assembler::SubD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x1); } void Mips64Assembler::MulD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x2); } void Mips64Assembler::DivD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x3); } void Mips64Assembler::SqrtS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x4); } void Mips64Assembler::SqrtD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x4); } void Mips64Assembler::AbsS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x5); } void Mips64Assembler::AbsD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x5); } void Mips64Assembler::MovS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x6); } void Mips64Assembler::MovD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x6); } void Mips64Assembler::NegS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x7); } void Mips64Assembler::NegD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x7); } void Mips64Assembler::RoundLS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x8); } void Mips64Assembler::RoundLD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x8); } void Mips64Assembler::RoundWS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xc); } void Mips64Assembler::RoundWD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xc); } void Mips64Assembler::TruncLS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x9); } void Mips64Assembler::TruncLD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x9); } void Mips64Assembler::TruncWS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xd); } void Mips64Assembler::TruncWD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xd); } void Mips64Assembler::CeilLS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xa); } void Mips64Assembler::CeilLD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xa); } void Mips64Assembler::CeilWS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xe); } void Mips64Assembler::CeilWD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xe); } void Mips64Assembler::FloorLS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xb); } void Mips64Assembler::FloorLD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xb); } void Mips64Assembler::FloorWS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xf); } void Mips64Assembler::FloorWD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xf); } void Mips64Assembler::SelS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x10); } void Mips64Assembler::SelD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x10); } void Mips64Assembler::SeleqzS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x14); } void Mips64Assembler::SeleqzD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x14); } void Mips64Assembler::SelnezS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x17); } void Mips64Assembler::SelnezD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x17); } void Mips64Assembler::RintS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x1a); } void Mips64Assembler::RintD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x1a); } void Mips64Assembler::ClassS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x1b); } void Mips64Assembler::ClassD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x1b); } void Mips64Assembler::MinS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x1c); } void Mips64Assembler::MinD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x1c); } void Mips64Assembler::MaxS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x1e); } void Mips64Assembler::MaxD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x1e); } void Mips64Assembler::CmpUnS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x01); } void Mips64Assembler::CmpEqS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x02); } void Mips64Assembler::CmpUeqS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x03); } void Mips64Assembler::CmpLtS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x04); } void Mips64Assembler::CmpUltS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x05); } void Mips64Assembler::CmpLeS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x06); } void Mips64Assembler::CmpUleS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x07); } void Mips64Assembler::CmpOrS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x11); } void Mips64Assembler::CmpUneS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x12); } void Mips64Assembler::CmpNeS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x13); } void Mips64Assembler::CmpUnD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x01); } void Mips64Assembler::CmpEqD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x02); } void Mips64Assembler::CmpUeqD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x03); } void Mips64Assembler::CmpLtD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x04); } void Mips64Assembler::CmpUltD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x05); } void Mips64Assembler::CmpLeD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x06); } void Mips64Assembler::CmpUleD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x07); } void Mips64Assembler::CmpOrD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x11); } void Mips64Assembler::CmpUneD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x12); } void Mips64Assembler::CmpNeD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x13); } void Mips64Assembler::Cvtsw(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x14, static_cast<FpuRegister>(0), fs, fd, 0x20); } void Mips64Assembler::Cvtdw(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x14, static_cast<FpuRegister>(0), fs, fd, 0x21); } void Mips64Assembler::Cvtsd(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x20); } void Mips64Assembler::Cvtds(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x21); } void Mips64Assembler::Cvtsl(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x15, static_cast<FpuRegister>(0), fs, fd, 0x20); } void Mips64Assembler::Cvtdl(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x15, static_cast<FpuRegister>(0), fs, fd, 0x21); } void Mips64Assembler::Mfc1(GpuRegister rt, FpuRegister fs) { EmitFR(0x11, 0x00, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0); } void Mips64Assembler::Mfhc1(GpuRegister rt, FpuRegister fs) { EmitFR(0x11, 0x03, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0); } void Mips64Assembler::Mtc1(GpuRegister rt, FpuRegister fs) { EmitFR(0x11, 0x04, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0); } void Mips64Assembler::Mthc1(GpuRegister rt, FpuRegister fs) { EmitFR(0x11, 0x07, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0); } void Mips64Assembler::Dmfc1(GpuRegister rt, FpuRegister fs) { EmitFR(0x11, 0x01, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0); } void Mips64Assembler::Dmtc1(GpuRegister rt, FpuRegister fs) { EmitFR(0x11, 0x05, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0); } void Mips64Assembler::Lwc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) { EmitI(0x31, rs, static_cast<GpuRegister>(ft), imm16); } void Mips64Assembler::Ldc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) { EmitI(0x35, rs, static_cast<GpuRegister>(ft), imm16); } void Mips64Assembler::Swc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) { EmitI(0x39, rs, static_cast<GpuRegister>(ft), imm16); } void Mips64Assembler::Sdc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) { EmitI(0x3d, rs, static_cast<GpuRegister>(ft), imm16); } void Mips64Assembler::Break() { EmitR(0, static_cast<GpuRegister>(0), static_cast<GpuRegister>(0), static_cast<GpuRegister>(0), 0, 0xD); } void Mips64Assembler::Nop() { EmitR(0x0, static_cast<GpuRegister>(0), static_cast<GpuRegister>(0), static_cast<GpuRegister>(0), 0, 0x0); } void Mips64Assembler::Move(GpuRegister rd, GpuRegister rs) { Or(rd, rs, ZERO); } void Mips64Assembler::Clear(GpuRegister rd) { Move(rd, ZERO); } void Mips64Assembler::Not(GpuRegister rd, GpuRegister rs) { Nor(rd, rs, ZERO); } void Mips64Assembler::AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1e); } void Mips64Assembler::OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1e); } void Mips64Assembler::NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1e); } void Mips64Assembler::XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1e); } void Mips64Assembler::AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xe); } void Mips64Assembler::AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xe); } void Mips64Assembler::AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xe); } void Mips64Assembler::AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xe); } void Mips64Assembler::SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xe); } void Mips64Assembler::SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xe); } void Mips64Assembler::SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xe); } void Mips64Assembler::SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xe); } void Mips64Assembler::Asub_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x11); } void Mips64Assembler::Asub_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x11); } void Mips64Assembler::Asub_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x11); } void Mips64Assembler::Asub_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x11); } void Mips64Assembler::Asub_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x11); } void Mips64Assembler::Asub_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x11); } void Mips64Assembler::Asub_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x11); } void Mips64Assembler::Asub_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x11); } void Mips64Assembler::MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x12); } void Mips64Assembler::MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x12); } void Mips64Assembler::MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x12); } void Mips64Assembler::MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x12); } void Mips64Assembler::Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x12); } void Mips64Assembler::Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x12); } void Mips64Assembler::Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x12); } void Mips64Assembler::Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x12); } void Mips64Assembler::Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x12); } void Mips64Assembler::Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x12); } void Mips64Assembler::Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x12); } void Mips64Assembler::Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x12); } void Mips64Assembler::Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x12); } void Mips64Assembler::Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x12); } void Mips64Assembler::Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x12); } void Mips64Assembler::Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x12); } void Mips64Assembler::Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x12); } void Mips64Assembler::Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x12); } void Mips64Assembler::Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x12); } void Mips64Assembler::Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x12); } void Mips64Assembler::Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x10); } void Mips64Assembler::Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x10); } void Mips64Assembler::Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x10); } void Mips64Assembler::Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x10); } void Mips64Assembler::Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x10); } void Mips64Assembler::Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x10); } void Mips64Assembler::Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x10); } void Mips64Assembler::Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x10); } void Mips64Assembler::Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x10); } void Mips64Assembler::Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x10); } void Mips64Assembler::Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x10); } void Mips64Assembler::Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x10); } void Mips64Assembler::Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x10); } void Mips64Assembler::Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x10); } void Mips64Assembler::Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x10); } void Mips64Assembler::Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x10); } void Mips64Assembler::Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x10); } void Mips64Assembler::Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x10); } void Mips64Assembler::Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x10); } void Mips64Assembler::Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x10); } void Mips64Assembler::Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xe); } void Mips64Assembler::Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xe); } void Mips64Assembler::Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xe); } void Mips64Assembler::Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xe); } void Mips64Assembler::Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x3, 0x0, wt, ws, wd, 0xe); } void Mips64Assembler::Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x3, 0x1, wt, ws, wd, 0xe); } void Mips64Assembler::Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x3, 0x2, wt, ws, wd, 0xe); } void Mips64Assembler::Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x3, 0x3, wt, ws, wd, 0xe); } void Mips64Assembler::Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x0, wt, ws, wd, 0xe); } void Mips64Assembler::Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x1, wt, ws, wd, 0xe); } void Mips64Assembler::Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x2, wt, ws, wd, 0xe); } void Mips64Assembler::Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x3, wt, ws, wd, 0xe); } void Mips64Assembler::Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x0, wt, ws, wd, 0xe); } void Mips64Assembler::Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x1, wt, ws, wd, 0xe); } void Mips64Assembler::Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x2, wt, ws, wd, 0xe); } void Mips64Assembler::Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x3, wt, ws, wd, 0xe); } void Mips64Assembler::FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1b); } void Mips64Assembler::FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1b); } void Mips64Assembler::FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1b); } void Mips64Assembler::FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1b); } void Mips64Assembler::FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x0, wt, ws, wd, 0x1b); } void Mips64Assembler::FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x1, wt, ws, wd, 0x1b); } void Mips64Assembler::FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x2, wt, ws, wd, 0x1b); } void Mips64Assembler::FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x3, wt, ws, wd, 0x1b); } void Mips64Assembler::FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x1b); } void Mips64Assembler::FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x1b); } void Mips64Assembler::FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x1b); } void Mips64Assembler::FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x1b); } void Mips64Assembler::Ffint_sW(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); EmitMsa2RF(0x19e, 0x0, ws, wd, 0x1e); } void Mips64Assembler::Ffint_sD(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); EmitMsa2RF(0x19e, 0x1, ws, wd, 0x1e); } void Mips64Assembler::Ftint_sW(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); EmitMsa2RF(0x19c, 0x0, ws, wd, 0x1e); } void Mips64Assembler::Ftint_sD(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); EmitMsa2RF(0x19c, 0x1, ws, wd, 0x1e); } void Mips64Assembler::SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xd); } void Mips64Assembler::SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xd); } void Mips64Assembler::SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xd); } void Mips64Assembler::SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xd); } void Mips64Assembler::SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xd); } void Mips64Assembler::SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xd); } void Mips64Assembler::SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xd); } void Mips64Assembler::SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xd); } void Mips64Assembler::SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xd); } void Mips64Assembler::SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xd); } void Mips64Assembler::SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xd); } void Mips64Assembler::SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xd); } void Mips64Assembler::SlliB(VectorRegister wd, VectorRegister ws, int shamt3) { CHECK(HasMsa()); CHECK(IsUint<3>(shamt3)) << shamt3; EmitMsaBIT(0x0, shamt3 | kMsaDfMByteMask, ws, wd, 0x9); } void Mips64Assembler::SlliH(VectorRegister wd, VectorRegister ws, int shamt4) { CHECK(HasMsa()); CHECK(IsUint<4>(shamt4)) << shamt4; EmitMsaBIT(0x0, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9); } void Mips64Assembler::SlliW(VectorRegister wd, VectorRegister ws, int shamt5) { CHECK(HasMsa()); CHECK(IsUint<5>(shamt5)) << shamt5; EmitMsaBIT(0x0, shamt5 | kMsaDfMWordMask, ws, wd, 0x9); } void Mips64Assembler::SlliD(VectorRegister wd, VectorRegister ws, int shamt6) { CHECK(HasMsa()); CHECK(IsUint<6>(shamt6)) << shamt6; EmitMsaBIT(0x0, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9); } void Mips64Assembler::SraiB(VectorRegister wd, VectorRegister ws, int shamt3) { CHECK(HasMsa()); CHECK(IsUint<3>(shamt3)) << shamt3; EmitMsaBIT(0x1, shamt3 | kMsaDfMByteMask, ws, wd, 0x9); } void Mips64Assembler::SraiH(VectorRegister wd, VectorRegister ws, int shamt4) { CHECK(HasMsa()); CHECK(IsUint<4>(shamt4)) << shamt4; EmitMsaBIT(0x1, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9); } void Mips64Assembler::SraiW(VectorRegister wd, VectorRegister ws, int shamt5) { CHECK(HasMsa()); CHECK(IsUint<5>(shamt5)) << shamt5; EmitMsaBIT(0x1, shamt5 | kMsaDfMWordMask, ws, wd, 0x9); } void Mips64Assembler::SraiD(VectorRegister wd, VectorRegister ws, int shamt6) { CHECK(HasMsa()); CHECK(IsUint<6>(shamt6)) << shamt6; EmitMsaBIT(0x1, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9); } void Mips64Assembler::SrliB(VectorRegister wd, VectorRegister ws, int shamt3) { CHECK(HasMsa()); CHECK(IsUint<3>(shamt3)) << shamt3; EmitMsaBIT(0x2, shamt3 | kMsaDfMByteMask, ws, wd, 0x9); } void Mips64Assembler::SrliH(VectorRegister wd, VectorRegister ws, int shamt4) { CHECK(HasMsa()); CHECK(IsUint<4>(shamt4)) << shamt4; EmitMsaBIT(0x2, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9); } void Mips64Assembler::SrliW(VectorRegister wd, VectorRegister ws, int shamt5) { CHECK(HasMsa()); CHECK(IsUint<5>(shamt5)) << shamt5; EmitMsaBIT(0x2, shamt5 | kMsaDfMWordMask, ws, wd, 0x9); } void Mips64Assembler::SrliD(VectorRegister wd, VectorRegister ws, int shamt6) { CHECK(HasMsa()); CHECK(IsUint<6>(shamt6)) << shamt6; EmitMsaBIT(0x2, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9); } void Mips64Assembler::MoveV(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); EmitMsaBIT(0x1, 0x3e, ws, wd, 0x19); } void Mips64Assembler::SplatiB(VectorRegister wd, VectorRegister ws, int n4) { CHECK(HasMsa()); CHECK(IsUint<4>(n4)) << n4; EmitMsaELM(0x1, n4 | kMsaDfNByteMask, ws, wd, 0x19); } void Mips64Assembler::SplatiH(VectorRegister wd, VectorRegister ws, int n3) { CHECK(HasMsa()); CHECK(IsUint<3>(n3)) << n3; EmitMsaELM(0x1, n3 | kMsaDfNHalfwordMask, ws, wd, 0x19); } void Mips64Assembler::SplatiW(VectorRegister wd, VectorRegister ws, int n2) { CHECK(HasMsa()); CHECK(IsUint<2>(n2)) << n2; EmitMsaELM(0x1, n2 | kMsaDfNWordMask, ws, wd, 0x19); } void Mips64Assembler::SplatiD(VectorRegister wd, VectorRegister ws, int n1) { CHECK(HasMsa()); CHECK(IsUint<1>(n1)) << n1; EmitMsaELM(0x1, n1 | kMsaDfNDoublewordMask, ws, wd, 0x19); } void Mips64Assembler::Copy_sB(GpuRegister rd, VectorRegister ws, int n4) { CHECK(HasMsa()); CHECK(IsUint<4>(n4)) << n4; EmitMsaELM(0x2, n4 | kMsaDfNByteMask, ws, static_cast<VectorRegister>(rd), 0x19); } void Mips64Assembler::Copy_sH(GpuRegister rd, VectorRegister ws, int n3) { CHECK(HasMsa()); CHECK(IsUint<3>(n3)) << n3; EmitMsaELM(0x2, n3 | kMsaDfNHalfwordMask, ws, static_cast<VectorRegister>(rd), 0x19); } void Mips64Assembler::Copy_sW(GpuRegister rd, VectorRegister ws, int n2) { CHECK(HasMsa()); CHECK(IsUint<2>(n2)) << n2; EmitMsaELM(0x2, n2 | kMsaDfNWordMask, ws, static_cast<VectorRegister>(rd), 0x19); } void Mips64Assembler::Copy_sD(GpuRegister rd, VectorRegister ws, int n1) { CHECK(HasMsa()); CHECK(IsUint<1>(n1)) << n1; EmitMsaELM(0x2, n1 | kMsaDfNDoublewordMask, ws, static_cast<VectorRegister>(rd), 0x19); } void Mips64Assembler::Copy_uB(GpuRegister rd, VectorRegister ws, int n4) { CHECK(HasMsa()); CHECK(IsUint<4>(n4)) << n4; EmitMsaELM(0x3, n4 | kMsaDfNByteMask, ws, static_cast<VectorRegister>(rd), 0x19); } void Mips64Assembler::Copy_uH(GpuRegister rd, VectorRegister ws, int n3) { CHECK(HasMsa()); CHECK(IsUint<3>(n3)) << n3; EmitMsaELM(0x3, n3 | kMsaDfNHalfwordMask, ws, static_cast<VectorRegister>(rd), 0x19); } void Mips64Assembler::Copy_uW(GpuRegister rd, VectorRegister ws, int n2) { CHECK(HasMsa()); CHECK(IsUint<2>(n2)) << n2; EmitMsaELM(0x3, n2 | kMsaDfNWordMask, ws, static_cast<VectorRegister>(rd), 0x19); } void Mips64Assembler::InsertB(VectorRegister wd, GpuRegister rs, int n4) { CHECK(HasMsa()); CHECK(IsUint<4>(n4)) << n4; EmitMsaELM(0x4, n4 | kMsaDfNByteMask, static_cast<VectorRegister>(rs), wd, 0x19); } void Mips64Assembler::InsertH(VectorRegister wd, GpuRegister rs, int n3) { CHECK(HasMsa()); CHECK(IsUint<3>(n3)) << n3; EmitMsaELM(0x4, n3 | kMsaDfNHalfwordMask, static_cast<VectorRegister>(rs), wd, 0x19); } void Mips64Assembler::InsertW(VectorRegister wd, GpuRegister rs, int n2) { CHECK(HasMsa()); CHECK(IsUint<2>(n2)) << n2; EmitMsaELM(0x4, n2 | kMsaDfNWordMask, static_cast<VectorRegister>(rs), wd, 0x19); } void Mips64Assembler::InsertD(VectorRegister wd, GpuRegister rs, int n1) { CHECK(HasMsa()); CHECK(IsUint<1>(n1)) << n1; EmitMsaELM(0x4, n1 | kMsaDfNDoublewordMask, static_cast<VectorRegister>(rs), wd, 0x19); } void Mips64Assembler::FillB(VectorRegister wd, GpuRegister rs) { CHECK(HasMsa()); EmitMsa2R(0xc0, 0x0, static_cast<VectorRegister>(rs), wd, 0x1e); } void Mips64Assembler::FillH(VectorRegister wd, GpuRegister rs) { CHECK(HasMsa()); EmitMsa2R(0xc0, 0x1, static_cast<VectorRegister>(rs), wd, 0x1e); } void Mips64Assembler::FillW(VectorRegister wd, GpuRegister rs) { CHECK(HasMsa()); EmitMsa2R(0xc0, 0x2, static_cast<VectorRegister>(rs), wd, 0x1e); } void Mips64Assembler::FillD(VectorRegister wd, GpuRegister rs) { CHECK(HasMsa()); EmitMsa2R(0xc0, 0x3, static_cast<VectorRegister>(rs), wd, 0x1e); } void Mips64Assembler::LdiB(VectorRegister wd, int imm8) { CHECK(HasMsa()); CHECK(IsInt<8>(imm8)) << imm8; EmitMsaI10(0x6, 0x0, imm8 & kMsaS10Mask, wd, 0x7); } void Mips64Assembler::LdiH(VectorRegister wd, int imm10) { CHECK(HasMsa()); CHECK(IsInt<10>(imm10)) << imm10; EmitMsaI10(0x6, 0x1, imm10 & kMsaS10Mask, wd, 0x7); } void Mips64Assembler::LdiW(VectorRegister wd, int imm10) { CHECK(HasMsa()); CHECK(IsInt<10>(imm10)) << imm10; EmitMsaI10(0x6, 0x2, imm10 & kMsaS10Mask, wd, 0x7); } void Mips64Assembler::LdiD(VectorRegister wd, int imm10) { CHECK(HasMsa()); CHECK(IsInt<10>(imm10)) << imm10; EmitMsaI10(0x6, 0x3, imm10 & kMsaS10Mask, wd, 0x7); } void Mips64Assembler::LdB(VectorRegister wd, GpuRegister rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<10>(offset)) << offset; EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x8, 0x0); } void Mips64Assembler::LdH(VectorRegister wd, GpuRegister rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<11>(offset)) << offset; CHECK_ALIGNED(offset, kMips64HalfwordSize); EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x8, 0x1); } void Mips64Assembler::LdW(VectorRegister wd, GpuRegister rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<12>(offset)) << offset; CHECK_ALIGNED(offset, kMips64WordSize); EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x8, 0x2); } void Mips64Assembler::LdD(VectorRegister wd, GpuRegister rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<13>(offset)) << offset; CHECK_ALIGNED(offset, kMips64DoublewordSize); EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x8, 0x3); } void Mips64Assembler::StB(VectorRegister wd, GpuRegister rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<10>(offset)) << offset; EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x9, 0x0); } void Mips64Assembler::StH(VectorRegister wd, GpuRegister rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<11>(offset)) << offset; CHECK_ALIGNED(offset, kMips64HalfwordSize); EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x9, 0x1); } void Mips64Assembler::StW(VectorRegister wd, GpuRegister rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<12>(offset)) << offset; CHECK_ALIGNED(offset, kMips64WordSize); EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x9, 0x2); } void Mips64Assembler::StD(VectorRegister wd, GpuRegister rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<13>(offset)) << offset; CHECK_ALIGNED(offset, kMips64DoublewordSize); EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x9, 0x3); } void Mips64Assembler::IlvlB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x14); } void Mips64Assembler::IlvlH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x14); } void Mips64Assembler::IlvlW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x14); } void Mips64Assembler::IlvlD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x14); } void Mips64Assembler::IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x14); } void Mips64Assembler::IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x14); } void Mips64Assembler::IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x14); } void Mips64Assembler::IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x14); } void Mips64Assembler::IlvevB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x14); } void Mips64Assembler::IlvevH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x14); } void Mips64Assembler::IlvevW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x14); } void Mips64Assembler::IlvevD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x14); } void Mips64Assembler::IlvodB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x14); } void Mips64Assembler::IlvodH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x14); } void Mips64Assembler::IlvodW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x14); } void Mips64Assembler::IlvodD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x14); } void Mips64Assembler::MaddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x0, wt, ws, wd, 0x12); } void Mips64Assembler::MaddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x1, wt, ws, wd, 0x12); } void Mips64Assembler::MaddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x2, wt, ws, wd, 0x12); } void Mips64Assembler::MaddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x1, 0x3, wt, ws, wd, 0x12); } void Mips64Assembler::MsubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x0, wt, ws, wd, 0x12); } void Mips64Assembler::MsubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x1, wt, ws, wd, 0x12); } void Mips64Assembler::MsubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x2, wt, ws, wd, 0x12); } void Mips64Assembler::MsubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x3, wt, ws, wd, 0x12); } void Mips64Assembler::FmaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x0, wt, ws, wd, 0x1b); } void Mips64Assembler::FmaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x1, wt, ws, wd, 0x1b); } void Mips64Assembler::FmsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x2, wt, ws, wd, 0x1b); } void Mips64Assembler::FmsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x2, 0x3, wt, ws, wd, 0x1b); } void Mips64Assembler::Hadd_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x15); } void Mips64Assembler::Hadd_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x15); } void Mips64Assembler::Hadd_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x15); } void Mips64Assembler::Hadd_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x15); } void Mips64Assembler::Hadd_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x15); } void Mips64Assembler::Hadd_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x15); } void Mips64Assembler::PcntB(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); EmitMsa2R(0xc1, 0x0, ws, wd, 0x1e); } void Mips64Assembler::PcntH(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); EmitMsa2R(0xc1, 0x1, ws, wd, 0x1e); } void Mips64Assembler::PcntW(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); EmitMsa2R(0xc1, 0x2, ws, wd, 0x1e); } void Mips64Assembler::PcntD(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); EmitMsa2R(0xc1, 0x3, ws, wd, 0x1e); } void Mips64Assembler::ReplicateFPToVectorRegister(VectorRegister dst, FpuRegister src, bool is_double) { // Float or double in FPU register Fx can be considered as 0th element in vector register Wx. if (is_double) { SplatiD(dst, static_cast<VectorRegister>(src), 0); } else { SplatiW(dst, static_cast<VectorRegister>(src), 0); } } void Mips64Assembler::LoadConst32(GpuRegister rd, int32_t value) { TemplateLoadConst32(this, rd, value); } // This function is only used for testing purposes. void Mips64Assembler::RecordLoadConst64Path(int value ATTRIBUTE_UNUSED) { } void Mips64Assembler::LoadConst64(GpuRegister rd, int64_t value) { TemplateLoadConst64(this, rd, value); } void Mips64Assembler::Addiu32(GpuRegister rt, GpuRegister rs, int32_t value) { if (IsInt<16>(value)) { Addiu(rt, rs, value); } else { int16_t high = High16Bits(value); int16_t low = Low16Bits(value); high += (low < 0) ? 1 : 0; // Account for sign extension in addiu. Aui(rt, rs, high); if (low != 0) { Addiu(rt, rt, low); } } } // TODO: don't use rtmp, use daui, dahi, dati. void Mips64Assembler::Daddiu64(GpuRegister rt, GpuRegister rs, int64_t value, GpuRegister rtmp) { CHECK_NE(rs, rtmp); if (IsInt<16>(value)) { Daddiu(rt, rs, value); } else { LoadConst64(rtmp, value); Daddu(rt, rs, rtmp); } } void Mips64Assembler::Branch::InitShortOrLong(Mips64Assembler::Branch::OffsetBits offset_size, Mips64Assembler::Branch::Type short_type, Mips64Assembler::Branch::Type long_type) { type_ = (offset_size <= branch_info_[short_type].offset_size) ? short_type : long_type; } void Mips64Assembler::Branch::InitializeType(Type initial_type, bool is_r6) { OffsetBits offset_size_needed = GetOffsetSizeNeeded(location_, target_); if (is_r6) { // R6 switch (initial_type) { case kLabel: case kLiteral: case kLiteralUnsigned: case kLiteralLong: CHECK(!IsResolved()); type_ = initial_type; break; case kCall: InitShortOrLong(offset_size_needed, kCall, kLongCall); break; case kCondBranch: switch (condition_) { case kUncond: InitShortOrLong(offset_size_needed, kUncondBranch, kLongUncondBranch); break; case kCondEQZ: case kCondNEZ: // Special case for beqzc/bnezc with longer offset than in other b<cond>c instructions. type_ = (offset_size_needed <= kOffset23) ? kCondBranch : kLongCondBranch; break; default: InitShortOrLong(offset_size_needed, kCondBranch, kLongCondBranch); break; } break; case kBareCall: type_ = kBareCall; CHECK_LE(offset_size_needed, GetOffsetSize()); break; case kBareCondBranch: type_ = (condition_ == kUncond) ? kBareUncondBranch : kBareCondBranch; CHECK_LE(offset_size_needed, GetOffsetSize()); break; default: LOG(FATAL) << "Unexpected branch type " << initial_type; UNREACHABLE(); } } else { // R2 CHECK_EQ(initial_type, kBareCondBranch); switch (condition_) { case kCondLTZ: case kCondGEZ: case kCondLEZ: case kCondGTZ: case kCondEQ: case kCondNE: case kCondEQZ: case kCondNEZ: break; default: LOG(FATAL) << "Unexpected R2 branch condition " << condition_; UNREACHABLE(); } type_ = kR2BareCondBranch; CHECK_LE(offset_size_needed, GetOffsetSize()); } old_type_ = type_; } bool Mips64Assembler::Branch::IsNop(BranchCondition condition, GpuRegister lhs, GpuRegister rhs) { switch (condition) { case kCondLT: case kCondGT: case kCondNE: case kCondLTU: return lhs == rhs; default: return false; } } bool Mips64Assembler::Branch::IsUncond(BranchCondition condition, GpuRegister lhs, GpuRegister rhs) { switch (condition) { case kUncond: return true; case kCondGE: case kCondLE: case kCondEQ: case kCondGEU: return lhs == rhs; default: return false; } } Mips64Assembler::Branch::Branch(uint32_t location, uint32_t target, bool is_call, bool is_bare) : old_location_(location), location_(location), target_(target), lhs_reg_(ZERO), rhs_reg_(ZERO), condition_(kUncond) { InitializeType( (is_call ? (is_bare ? kBareCall : kCall) : (is_bare ? kBareCondBranch : kCondBranch)), /* is_r6= */ true); } Mips64Assembler::Branch::Branch(bool is_r6, uint32_t location, uint32_t target, Mips64Assembler::BranchCondition condition, GpuRegister lhs_reg, GpuRegister rhs_reg, bool is_bare) : old_location_(location), location_(location), target_(target), lhs_reg_(lhs_reg), rhs_reg_(rhs_reg), condition_(condition) { CHECK_NE(condition, kUncond); switch (condition) { case kCondEQ: case kCondNE: case kCondLT: case kCondGE: case kCondLE: case kCondGT: case kCondLTU: case kCondGEU: CHECK_NE(lhs_reg, ZERO); CHECK_NE(rhs_reg, ZERO); break; case kCondLTZ: case kCondGEZ: case kCondLEZ: case kCondGTZ: case kCondEQZ: case kCondNEZ: CHECK_NE(lhs_reg, ZERO); CHECK_EQ(rhs_reg, ZERO); break; case kCondF: case kCondT: CHECK_EQ(rhs_reg, ZERO); break; case kUncond: UNREACHABLE(); } CHECK(!IsNop(condition, lhs_reg, rhs_reg)); if (IsUncond(condition, lhs_reg, rhs_reg)) { // Branch condition is always true, make the branch unconditional. condition_ = kUncond; } InitializeType((is_bare ? kBareCondBranch : kCondBranch), is_r6); } Mips64Assembler::Branch::Branch(uint32_t location, GpuRegister dest_reg, Type label_or_literal_type) : old_location_(location), location_(location), target_(kUnresolved), lhs_reg_(dest_reg), rhs_reg_(ZERO), condition_(kUncond) { CHECK_NE(dest_reg, ZERO); InitializeType(label_or_literal_type, /* is_r6= */ true); } Mips64Assembler::BranchCondition Mips64Assembler::Branch::OppositeCondition( Mips64Assembler::BranchCondition cond) { switch (cond) { case kCondLT: return kCondGE; case kCondGE: return kCondLT; case kCondLE: return kCondGT; case kCondGT: return kCondLE; case kCondLTZ: return kCondGEZ; case kCondGEZ: return kCondLTZ; case kCondLEZ: return kCondGTZ; case kCondGTZ: return kCondLEZ; case kCondEQ: return kCondNE; case kCondNE: return kCondEQ; case kCondEQZ: return kCondNEZ; case kCondNEZ: return kCondEQZ; case kCondLTU: return kCondGEU; case kCondGEU: return kCondLTU; case kCondF: return kCondT; case kCondT: return kCondF; case kUncond: LOG(FATAL) << "Unexpected branch condition " << cond; } UNREACHABLE(); } Mips64Assembler::Branch::Type Mips64Assembler::Branch::GetType() const { return type_; } Mips64Assembler::BranchCondition Mips64Assembler::Branch::GetCondition() const { return condition_; } GpuRegister Mips64Assembler::Branch::GetLeftRegister() const { return lhs_reg_; } GpuRegister Mips64Assembler::Branch::GetRightRegister() const { return rhs_reg_; } uint32_t Mips64Assembler::Branch::GetTarget() const { return target_; } uint32_t Mips64Assembler::Branch::GetLocation() const { return location_; } uint32_t Mips64Assembler::Branch::GetOldLocation() const { return old_location_; } uint32_t Mips64Assembler::Branch::GetLength() const { return branch_info_[type_].length; } uint32_t Mips64Assembler::Branch::GetOldLength() const { return branch_info_[old_type_].length; } uint32_t Mips64Assembler::Branch::GetSize() const { return GetLength() * sizeof(uint32_t); } uint32_t Mips64Assembler::Branch::GetOldSize() const { return GetOldLength() * sizeof(uint32_t); } uint32_t Mips64Assembler::Branch::GetEndLocation() const { return GetLocation() + GetSize(); } uint32_t Mips64Assembler::Branch::GetOldEndLocation() const { return GetOldLocation() + GetOldSize(); } bool Mips64Assembler::Branch::IsBare() const { switch (type_) { // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually. case kBareUncondBranch: case kBareCondBranch: case kBareCall: // R2 short branches (can't be promoted to long), delay slots filled manually. case kR2BareCondBranch: return true; default: return false; } } bool Mips64Assembler::Branch::IsLong() const { switch (type_) { // R6 short branches (can be promoted to long). case kUncondBranch: case kCondBranch: case kCall: // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually. case kBareUncondBranch: case kBareCondBranch: case kBareCall: // R2 short branches (can't be promoted to long), delay slots filled manually. case kR2BareCondBranch: // Near label. case kLabel: // Near literals. case kLiteral: case kLiteralUnsigned: case kLiteralLong: return false; // Long branches. case kLongUncondBranch: case kLongCondBranch: case kLongCall: // Far label. case kFarLabel: // Far literals. case kFarLiteral: case kFarLiteralUnsigned: case kFarLiteralLong: return true; } UNREACHABLE(); } bool Mips64Assembler::Branch::IsResolved() const { return target_ != kUnresolved; } Mips64Assembler::Branch::OffsetBits Mips64Assembler::Branch::GetOffsetSize() const { bool r6_cond_branch = (type_ == kCondBranch || type_ == kBareCondBranch); OffsetBits offset_size = (r6_cond_branch && (condition_ == kCondEQZ || condition_ == kCondNEZ)) ? kOffset23 : branch_info_[type_].offset_size; return offset_size; } Mips64Assembler::Branch::OffsetBits Mips64Assembler::Branch::GetOffsetSizeNeeded(uint32_t location, uint32_t target) { // For unresolved targets assume the shortest encoding // (later it will be made longer if needed). if (target == kUnresolved) return kOffset16; int64_t distance = static_cast<int64_t>(target) - location; // To simplify calculations in composite branches consisting of multiple instructions // bump up the distance by a value larger than the max byte size of a composite branch. distance += (distance >= 0) ? kMaxBranchSize : -kMaxBranchSize; if (IsInt<kOffset16>(distance)) return kOffset16; else if (IsInt<kOffset18>(distance)) return kOffset18; else if (IsInt<kOffset21>(distance)) return kOffset21; else if (IsInt<kOffset23>(distance)) return kOffset23; else if (IsInt<kOffset28>(distance)) return kOffset28; return kOffset32; } void Mips64Assembler::Branch::Resolve(uint32_t target) { target_ = target; } void Mips64Assembler::Branch::Relocate(uint32_t expand_location, uint32_t delta) { if (location_ > expand_location) { location_ += delta; } if (!IsResolved()) { return; // Don't know the target yet. } if (target_ > expand_location) { target_ += delta; } } void Mips64Assembler::Branch::PromoteToLong() { CHECK(!IsBare()); // Bare branches do not promote. switch (type_) { // R6 short branches (can be promoted to long). case kUncondBranch: type_ = kLongUncondBranch; break; case kCondBranch: type_ = kLongCondBranch; break; case kCall: type_ = kLongCall; break; // Near label. case kLabel: type_ = kFarLabel; break; // Near literals. case kLiteral: type_ = kFarLiteral; break; case kLiteralUnsigned: type_ = kFarLiteralUnsigned; break; case kLiteralLong: type_ = kFarLiteralLong; break; default: // Note: 'type_' is already long. break; } CHECK(IsLong()); } uint32_t Mips64Assembler::Branch::PromoteIfNeeded(uint32_t max_short_distance) { // If the branch is still unresolved or already long, nothing to do. if (IsLong() || !IsResolved()) { return 0; } // Promote the short branch to long if the offset size is too small // to hold the distance between location_ and target_. if (GetOffsetSizeNeeded(location_, target_) > GetOffsetSize()) { PromoteToLong(); uint32_t old_size = GetOldSize(); uint32_t new_size = GetSize(); CHECK_GT(new_size, old_size); return new_size - old_size; } // The following logic is for debugging/testing purposes. // Promote some short branches to long when it's not really required. if (UNLIKELY(max_short_distance != std::numeric_limits<uint32_t>::max() && !IsBare())) { int64_t distance = static_cast<int64_t>(target_) - location_; distance = (distance >= 0) ? distance : -distance; if (distance >= max_short_distance) { PromoteToLong(); uint32_t old_size = GetOldSize(); uint32_t new_size = GetSize(); CHECK_GT(new_size, old_size); return new_size - old_size; } } return 0; } uint32_t Mips64Assembler::Branch::GetOffsetLocation() const { return location_ + branch_info_[type_].instr_offset * sizeof(uint32_t); } uint32_t Mips64Assembler::Branch::GetOffset() const { CHECK(IsResolved()); uint32_t ofs_mask = 0xFFFFFFFF >> (32 - GetOffsetSize()); // Calculate the byte distance between instructions and also account for // different PC-relative origins. uint32_t offset_location = GetOffsetLocation(); if (type_ == kLiteralLong) { // Special case for the ldpc instruction, whose address (PC) is rounded down to // a multiple of 8 before adding the offset. // Note, branch promotion has already taken care of aligning `target_` to an // address that's a multiple of 8. offset_location = RoundDown(offset_location, sizeof(uint64_t)); } uint32_t offset = target_ - offset_location - branch_info_[type_].pc_org * sizeof(uint32_t); // Prepare the offset for encoding into the instruction(s). offset = (offset & ofs_mask) >> branch_info_[type_].offset_shift; return offset; } Mips64Assembler::Branch* Mips64Assembler::GetBranch(uint32_t branch_id) { CHECK_LT(branch_id, branches_.size()); return &branches_[branch_id]; } const Mips64Assembler::Branch* Mips64Assembler::GetBranch(uint32_t branch_id) const { CHECK_LT(branch_id, branches_.size()); return &branches_[branch_id]; } void Mips64Assembler::Bind(Mips64Label* label) { CHECK(!label->IsBound()); uint32_t bound_pc = buffer_.Size(); // Walk the list of branches referring to and preceding this label. // Store the previously unknown target addresses in them. while (label->IsLinked()) { uint32_t branch_id = label->Position(); Branch* branch = GetBranch(branch_id); branch->Resolve(bound_pc); uint32_t branch_location = branch->GetLocation(); // Extract the location of the previous branch in the list (walking the list backwards; // the previous branch ID was stored in the space reserved for this branch). uint32_t prev = buffer_.Load<uint32_t>(branch_location); // On to the previous branch in the list... label->position_ = prev; } // Now make the label object contain its own location (relative to the end of the preceding // branch, if any; it will be used by the branches referring to and following this label). label->prev_branch_id_plus_one_ = branches_.size(); if (label->prev_branch_id_plus_one_) { uint32_t branch_id = label->prev_branch_id_plus_one_ - 1; const Branch* branch = GetBranch(branch_id); bound_pc -= branch->GetEndLocation(); } label->BindTo(bound_pc); } uint32_t Mips64Assembler::GetLabelLocation(const Mips64Label* label) const { CHECK(label->IsBound()); uint32_t target = label->Position(); if (label->prev_branch_id_plus_one_) { // Get label location based on the branch preceding it. uint32_t branch_id = label->prev_branch_id_plus_one_ - 1; const Branch* branch = GetBranch(branch_id); target += branch->GetEndLocation(); } return target; } uint32_t Mips64Assembler::GetAdjustedPosition(uint32_t old_position) { // We can reconstruct the adjustment by going through all the branches from the beginning // up to the old_position. Since we expect AdjustedPosition() to be called in a loop // with increasing old_position, we can use the data from last AdjustedPosition() to // continue where we left off and the whole loop should be O(m+n) where m is the number // of positions to adjust and n is the number of branches. if (old_position < last_old_position_) { last_position_adjustment_ = 0; last_old_position_ = 0; last_branch_id_ = 0; } while (last_branch_id_ != branches_.size()) { const Branch* branch = GetBranch(last_branch_id_); if (branch->GetLocation() >= old_position + last_position_adjustment_) { break; } last_position_adjustment_ += branch->GetSize() - branch->GetOldSize(); ++last_branch_id_; } last_old_position_ = old_position; return old_position + last_position_adjustment_; } void Mips64Assembler::FinalizeLabeledBranch(Mips64Label* label) { uint32_t length = branches_.back().GetLength(); if (!label->IsBound()) { // Branch forward (to a following label), distance is unknown. // The first branch forward will contain 0, serving as the terminator of // the list of forward-reaching branches. Emit(label->position_); length--; // Now make the label object point to this branch // (this forms a linked list of branches preceding this label). uint32_t branch_id = branches_.size() - 1; label->LinkTo(branch_id); } // Reserve space for the branch. for (; length != 0u; --length) { Nop(); } } void Mips64Assembler::Buncond(Mips64Label* label, bool is_bare) { uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; branches_.emplace_back(buffer_.Size(), target, /* is_call= */ false, is_bare); FinalizeLabeledBranch(label); } void Mips64Assembler::Bcond(Mips64Label* label, bool is_r6, bool is_bare, BranchCondition condition, GpuRegister lhs, GpuRegister rhs) { // If lhs = rhs, this can be a NOP. if (Branch::IsNop(condition, lhs, rhs)) { return; } uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; branches_.emplace_back(is_r6, buffer_.Size(), target, condition, lhs, rhs, is_bare); FinalizeLabeledBranch(label); } void Mips64Assembler::Call(Mips64Label* label, bool is_bare) { uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; branches_.emplace_back(buffer_.Size(), target, /* is_call= */ true, is_bare); FinalizeLabeledBranch(label); } void Mips64Assembler::LoadLabelAddress(GpuRegister dest_reg, Mips64Label* label) { // Label address loads are treated as pseudo branches since they require very similar handling. DCHECK(!label->IsBound()); branches_.emplace_back(buffer_.Size(), dest_reg, Branch::kLabel); FinalizeLabeledBranch(label); } Literal* Mips64Assembler::NewLiteral(size_t size, const uint8_t* data) { // We don't support byte and half-word literals. if (size == 4u) { literals_.emplace_back(size, data); return &literals_.back(); } else { DCHECK_EQ(size, 8u); long_literals_.emplace_back(size, data); return &long_literals_.back(); } } void Mips64Assembler::LoadLiteral(GpuRegister dest_reg, LoadOperandType load_type, Literal* literal) { // Literal loads are treated as pseudo branches since they require very similar handling. Branch::Type literal_type; switch (load_type) { case kLoadWord: DCHECK_EQ(literal->GetSize(), 4u); literal_type = Branch::kLiteral; break; case kLoadUnsignedWord: DCHECK_EQ(literal->GetSize(), 4u); literal_type = Branch::kLiteralUnsigned; break; case kLoadDoubleword: DCHECK_EQ(literal->GetSize(), 8u); literal_type = Branch::kLiteralLong; break; default: LOG(FATAL) << "Unexpected literal load type " << load_type; UNREACHABLE(); } Mips64Label* label = literal->GetLabel(); DCHECK(!label->IsBound()); branches_.emplace_back(buffer_.Size(), dest_reg, literal_type); FinalizeLabeledBranch(label); } JumpTable* Mips64Assembler::CreateJumpTable(std::vector<Mips64Label*>&& labels) { jump_tables_.emplace_back(std::move(labels)); JumpTable* table = &jump_tables_.back(); DCHECK(!table->GetLabel()->IsBound()); return table; } void Mips64Assembler::ReserveJumpTableSpace() { if (!jump_tables_.empty()) { for (JumpTable& table : jump_tables_) { Mips64Label* label = table.GetLabel(); Bind(label); // Bulk ensure capacity, as this may be large. size_t orig_size = buffer_.Size(); size_t required_capacity = orig_size + table.GetSize(); if (required_capacity > buffer_.Capacity()) { buffer_.ExtendCapacity(required_capacity); } #ifndef NDEBUG buffer_.has_ensured_capacity_ = true; #endif // Fill the space with dummy data as the data is not final // until the branches have been promoted. And we shouldn't // be moving uninitialized data during branch promotion. for (size_t cnt = table.GetData().size(), i = 0; i < cnt; i++) { buffer_.Emit<uint32_t>(0x1abe1234u); } #ifndef NDEBUG buffer_.has_ensured_capacity_ = false; #endif } } } void Mips64Assembler::EmitJumpTables() { if (!jump_tables_.empty()) { CHECK(!overwriting_); // Switch from appending instructions at the end of the buffer to overwriting // existing instructions (here, jump tables) in the buffer. overwriting_ = true; for (JumpTable& table : jump_tables_) { Mips64Label* table_label = table.GetLabel(); uint32_t start = GetLabelLocation(table_label); overwrite_location_ = start; for (Mips64Label* target : table.GetData()) { CHECK_EQ(buffer_.Load<uint32_t>(overwrite_location_), 0x1abe1234u); // The table will contain target addresses relative to the table start. uint32_t offset = GetLabelLocation(target) - start; Emit(offset); } } overwriting_ = false; } } void Mips64Assembler::EmitLiterals() { if (!literals_.empty()) { for (Literal& literal : literals_) { Mips64Label* label = literal.GetLabel(); Bind(label); AssemblerBuffer::EnsureCapacity ensured(&buffer_); DCHECK_EQ(literal.GetSize(), 4u); for (size_t i = 0, size = literal.GetSize(); i != size; ++i) { buffer_.Emit<uint8_t>(literal.GetData()[i]); } } } if (!long_literals_.empty()) { // Reserve 4 bytes for potential alignment. If after the branch promotion the 64-bit // literals don't end up 8-byte-aligned, they will be moved down 4 bytes. Emit(0); // NOP. for (Literal& literal : long_literals_) { Mips64Label* label = literal.GetLabel(); Bind(label); AssemblerBuffer::EnsureCapacity ensured(&buffer_); DCHECK_EQ(literal.GetSize(), 8u); for (size_t i = 0, size = literal.GetSize(); i != size; ++i) { buffer_.Emit<uint8_t>(literal.GetData()[i]); } } } } void Mips64Assembler::PromoteBranches() { // Promote short branches to long as necessary. bool changed; do { changed = false; for (auto& branch : branches_) { CHECK(branch.IsResolved()); uint32_t delta = branch.PromoteIfNeeded(); // If this branch has been promoted and needs to expand in size, // relocate all branches by the expansion size. if (delta) { changed = true; uint32_t expand_location = branch.GetLocation(); for (auto& branch2 : branches_) { branch2.Relocate(expand_location, delta); } } } } while (changed); // Account for branch expansion by resizing the code buffer // and moving the code in it to its final location. size_t branch_count = branches_.size(); if (branch_count > 0) { // Resize. Branch& last_branch = branches_[branch_count - 1]; uint32_t size_delta = last_branch.GetEndLocation() - last_branch.GetOldEndLocation(); uint32_t old_size = buffer_.Size(); buffer_.Resize(old_size + size_delta); // Move the code residing between branch placeholders. uint32_t end = old_size; for (size_t i = branch_count; i > 0; ) { Branch& branch = branches_[--i]; uint32_t size = end - branch.GetOldEndLocation(); buffer_.Move(branch.GetEndLocation(), branch.GetOldEndLocation(), size); end = branch.GetOldLocation(); } } // Align 64-bit literals by moving them down by 4 bytes if needed. // This will reduce the PC-relative distance, which should be safe for both near and far literals. if (!long_literals_.empty()) { uint32_t first_literal_location = GetLabelLocation(long_literals_.front().GetLabel()); size_t lit_size = long_literals_.size() * sizeof(uint64_t); size_t buf_size = buffer_.Size(); // 64-bit literals must be at the very end of the buffer. CHECK_EQ(first_literal_location + lit_size, buf_size); if (!IsAligned<sizeof(uint64_t)>(first_literal_location)) { buffer_.Move(first_literal_location - sizeof(uint32_t), first_literal_location, lit_size); // The 4 reserved bytes proved useless, reduce the buffer size. buffer_.Resize(buf_size - sizeof(uint32_t)); // Reduce target addresses in literal and address loads by 4 bytes in order for correct // offsets from PC to be generated. for (auto& branch : branches_) { uint32_t target = branch.GetTarget(); if (target >= first_literal_location) { branch.Resolve(target - sizeof(uint32_t)); } } // If after this we ever call GetLabelLocation() to get the location of a 64-bit literal, // we need to adjust the location of the literal's label as well. for (Literal& literal : long_literals_) { // Bound label's position is negative, hence incrementing it instead of decrementing. literal.GetLabel()->position_ += sizeof(uint32_t); } } } } // Note: make sure branch_info_[] and EmitBranch() are kept synchronized. const Mips64Assembler::Branch::BranchInfo Mips64Assembler::Branch::branch_info_[] = { // R6 short branches (can be promoted to long). { 1, 0, 1, Mips64Assembler::Branch::kOffset28, 2 }, // kUncondBranch { 2, 0, 1, Mips64Assembler::Branch::kOffset18, 2 }, // kCondBranch // Exception: kOffset23 for beqzc/bnezc { 1, 0, 1, Mips64Assembler::Branch::kOffset28, 2 }, // kCall // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually. { 1, 0, 1, Mips64Assembler::Branch::kOffset28, 2 }, // kBareUncondBranch { 1, 0, 1, Mips64Assembler::Branch::kOffset18, 2 }, // kBareCondBranch // Exception: kOffset23 for beqzc/bnezc { 1, 0, 1, Mips64Assembler::Branch::kOffset28, 2 }, // kBareCall // R2 short branches (can't be promoted to long), delay slots filled manually. { 1, 0, 1, Mips64Assembler::Branch::kOffset18, 2 }, // kR2BareCondBranch // Near label. { 1, 0, 0, Mips64Assembler::Branch::kOffset21, 2 }, // kLabel // Near literals. { 1, 0, 0, Mips64Assembler::Branch::kOffset21, 2 }, // kLiteral { 1, 0, 0, Mips64Assembler::Branch::kOffset21, 2 }, // kLiteralUnsigned { 1, 0, 0, Mips64Assembler::Branch::kOffset21, 3 }, // kLiteralLong // Long branches. { 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kLongUncondBranch { 3, 1, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kLongCondBranch { 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kLongCall // Far label. { 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kFarLabel // Far literals. { 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kFarLiteral { 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kFarLiteralUnsigned { 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kFarLiteralLong }; // Note: make sure branch_info_[] and EmitBranch() are kept synchronized. void Mips64Assembler::EmitBranch(Mips64Assembler::Branch* branch) { CHECK(overwriting_); overwrite_location_ = branch->GetLocation(); uint32_t offset = branch->GetOffset(); BranchCondition condition = branch->GetCondition(); GpuRegister lhs = branch->GetLeftRegister(); GpuRegister rhs = branch->GetRightRegister(); switch (branch->GetType()) { // Short branches. case Branch::kUncondBranch: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Bc(offset); break; case Branch::kCondBranch: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); EmitBcondR6(condition, lhs, rhs, offset); Nop(); // TODO: improve by filling the forbidden/delay slot. break; case Branch::kCall: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Balc(offset); break; case Branch::kBareUncondBranch: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Bc(offset); break; case Branch::kBareCondBranch: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); EmitBcondR6(condition, lhs, rhs, offset); break; case Branch::kBareCall: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Balc(offset); break; case Branch::kR2BareCondBranch: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); EmitBcondR2(condition, lhs, rhs, offset); break; // Near label. case Branch::kLabel: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Addiupc(lhs, offset); break; // Near literals. case Branch::kLiteral: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Lwpc(lhs, offset); break; case Branch::kLiteralUnsigned: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Lwupc(lhs, offset); break; case Branch::kLiteralLong: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Ldpc(lhs, offset); break; // Long branches. case Branch::kLongUncondBranch: offset += (offset & 0x8000) << 1; // Account for sign extension in jic. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Jic(AT, Low16Bits(offset)); break; case Branch::kLongCondBranch: EmitBcondR6(Branch::OppositeCondition(condition), lhs, rhs, 2); offset += (offset & 0x8000) << 1; // Account for sign extension in jic. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Jic(AT, Low16Bits(offset)); break; case Branch::kLongCall: offset += (offset & 0x8000) << 1; // Account for sign extension in jialc. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Jialc(AT, Low16Bits(offset)); break; // Far label. case Branch::kFarLabel: offset += (offset & 0x8000) << 1; // Account for sign extension in daddiu. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Daddiu(lhs, AT, Low16Bits(offset)); break; // Far literals. case Branch::kFarLiteral: offset += (offset & 0x8000) << 1; // Account for sign extension in lw. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Lw(lhs, AT, Low16Bits(offset)); break; case Branch::kFarLiteralUnsigned: offset += (offset & 0x8000) << 1; // Account for sign extension in lwu. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Lwu(lhs, AT, Low16Bits(offset)); break; case Branch::kFarLiteralLong: offset += (offset & 0x8000) << 1; // Account for sign extension in ld. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Ld(lhs, AT, Low16Bits(offset)); break; } CHECK_EQ(overwrite_location_, branch->GetEndLocation()); CHECK_LT(branch->GetSize(), static_cast<uint32_t>(Branch::kMaxBranchSize)); } void Mips64Assembler::Bc(Mips64Label* label, bool is_bare) { Buncond(label, is_bare); } void Mips64Assembler::Balc(Mips64Label* label, bool is_bare) { Call(label, is_bare); } void Mips64Assembler::Bltc(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondLT, rs, rt); } void Mips64Assembler::Bltzc(GpuRegister rt, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondLTZ, rt); } void Mips64Assembler::Bgtzc(GpuRegister rt, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondGTZ, rt); } void Mips64Assembler::Bgec(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondGE, rs, rt); } void Mips64Assembler::Bgezc(GpuRegister rt, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondGEZ, rt); } void Mips64Assembler::Blezc(GpuRegister rt, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondLEZ, rt); } void Mips64Assembler::Bltuc(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondLTU, rs, rt); } void Mips64Assembler::Bgeuc(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondGEU, rs, rt); } void Mips64Assembler::Beqc(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondEQ, rs, rt); } void Mips64Assembler::Bnec(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondNE, rs, rt); } void Mips64Assembler::Beqzc(GpuRegister rs, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondEQZ, rs); } void Mips64Assembler::Bnezc(GpuRegister rs, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondNEZ, rs); } void Mips64Assembler::Bc1eqz(FpuRegister ft, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondF, static_cast<GpuRegister>(ft), ZERO); } void Mips64Assembler::Bc1nez(FpuRegister ft, Mips64Label* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondT, static_cast<GpuRegister>(ft), ZERO); } void Mips64Assembler::Bltz(GpuRegister rt, Mips64Label* label, bool is_bare) { CHECK(is_bare); Bcond(label, /* is_r6= */ false, is_bare, kCondLTZ, rt); } void Mips64Assembler::Bgtz(GpuRegister rt, Mips64Label* label, bool is_bare) { CHECK(is_bare); Bcond(label, /* is_r6= */ false, is_bare, kCondGTZ, rt); } void Mips64Assembler::Bgez(GpuRegister rt, Mips64Label* label, bool is_bare) { CHECK(is_bare); Bcond(label, /* is_r6= */ false, is_bare, kCondGEZ, rt); } void Mips64Assembler::Blez(GpuRegister rt, Mips64Label* label, bool is_bare) { CHECK(is_bare); Bcond(label, /* is_r6= */ false, is_bare, kCondLEZ, rt); } void Mips64Assembler::Beq(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare) { CHECK(is_bare); Bcond(label, /* is_r6= */ false, is_bare, kCondEQ, rs, rt); } void Mips64Assembler::Bne(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare) { CHECK(is_bare); Bcond(label, /* is_r6= */ false, is_bare, kCondNE, rs, rt); } void Mips64Assembler::Beqz(GpuRegister rs, Mips64Label* label, bool is_bare) { CHECK(is_bare); Bcond(label, /* is_r6= */ false, is_bare, kCondEQZ, rs); } void Mips64Assembler::Bnez(GpuRegister rs, Mips64Label* label, bool is_bare) { CHECK(is_bare); Bcond(label, /* is_r6= */ false, is_bare, kCondNEZ, rs); } void Mips64Assembler::AdjustBaseAndOffset(GpuRegister& base, int32_t& offset, bool is_doubleword) { // This method is used to adjust the base register and offset pair // for a load/store when the offset doesn't fit into int16_t. // It is assumed that `base + offset` is sufficiently aligned for memory // operands that are machine word in size or smaller. For doubleword-sized // operands it's assumed that `base` is a multiple of 8, while `offset` // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments // and spilled variables on the stack accessed relative to the stack // pointer register). // We preserve the "alignment" of `offset` by adjusting it by a multiple of 8. CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`. bool doubleword_aligned = IsAligned<kMips64DoublewordSize>(offset); bool two_accesses = is_doubleword && !doubleword_aligned; // IsInt<16> must be passed a signed value, hence the static cast below. if (IsInt<16>(offset) && (!two_accesses || IsInt<16>(static_cast<int32_t>(offset + kMips64WordSize)))) { // Nothing to do: `offset` (and, if needed, `offset + 4`) fits into int16_t. return; } // Remember the "(mis)alignment" of `offset`, it will be checked at the end. uint32_t misalignment = offset & (kMips64DoublewordSize - 1); // First, see if `offset` can be represented as a sum of two 16-bit signed // offsets. This can save an instruction. // To simplify matters, only do this for a symmetric range of offsets from // about -64KB to about +64KB, allowing further addition of 4 when accessing // 64-bit variables with two 32-bit accesses. constexpr int32_t kMinOffsetForSimpleAdjustment = 0x7ff8; // Max int16_t that's a multiple of 8. constexpr int32_t kMaxOffsetForSimpleAdjustment = 2 * kMinOffsetForSimpleAdjustment; if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) { Daddiu(AT, base, kMinOffsetForSimpleAdjustment); offset -= kMinOffsetForSimpleAdjustment; } else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) { Daddiu(AT, base, -kMinOffsetForSimpleAdjustment); offset += kMinOffsetForSimpleAdjustment; } else { // In more complex cases take advantage of the daui instruction, e.g.: // daui AT, base, offset_high // [dahi AT, 1] // When `offset` is close to +2GB. // lw reg_lo, offset_low(AT) // [lw reg_hi, (offset_low+4)(AT)] // If misaligned 64-bit load. // or when offset_low+4 overflows int16_t: // daui AT, base, offset_high // daddiu AT, AT, 8 // lw reg_lo, (offset_low-8)(AT) // lw reg_hi, (offset_low-4)(AT) int16_t offset_low = Low16Bits(offset); int32_t offset_low32 = offset_low; int16_t offset_high = High16Bits(offset); bool increment_hi16 = offset_low < 0; bool overflow_hi16 = false; if (increment_hi16) { offset_high++; overflow_hi16 = (offset_high == -32768); } Daui(AT, base, offset_high); if (overflow_hi16) { Dahi(AT, 1); } if (two_accesses && !IsInt<16>(static_cast<int32_t>(offset_low32 + kMips64WordSize))) { // Avoid overflow in the 16-bit offset of the load/store instruction when adding 4. Daddiu(AT, AT, kMips64DoublewordSize); offset_low32 -= kMips64DoublewordSize; } offset = offset_low32; } base = AT; CHECK(IsInt<16>(offset)); if (two_accesses) { CHECK(IsInt<16>(static_cast<int32_t>(offset + kMips64WordSize))); } CHECK_EQ(misalignment, offset & (kMips64DoublewordSize - 1)); } void Mips64Assembler::AdjustBaseOffsetAndElementSizeShift(GpuRegister& base, int32_t& offset, int& element_size_shift) { // This method is used to adjust the base register, offset and element_size_shift // for a vector load/store when the offset doesn't fit into allowed number of bits. // MSA ld.df and st.df instructions take signed offsets as arguments, but maximum // offset is dependant on the size of the data format df (10-bit offsets for ld.b, // 11-bit for ld.h, 12-bit for ld.w and 13-bit for ld.d). // If element_size_shift is non-negative at entry, it won't be changed, but offset // will be checked for appropriate alignment. If negative at entry, it will be // adjusted based on offset for maximum fit. // It's assumed that `base` is a multiple of 8. CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`. if (element_size_shift >= 0) { CHECK_LE(element_size_shift, TIMES_8); CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift); } else if (IsAligned<kMips64DoublewordSize>(offset)) { element_size_shift = TIMES_8; } else if (IsAligned<kMips64WordSize>(offset)) { element_size_shift = TIMES_4; } else if (IsAligned<kMips64HalfwordSize>(offset)) { element_size_shift = TIMES_2; } else { element_size_shift = TIMES_1; } const int low_len = 10 + element_size_shift; // How many low bits of `offset` ld.df/st.df // will take. int16_t low = offset & ((1 << low_len) - 1); // Isolate these bits. low -= (low & (1 << (low_len - 1))) << 1; // Sign-extend these bits. if (low == offset) { return; // `offset` fits into ld.df/st.df. } // First, see if `offset` can be represented as a sum of two signed offsets. // This can save an instruction. // Max int16_t that's a multiple of element size. const int32_t kMaxDeltaForSimpleAdjustment = 0x8000 - (1 << element_size_shift); // Max ld.df/st.df offset that's a multiple of element size. const int32_t kMaxLoadStoreOffset = 0x1ff << element_size_shift; const int32_t kMaxOffsetForSimpleAdjustment = kMaxDeltaForSimpleAdjustment + kMaxLoadStoreOffset; if (IsInt<16>(offset)) { Daddiu(AT, base, offset); offset = 0; } else if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) { Daddiu(AT, base, kMaxDeltaForSimpleAdjustment); offset -= kMaxDeltaForSimpleAdjustment; } else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) { Daddiu(AT, base, -kMaxDeltaForSimpleAdjustment); offset += kMaxDeltaForSimpleAdjustment; } else { // Let's treat `offset` as 64-bit to simplify handling of sign // extensions in the instructions that supply its smaller signed parts. // // 16-bit or smaller parts of `offset`: // |63 top 48|47 hi 32|31 upper 16|15 mid 13-10|12-9 low 0| // // Instructions that supply each part as a signed integer addend: // |dati |dahi |daui |daddiu |ld.df/st.df | // // `top` is always 0, so dati isn't used. // `hi` is 1 when `offset` is close to +2GB and 0 otherwise. uint64_t tmp = static_cast<uint64_t>(offset) - low; // Exclude `low` from the rest of `offset` // (accounts for sign of `low`). tmp += (tmp & (UINT64_C(1) << 15)) << 1; // Account for sign extension in daddiu. tmp += (tmp & (UINT64_C(1) << 31)) << 1; // Account for sign extension in daui. int16_t mid = Low16Bits(tmp); int16_t upper = High16Bits(tmp); int16_t hi = Low16Bits(High32Bits(tmp)); Daui(AT, base, upper); if (hi != 0) { CHECK_EQ(hi, 1); Dahi(AT, hi); } if (mid != 0) { Daddiu(AT, AT, mid); } offset = low; } base = AT; CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift); CHECK(IsInt<10>(offset >> element_size_shift)); } void Mips64Assembler::LoadFromOffset(LoadOperandType type, GpuRegister reg, GpuRegister base, int32_t offset) { LoadFromOffset<>(type, reg, base, offset); } void Mips64Assembler::LoadFpuFromOffset(LoadOperandType type, FpuRegister reg, GpuRegister base, int32_t offset) { LoadFpuFromOffset<>(type, reg, base, offset); } void Mips64Assembler::EmitLoad(ManagedRegister m_dst, GpuRegister src_register, int32_t src_offset, size_t size) { Mips64ManagedRegister dst = m_dst.AsMips64(); if (dst.IsNoRegister()) { CHECK_EQ(0u, size) << dst; } else if (dst.IsGpuRegister()) { if (size == 4) { LoadFromOffset(kLoadWord, dst.AsGpuRegister(), src_register, src_offset); } else if (size == 8) { CHECK_EQ(8u, size) << dst; LoadFromOffset(kLoadDoubleword, dst.AsGpuRegister(), src_register, src_offset); } else { UNIMPLEMENTED(FATAL) << "We only support Load() of size 4 and 8"; } } else if (dst.IsFpuRegister()) { if (size == 4) { CHECK_EQ(4u, size) << dst; LoadFpuFromOffset(kLoadWord, dst.AsFpuRegister(), src_register, src_offset); } else if (size == 8) { CHECK_EQ(8u, size) << dst; LoadFpuFromOffset(kLoadDoubleword, dst.AsFpuRegister(), src_register, src_offset); } else { UNIMPLEMENTED(FATAL) << "We only support Load() of size 4 and 8"; } } } void Mips64Assembler::StoreToOffset(StoreOperandType type, GpuRegister reg, GpuRegister base, int32_t offset) { StoreToOffset<>(type, reg, base, offset); } void Mips64Assembler::StoreFpuToOffset(StoreOperandType type, FpuRegister reg, GpuRegister base, int32_t offset) { StoreFpuToOffset<>(type, reg, base, offset); } static dwarf::Reg DWARFReg(GpuRegister reg) { return dwarf::Reg::Mips64Core(static_cast<int>(reg)); } constexpr size_t kFramePointerSize = 8; void Mips64Assembler::BuildFrame(size_t frame_size, ManagedRegister method_reg, ArrayRef<const ManagedRegister> callee_save_regs, const ManagedRegisterEntrySpills& entry_spills) { CHECK_ALIGNED(frame_size, kStackAlignment); DCHECK(!overwriting_); // Increase frame to required size. IncreaseFrameSize(frame_size); // Push callee saves and return address int stack_offset = frame_size - kFramePointerSize; StoreToOffset(kStoreDoubleword, RA, SP, stack_offset); cfi_.RelOffset(DWARFReg(RA), stack_offset); for (int i = callee_save_regs.size() - 1; i >= 0; --i) { stack_offset -= kFramePointerSize; GpuRegister reg = callee_save_regs[i].AsMips64().AsGpuRegister(); StoreToOffset(kStoreDoubleword, reg, SP, stack_offset); cfi_.RelOffset(DWARFReg(reg), stack_offset); } // Write out Method*. StoreToOffset(kStoreDoubleword, method_reg.AsMips64().AsGpuRegister(), SP, 0); // Write out entry spills. int32_t offset = frame_size + kFramePointerSize; for (const ManagedRegisterSpill& spill : entry_spills) { Mips64ManagedRegister reg = spill.AsMips64(); int32_t size = spill.getSize(); if (reg.IsNoRegister()) { // only increment stack offset. offset += size; } else if (reg.IsFpuRegister()) { StoreFpuToOffset((size == 4) ? kStoreWord : kStoreDoubleword, reg.AsFpuRegister(), SP, offset); offset += size; } else if (reg.IsGpuRegister()) { StoreToOffset((size == 4) ? kStoreWord : kStoreDoubleword, reg.AsGpuRegister(), SP, offset); offset += size; } } } void Mips64Assembler::RemoveFrame(size_t frame_size, ArrayRef<const ManagedRegister> callee_save_regs, bool may_suspend ATTRIBUTE_UNUSED) { CHECK_ALIGNED(frame_size, kStackAlignment); DCHECK(!overwriting_); cfi_.RememberState(); // Pop callee saves and return address int stack_offset = frame_size - (callee_save_regs.size() * kFramePointerSize) - kFramePointerSize; for (size_t i = 0; i < callee_save_regs.size(); ++i) { GpuRegister reg = callee_save_regs[i].AsMips64().AsGpuRegister(); LoadFromOffset(kLoadDoubleword, reg, SP, stack_offset); cfi_.Restore(DWARFReg(reg)); stack_offset += kFramePointerSize; } LoadFromOffset(kLoadDoubleword, RA, SP, stack_offset); cfi_.Restore(DWARFReg(RA)); // Decrease frame to required size. DecreaseFrameSize(frame_size); // Then jump to the return address. Jr(RA); Nop(); // The CFI should be restored for any code that follows the exit block. cfi_.RestoreState(); cfi_.DefCFAOffset(frame_size); } void Mips64Assembler::IncreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kFramePointerSize); DCHECK(!overwriting_); Daddiu64(SP, SP, static_cast<int32_t>(-adjust)); cfi_.AdjustCFAOffset(adjust); } void Mips64Assembler::DecreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kFramePointerSize); DCHECK(!overwriting_); Daddiu64(SP, SP, static_cast<int32_t>(adjust)); cfi_.AdjustCFAOffset(-adjust); } void Mips64Assembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) { Mips64ManagedRegister src = msrc.AsMips64(); if (src.IsNoRegister()) { CHECK_EQ(0u, size); } else if (src.IsGpuRegister()) { CHECK(size == 4 || size == 8) << size; if (size == 8) { StoreToOffset(kStoreDoubleword, src.AsGpuRegister(), SP, dest.Int32Value()); } else if (size == 4) { StoreToOffset(kStoreWord, src.AsGpuRegister(), SP, dest.Int32Value()); } else { UNIMPLEMENTED(FATAL) << "We only support Store() of size 4 and 8"; } } else if (src.IsFpuRegister()) { CHECK(size == 4 || size == 8) << size; if (size == 8) { StoreFpuToOffset(kStoreDoubleword, src.AsFpuRegister(), SP, dest.Int32Value()); } else if (size == 4) { StoreFpuToOffset(kStoreWord, src.AsFpuRegister(), SP, dest.Int32Value()); } else { UNIMPLEMENTED(FATAL) << "We only support Store() of size 4 and 8"; } } } void Mips64Assembler::StoreRef(FrameOffset dest, ManagedRegister msrc) { Mips64ManagedRegister src = msrc.AsMips64(); CHECK(src.IsGpuRegister()); StoreToOffset(kStoreWord, src.AsGpuRegister(), SP, dest.Int32Value()); } void Mips64Assembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) { Mips64ManagedRegister src = msrc.AsMips64(); CHECK(src.IsGpuRegister()); StoreToOffset(kStoreDoubleword, src.AsGpuRegister(), SP, dest.Int32Value()); } void Mips64Assembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; LoadConst32(scratch.AsGpuRegister(), imm); StoreToOffset(kStoreWord, scratch.AsGpuRegister(), SP, dest.Int32Value()); } void Mips64Assembler::StoreStackOffsetToThread(ThreadOffset64 thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; Daddiu64(scratch.AsGpuRegister(), SP, fr_offs.Int32Value()); StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), S1, thr_offs.Int32Value()); } void Mips64Assembler::StoreStackPointerToThread(ThreadOffset64 thr_offs) { StoreToOffset(kStoreDoubleword, SP, S1, thr_offs.Int32Value()); } void Mips64Assembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc, FrameOffset in_off, ManagedRegister mscratch) { Mips64ManagedRegister src = msrc.AsMips64(); Mips64ManagedRegister scratch = mscratch.AsMips64(); StoreToOffset(kStoreDoubleword, src.AsGpuRegister(), SP, dest.Int32Value()); LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), SP, in_off.Int32Value()); StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, dest.Int32Value() + 8); } void Mips64Assembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) { return EmitLoad(mdest, SP, src.Int32Value(), size); } void Mips64Assembler::LoadFromThread(ManagedRegister mdest, ThreadOffset64 src, size_t size) { return EmitLoad(mdest, S1, src.Int32Value(), size); } void Mips64Assembler::LoadRef(ManagedRegister mdest, FrameOffset src) { Mips64ManagedRegister dest = mdest.AsMips64(); CHECK(dest.IsGpuRegister()); LoadFromOffset(kLoadUnsignedWord, dest.AsGpuRegister(), SP, src.Int32Value()); } void Mips64Assembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs, bool unpoison_reference) { Mips64ManagedRegister dest = mdest.AsMips64(); CHECK(dest.IsGpuRegister() && base.AsMips64().IsGpuRegister()); LoadFromOffset(kLoadUnsignedWord, dest.AsGpuRegister(), base.AsMips64().AsGpuRegister(), offs.Int32Value()); if (unpoison_reference) { MaybeUnpoisonHeapReference(dest.AsGpuRegister()); } } void Mips64Assembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) { Mips64ManagedRegister dest = mdest.AsMips64(); CHECK(dest.IsGpuRegister() && base.AsMips64().IsGpuRegister()); LoadFromOffset(kLoadDoubleword, dest.AsGpuRegister(), base.AsMips64().AsGpuRegister(), offs.Int32Value()); } void Mips64Assembler::LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset64 offs) { Mips64ManagedRegister dest = mdest.AsMips64(); CHECK(dest.IsGpuRegister()); LoadFromOffset(kLoadDoubleword, dest.AsGpuRegister(), S1, offs.Int32Value()); } void Mips64Assembler::SignExtend(ManagedRegister mreg ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "No sign extension necessary for MIPS64"; } void Mips64Assembler::ZeroExtend(ManagedRegister mreg ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "No zero extension necessary for MIPS64"; } void Mips64Assembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) { Mips64ManagedRegister dest = mdest.AsMips64(); Mips64ManagedRegister src = msrc.AsMips64(); if (!dest.Equals(src)) { if (dest.IsGpuRegister()) { CHECK(src.IsGpuRegister()) << src; Move(dest.AsGpuRegister(), src.AsGpuRegister()); } else if (dest.IsFpuRegister()) { CHECK(src.IsFpuRegister()) << src; if (size == 4) { MovS(dest.AsFpuRegister(), src.AsFpuRegister()); } else if (size == 8) { MovD(dest.AsFpuRegister(), src.AsFpuRegister()); } else { UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8"; } } } } void Mips64Assembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsGpuRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsGpuRegister(), SP, dest.Int32Value()); } void Mips64Assembler::CopyRawPtrFromThread(FrameOffset fr_offs, ThreadOffset64 thr_offs, ManagedRegister mscratch) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), S1, thr_offs.Int32Value()); StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, fr_offs.Int32Value()); } void Mips64Assembler::CopyRawPtrToThread(ThreadOffset64 thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), SP, fr_offs.Int32Value()); StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), S1, thr_offs.Int32Value()); } void Mips64Assembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; CHECK(size == 4 || size == 8) << size; if (size == 4) { LoadFromOffset(kLoadWord, scratch.AsGpuRegister(), SP, src.Int32Value()); StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, dest.Int32Value()); } else if (size == 8) { LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), SP, src.Int32Value()); StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, dest.Int32Value()); } else { UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8"; } } void Mips64Assembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister mscratch, size_t size) { GpuRegister scratch = mscratch.AsMips64().AsGpuRegister(); CHECK(size == 4 || size == 8) << size; if (size == 4) { LoadFromOffset(kLoadWord, scratch, src_base.AsMips64().AsGpuRegister(), src_offset.Int32Value()); StoreToOffset(kStoreDoubleword, scratch, SP, dest.Int32Value()); } else if (size == 8) { LoadFromOffset(kLoadDoubleword, scratch, src_base.AsMips64().AsGpuRegister(), src_offset.Int32Value()); StoreToOffset(kStoreDoubleword, scratch, SP, dest.Int32Value()); } else { UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8"; } } void Mips64Assembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, ManagedRegister mscratch, size_t size) { GpuRegister scratch = mscratch.AsMips64().AsGpuRegister(); CHECK(size == 4 || size == 8) << size; if (size == 4) { LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value()); StoreToOffset(kStoreDoubleword, scratch, dest_base.AsMips64().AsGpuRegister(), dest_offset.Int32Value()); } else if (size == 8) { LoadFromOffset(kLoadDoubleword, scratch, SP, src.Int32Value()); StoreToOffset(kStoreDoubleword, scratch, dest_base.AsMips64().AsGpuRegister(), dest_offset.Int32Value()); } else { UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8"; } } void Mips64Assembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED, FrameOffset src_base ATTRIBUTE_UNUSED, Offset src_offset ATTRIBUTE_UNUSED, ManagedRegister mscratch ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "No MIPS64 implementation"; } void Mips64Assembler::Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset, ManagedRegister mscratch, size_t size) { GpuRegister scratch = mscratch.AsMips64().AsGpuRegister(); CHECK(size == 4 || size == 8) << size; if (size == 4) { LoadFromOffset(kLoadWord, scratch, src.AsMips64().AsGpuRegister(), src_offset.Int32Value()); StoreToOffset(kStoreDoubleword, scratch, dest.AsMips64().AsGpuRegister(), dest_offset.Int32Value()); } else if (size == 8) { LoadFromOffset(kLoadDoubleword, scratch, src.AsMips64().AsGpuRegister(), src_offset.Int32Value()); StoreToOffset(kStoreDoubleword, scratch, dest.AsMips64().AsGpuRegister(), dest_offset.Int32Value()); } else { UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8"; } } void Mips64Assembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED, Offset dest_offset ATTRIBUTE_UNUSED, FrameOffset src ATTRIBUTE_UNUSED, Offset src_offset ATTRIBUTE_UNUSED, ManagedRegister mscratch ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "No MIPS64 implementation"; } void Mips64Assembler::MemoryBarrier(ManagedRegister mreg ATTRIBUTE_UNUSED) { // TODO: sync? UNIMPLEMENTED(FATAL) << "No MIPS64 implementation"; } void Mips64Assembler::CreateHandleScopeEntry(ManagedRegister mout_reg, FrameOffset handle_scope_offset, ManagedRegister min_reg, bool null_allowed) { Mips64ManagedRegister out_reg = mout_reg.AsMips64(); Mips64ManagedRegister in_reg = min_reg.AsMips64(); CHECK(in_reg.IsNoRegister() || in_reg.IsGpuRegister()) << in_reg; CHECK(out_reg.IsGpuRegister()) << out_reg; if (null_allowed) { Mips64Label null_arg; // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is // the address in the handle scope holding the reference. // e.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset) if (in_reg.IsNoRegister()) { LoadFromOffset(kLoadUnsignedWord, out_reg.AsGpuRegister(), SP, handle_scope_offset.Int32Value()); in_reg = out_reg; } if (!out_reg.Equals(in_reg)) { LoadConst32(out_reg.AsGpuRegister(), 0); } Beqzc(in_reg.AsGpuRegister(), &null_arg); Daddiu64(out_reg.AsGpuRegister(), SP, handle_scope_offset.Int32Value()); Bind(&null_arg); } else { Daddiu64(out_reg.AsGpuRegister(), SP, handle_scope_offset.Int32Value()); } } void Mips64Assembler::CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handle_scope_offset, ManagedRegister mscratch, bool null_allowed) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; if (null_allowed) { Mips64Label null_arg; LoadFromOffset(kLoadUnsignedWord, scratch.AsGpuRegister(), SP, handle_scope_offset.Int32Value()); // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is // the address in the handle scope holding the reference. // e.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset) Beqzc(scratch.AsGpuRegister(), &null_arg); Daddiu64(scratch.AsGpuRegister(), SP, handle_scope_offset.Int32Value()); Bind(&null_arg); } else { Daddiu64(scratch.AsGpuRegister(), SP, handle_scope_offset.Int32Value()); } StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, out_off.Int32Value()); } // Given a handle scope entry, load the associated reference. void Mips64Assembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg, ManagedRegister min_reg) { Mips64ManagedRegister out_reg = mout_reg.AsMips64(); Mips64ManagedRegister in_reg = min_reg.AsMips64(); CHECK(out_reg.IsGpuRegister()) << out_reg; CHECK(in_reg.IsGpuRegister()) << in_reg; Mips64Label null_arg; if (!out_reg.Equals(in_reg)) { LoadConst32(out_reg.AsGpuRegister(), 0); } Beqzc(in_reg.AsGpuRegister(), &null_arg); LoadFromOffset(kLoadDoubleword, out_reg.AsGpuRegister(), in_reg.AsGpuRegister(), 0); Bind(&null_arg); } void Mips64Assembler::VerifyObject(ManagedRegister src ATTRIBUTE_UNUSED, bool could_be_null ATTRIBUTE_UNUSED) { // TODO: not validating references } void Mips64Assembler::VerifyObject(FrameOffset src ATTRIBUTE_UNUSED, bool could_be_null ATTRIBUTE_UNUSED) { // TODO: not validating references } void Mips64Assembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) { Mips64ManagedRegister base = mbase.AsMips64(); Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(base.IsGpuRegister()) << base; CHECK(scratch.IsGpuRegister()) << scratch; LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), base.AsGpuRegister(), offset.Int32Value()); Jalr(scratch.AsGpuRegister()); Nop(); // TODO: place reference map on call } void Mips64Assembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; // Call *(*(SP + base) + offset) LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), SP, base.Int32Value()); LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), scratch.AsGpuRegister(), offset.Int32Value()); Jalr(scratch.AsGpuRegister()); Nop(); // TODO: place reference map on call } void Mips64Assembler::CallFromThread(ThreadOffset64 offset ATTRIBUTE_UNUSED, ManagedRegister mscratch ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "No MIPS64 implementation"; } void Mips64Assembler::GetCurrentThread(ManagedRegister tr) { Move(tr.AsMips64().AsGpuRegister(), S1); } void Mips64Assembler::GetCurrentThread(FrameOffset offset, ManagedRegister mscratch ATTRIBUTE_UNUSED) { StoreToOffset(kStoreDoubleword, S1, SP, offset.Int32Value()); } void Mips64Assembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) { Mips64ManagedRegister scratch = mscratch.AsMips64(); exception_blocks_.emplace_back(scratch, stack_adjust); LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), S1, Thread::ExceptionOffset<kMips64PointerSize>().Int32Value()); Bnezc(scratch.AsGpuRegister(), exception_blocks_.back().Entry()); } void Mips64Assembler::EmitExceptionPoll(Mips64ExceptionSlowPath* exception) { Bind(exception->Entry()); if (exception->stack_adjust_ != 0) { // Fix up the frame. DecreaseFrameSize(exception->stack_adjust_); } // Pass exception object as argument. // Don't care about preserving A0 as this call won't return. CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); Move(A0, exception->scratch_.AsGpuRegister()); // Set up call to Thread::Current()->pDeliverException LoadFromOffset(kLoadDoubleword, T9, S1, QUICK_ENTRYPOINT_OFFSET(kMips64PointerSize, pDeliverException).Int32Value()); Jr(T9); Nop(); // Call never returns Break(); } } // namespace mips64 } // namespace art