/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "barrier.h" #include <string> #include "base/atomic.h" #include "common_runtime_test.h" #include "mirror/object_array-inl.h" #include "thread-current-inl.h" #include "thread_pool.h" namespace art { class CheckWaitTask : public Task { public: CheckWaitTask(Barrier* barrier, AtomicInteger* count1, AtomicInteger* count2) : barrier_(barrier), count1_(count1), count2_(count2) {} void Run(Thread* self) override { LOG(INFO) << "Before barrier" << *self; ++*count1_; barrier_->Wait(self); ++*count2_; LOG(INFO) << "After barrier" << *self; } void Finalize() override { delete this; } private: Barrier* const barrier_; AtomicInteger* const count1_; AtomicInteger* const count2_; }; class BarrierTest : public CommonRuntimeTest { public: static int32_t num_threads; }; int32_t BarrierTest::num_threads = 4; // Check that barrier wait and barrier increment work. TEST_F(BarrierTest, CheckWait) { Thread* self = Thread::Current(); ThreadPool thread_pool("Barrier test thread pool", num_threads); Barrier barrier(num_threads + 1); // One extra Wait() in main thread. Barrier timeout_barrier(0); // Only used for sleeping on timeout. AtomicInteger count1(0); AtomicInteger count2(0); for (int32_t i = 0; i < num_threads; ++i) { thread_pool.AddTask(self, new CheckWaitTask(&barrier, &count1, &count2)); } thread_pool.StartWorkers(self); while (count1.load(std::memory_order_relaxed) != num_threads) { timeout_barrier.Increment(self, 1, 100); // sleep 100 msecs } // Count 2 should still be zero since no thread should have gone past the barrier. EXPECT_EQ(0, count2.load(std::memory_order_relaxed)); // Perform one additional Wait(), allowing pool threads to proceed. barrier.Wait(self); // Wait for all the threads to finish. thread_pool.Wait(self, true, false); // Both counts should be equal to num_threads now. EXPECT_EQ(count1.load(std::memory_order_relaxed), num_threads); EXPECT_EQ(count2.load(std::memory_order_relaxed), num_threads); timeout_barrier.Init(self, 0); // Reset to zero for destruction. } class CheckPassTask : public Task { public: CheckPassTask(Barrier* barrier, AtomicInteger* count, size_t subtasks) : barrier_(barrier), count_(count), subtasks_(subtasks) {} void Run(Thread* self) override { for (size_t i = 0; i < subtasks_; ++i) { ++*count_; // Pass through to next subtask. barrier_->Pass(self); } } void Finalize() override { delete this; } private: Barrier* const barrier_; AtomicInteger* const count_; const size_t subtasks_; }; // Check that barrier pass through works. TEST_F(BarrierTest, CheckPass) { Thread* self = Thread::Current(); ThreadPool thread_pool("Barrier test thread pool", num_threads); Barrier barrier(0); AtomicInteger count(0); const int32_t num_tasks = num_threads * 4; const int32_t num_sub_tasks = 128; for (int32_t i = 0; i < num_tasks; ++i) { thread_pool.AddTask(self, new CheckPassTask(&barrier, &count, num_sub_tasks)); } thread_pool.StartWorkers(self); const int32_t expected_total_tasks = num_sub_tasks * num_tasks; // Wait for all the tasks to complete using the barrier. barrier.Increment(self, expected_total_tasks); // The total number of completed tasks should be equal to expected_total_tasks. EXPECT_EQ(count.load(std::memory_order_relaxed), expected_total_tasks); } } // namespace art