/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "hidden_api.h" #include <nativehelper/scoped_local_ref.h> #include "art_field-inl.h" #include "art_method-inl.h" #include "base/dumpable.h" #include "base/file_utils.h" #include "class_root.h" #include "dex/class_accessor-inl.h" #include "dex/dex_file_loader.h" #include "mirror/class_ext.h" #include "oat_file.h" #include "scoped_thread_state_change.h" #include "thread-inl.h" #include "well_known_classes.h" namespace art { namespace hiddenapi { // Set to true if we should always print a warning in logcat for all hidden API accesses, not just // dark grey and black. This can be set to true for developer preview / beta builds, but should be // false for public release builds. // Note that when flipping this flag, you must also update the expectations of test 674-hiddenapi // as it affects whether or not we warn for light grey APIs that have been added to the exemptions // list. static constexpr bool kLogAllAccesses = false; static inline std::ostream& operator<<(std::ostream& os, AccessMethod value) { switch (value) { case AccessMethod::kNone: LOG(FATAL) << "Internal access to hidden API should not be logged"; UNREACHABLE(); case AccessMethod::kReflection: os << "reflection"; break; case AccessMethod::kJNI: os << "JNI"; break; case AccessMethod::kLinking: os << "linking"; break; } return os; } static inline std::ostream& operator<<(std::ostream& os, const AccessContext& value) REQUIRES_SHARED(Locks::mutator_lock_) { if (!value.GetClass().IsNull()) { std::string tmp; os << value.GetClass()->GetDescriptor(&tmp); } else if (value.GetDexFile() != nullptr) { os << value.GetDexFile()->GetLocation(); } else { os << "<unknown_caller>"; } return os; } static Domain DetermineDomainFromLocation(const std::string& dex_location, ObjPtr<mirror::ClassLoader> class_loader) { // If running with APEX, check `path` against known APEX locations. // These checks will be skipped on target buildbots where ANDROID_RUNTIME_ROOT // is set to "/system". if (RuntimeModuleRootDistinctFromAndroidRoot()) { if (LocationIsOnRuntimeModule(dex_location.c_str()) || LocationIsOnConscryptModule(dex_location.c_str())) { return Domain::kCorePlatform; } if (LocationIsOnApex(dex_location.c_str())) { return Domain::kPlatform; } } if (LocationIsOnSystemFramework(dex_location.c_str())) { return Domain::kPlatform; } if (class_loader.IsNull()) { LOG(WARNING) << "DexFile " << dex_location << " is in boot class path but is not in a known location"; return Domain::kPlatform; } return Domain::kApplication; } void InitializeDexFileDomain(const DexFile& dex_file, ObjPtr<mirror::ClassLoader> class_loader) { Domain dex_domain = DetermineDomainFromLocation(dex_file.GetLocation(), class_loader); // Assign the domain unless a more permissive domain has already been assigned. // This may happen when DexFile is initialized as trusted. if (IsDomainMoreTrustedThan(dex_domain, dex_file.GetHiddenapiDomain())) { dex_file.SetHiddenapiDomain(dex_domain); } } namespace detail { // Do not change the values of items in this enum, as they are written to the // event log for offline analysis. Any changes will interfere with that analysis. enum AccessContextFlags { // Accessed member is a field if this bit is set, else a method kMemberIsField = 1 << 0, // Indicates if access was denied to the member, instead of just printing a warning. kAccessDenied = 1 << 1, }; MemberSignature::MemberSignature(ArtField* field) { class_name_ = field->GetDeclaringClass()->GetDescriptor(&tmp_); member_name_ = field->GetName(); type_signature_ = field->GetTypeDescriptor(); type_ = kField; } MemberSignature::MemberSignature(ArtMethod* method) { DCHECK(method == method->GetInterfaceMethodIfProxy(kRuntimePointerSize)) << "Caller should have replaced proxy method with interface method"; class_name_ = method->GetDeclaringClass()->GetDescriptor(&tmp_); member_name_ = method->GetName(); type_signature_ = method->GetSignature().ToString(); type_ = kMethod; } MemberSignature::MemberSignature(const ClassAccessor::Field& field) { const DexFile& dex_file = field.GetDexFile(); const dex::FieldId& field_id = dex_file.GetFieldId(field.GetIndex()); class_name_ = dex_file.GetFieldDeclaringClassDescriptor(field_id); member_name_ = dex_file.GetFieldName(field_id); type_signature_ = dex_file.GetFieldTypeDescriptor(field_id); type_ = kField; } MemberSignature::MemberSignature(const ClassAccessor::Method& method) { const DexFile& dex_file = method.GetDexFile(); const dex::MethodId& method_id = dex_file.GetMethodId(method.GetIndex()); class_name_ = dex_file.GetMethodDeclaringClassDescriptor(method_id); member_name_ = dex_file.GetMethodName(method_id); type_signature_ = dex_file.GetMethodSignature(method_id).ToString(); type_ = kMethod; } inline std::vector<const char*> MemberSignature::GetSignatureParts() const { if (type_ == kField) { return { class_name_.c_str(), "->", member_name_.c_str(), ":", type_signature_.c_str() }; } else { DCHECK_EQ(type_, kMethod); return { class_name_.c_str(), "->", member_name_.c_str(), type_signature_.c_str() }; } } bool MemberSignature::DoesPrefixMatch(const std::string& prefix) const { size_t pos = 0; for (const char* part : GetSignatureParts()) { size_t count = std::min(prefix.length() - pos, strlen(part)); if (prefix.compare(pos, count, part, 0, count) == 0) { pos += count; } else { return false; } } // We have a complete match if all parts match (we exit the loop without // returning) AND we've matched the whole prefix. return pos == prefix.length(); } bool MemberSignature::IsExempted(const std::vector<std::string>& exemptions) { for (const std::string& exemption : exemptions) { if (DoesPrefixMatch(exemption)) { return true; } } return false; } void MemberSignature::Dump(std::ostream& os) const { for (const char* part : GetSignatureParts()) { os << part; } } void MemberSignature::WarnAboutAccess(AccessMethod access_method, hiddenapi::ApiList list, bool access_denied) { LOG(WARNING) << "Accessing hidden " << (type_ == kField ? "field " : "method ") << Dumpable<MemberSignature>(*this) << " (" << list << ", " << access_method << (access_denied ? ", denied)" : ", allowed)"); } bool MemberSignature::Equals(const MemberSignature& other) { return type_ == other.type_ && class_name_ == other.class_name_ && member_name_ == other.member_name_ && type_signature_ == other.type_signature_; } bool MemberSignature::MemberNameAndTypeMatch(const MemberSignature& other) { return member_name_ == other.member_name_ && type_signature_ == other.type_signature_; } void MemberSignature::LogAccessToEventLog(uint32_t sampled_value, AccessMethod access_method, bool access_denied) { #ifdef ART_TARGET_ANDROID if (access_method == AccessMethod::kLinking || access_method == AccessMethod::kNone) { // Linking warnings come from static analysis/compilation of the bytecode // and can contain false positives (i.e. code that is never run). We choose // not to log these in the event log. // None does not correspond to actual access, so should also be ignored. return; } Runtime* runtime = Runtime::Current(); if (runtime->IsAotCompiler()) { return; } JNIEnvExt* env = Thread::Current()->GetJniEnv(); const std::string& package_name = Runtime::Current()->GetProcessPackageName(); ScopedLocalRef<jstring> package_str(env, env->NewStringUTF(package_name.c_str())); if (env->ExceptionCheck()) { env->ExceptionClear(); LOG(ERROR) << "Unable to allocate string for package name which called hidden api"; } std::ostringstream signature_str; Dump(signature_str); ScopedLocalRef<jstring> signature_jstr(env, env->NewStringUTF(signature_str.str().c_str())); if (env->ExceptionCheck()) { env->ExceptionClear(); LOG(ERROR) << "Unable to allocate string for hidden api method signature"; } env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime, WellKnownClasses::dalvik_system_VMRuntime_hiddenApiUsed, sampled_value, package_str.get(), signature_jstr.get(), static_cast<jint>(access_method), access_denied); if (env->ExceptionCheck()) { env->ExceptionClear(); LOG(ERROR) << "Unable to report hidden api usage"; } #else UNUSED(sampled_value); UNUSED(access_method); UNUSED(access_denied); #endif } void MemberSignature::NotifyHiddenApiListener(AccessMethod access_method) { if (access_method != AccessMethod::kReflection && access_method != AccessMethod::kJNI) { // We can only up-call into Java during reflection and JNI down-calls. return; } Runtime* runtime = Runtime::Current(); if (!runtime->IsAotCompiler()) { ScopedObjectAccessUnchecked soa(Thread::Current()); ScopedLocalRef<jobject> consumer_object(soa.Env(), soa.Env()->GetStaticObjectField( WellKnownClasses::dalvik_system_VMRuntime, WellKnownClasses::dalvik_system_VMRuntime_nonSdkApiUsageConsumer)); // If the consumer is non-null, we call back to it to let it know that we // have encountered an API that's in one of our lists. if (consumer_object != nullptr) { std::ostringstream member_signature_str; Dump(member_signature_str); ScopedLocalRef<jobject> signature_str( soa.Env(), soa.Env()->NewStringUTF(member_signature_str.str().c_str())); // Call through to Consumer.accept(String memberSignature); soa.Env()->CallVoidMethod(consumer_object.get(), WellKnownClasses::java_util_function_Consumer_accept, signature_str.get()); } } } static ALWAYS_INLINE bool CanUpdateRuntimeFlags(ArtField*) { return true; } static ALWAYS_INLINE bool CanUpdateRuntimeFlags(ArtMethod* method) { return !method->IsIntrinsic(); } template<typename T> static ALWAYS_INLINE void MaybeUpdateAccessFlags(Runtime* runtime, T* member, uint32_t flag) REQUIRES_SHARED(Locks::mutator_lock_) { // Update the access flags unless: // (a) `member` is an intrinsic // (b) this is AOT compiler, as we do not want the updated access flags in the boot/app image // (c) deduping warnings has been explicitly switched off. if (CanUpdateRuntimeFlags(member) && !runtime->IsAotCompiler() && runtime->ShouldDedupeHiddenApiWarnings()) { member->SetAccessFlags(member->GetAccessFlags() | flag); } } static ALWAYS_INLINE uint32_t GetMemberDexIndex(ArtField* field) { return field->GetDexFieldIndex(); } static ALWAYS_INLINE uint32_t GetMemberDexIndex(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { // Use the non-obsolete method to avoid DexFile mismatch between // the method index and the declaring class. return method->GetNonObsoleteMethod()->GetDexMethodIndex(); } static void VisitMembers(const DexFile& dex_file, const dex::ClassDef& class_def, const std::function<void(const ClassAccessor::Field&)>& fn_visit) { ClassAccessor accessor(dex_file, class_def, /* parse_hiddenapi_class_data= */ true); accessor.VisitFields(fn_visit, fn_visit); } static void VisitMembers(const DexFile& dex_file, const dex::ClassDef& class_def, const std::function<void(const ClassAccessor::Method&)>& fn_visit) { ClassAccessor accessor(dex_file, class_def, /* parse_hiddenapi_class_data= */ true); accessor.VisitMethods(fn_visit, fn_visit); } template<typename T> uint32_t GetDexFlags(T* member) REQUIRES_SHARED(Locks::mutator_lock_) { static_assert(std::is_same<T, ArtField>::value || std::is_same<T, ArtMethod>::value); constexpr bool kMemberIsField = std::is_same<T, ArtField>::value; using AccessorType = typename std::conditional<std::is_same<T, ArtField>::value, ClassAccessor::Field, ClassAccessor::Method>::type; ObjPtr<mirror::Class> declaring_class = member->GetDeclaringClass(); DCHECK(!declaring_class.IsNull()) << "Attempting to access a runtime method"; ApiList flags; DCHECK(!flags.IsValid()); // Check if the declaring class has ClassExt allocated. If it does, check if // the pre-JVMTI redefine dex file has been set to determine if the declaring // class has been JVMTI-redefined. ObjPtr<mirror::ClassExt> ext(declaring_class->GetExtData()); const DexFile* original_dex = ext.IsNull() ? nullptr : ext->GetPreRedefineDexFile(); if (LIKELY(original_dex == nullptr)) { // Class is not redefined. Find the class def, iterate over its members and // find the entry corresponding to this `member`. const dex::ClassDef* class_def = declaring_class->GetClassDef(); if (class_def == nullptr) { // ClassDef is not set for proxy classes. Only their fields can ever be inspected. DCHECK(declaring_class->IsProxyClass()) << "Only proxy classes are expected not to have a class def"; DCHECK(kMemberIsField) << "Interface methods should be inspected instead of proxy class methods"; flags = ApiList::Greylist(); } else { uint32_t member_index = GetMemberDexIndex(member); auto fn_visit = [&](const AccessorType& dex_member) { if (dex_member.GetIndex() == member_index) { flags = ApiList(dex_member.GetHiddenapiFlags()); } }; VisitMembers(declaring_class->GetDexFile(), *class_def, fn_visit); } } else { // Class was redefined using JVMTI. We have a pointer to the original dex file // and the class def index of this class in that dex file, but the field/method // indices are lost. Iterate over all members of the class def and find the one // corresponding to this `member` by name and type string comparison. // This is obviously very slow, but it is only used when non-exempt code tries // to access a hidden member of a JVMTI-redefined class. uint16_t class_def_idx = ext->GetPreRedefineClassDefIndex(); DCHECK_NE(class_def_idx, DexFile::kDexNoIndex16); const dex::ClassDef& original_class_def = original_dex->GetClassDef(class_def_idx); MemberSignature member_signature(member); auto fn_visit = [&](const AccessorType& dex_member) { MemberSignature cur_signature(dex_member); if (member_signature.MemberNameAndTypeMatch(cur_signature)) { DCHECK(member_signature.Equals(cur_signature)); flags = ApiList(dex_member.GetHiddenapiFlags()); } }; VisitMembers(*original_dex, original_class_def, fn_visit); } CHECK(flags.IsValid()) << "Could not find hiddenapi flags for " << Dumpable<MemberSignature>(MemberSignature(member)); return flags.GetDexFlags(); } template<typename T> bool HandleCorePlatformApiViolation(T* member, const AccessContext& caller_context, AccessMethod access_method, EnforcementPolicy policy) { DCHECK(policy != EnforcementPolicy::kDisabled) << "Should never enter this function when access checks are completely disabled"; if (access_method != AccessMethod::kNone) { LOG(WARNING) << "Core platform API violation: " << Dumpable<MemberSignature>(MemberSignature(member)) << " from " << caller_context << " using " << access_method; // If policy is set to just warn, add kAccCorePlatformApi to access flags of // `member` to avoid reporting the violation again next time. if (policy == EnforcementPolicy::kJustWarn) { MaybeUpdateAccessFlags(Runtime::Current(), member, kAccCorePlatformApi); } } // Deny access if enforcement is enabled. return policy == EnforcementPolicy::kEnabled; } template<typename T> bool ShouldDenyAccessToMemberImpl(T* member, ApiList api_list, AccessMethod access_method) { DCHECK(member != nullptr); Runtime* runtime = Runtime::Current(); EnforcementPolicy policy = runtime->GetHiddenApiEnforcementPolicy(); DCHECK(policy != EnforcementPolicy::kDisabled) << "Should never enter this function when access checks are completely disabled"; const bool deny_access = (policy == EnforcementPolicy::kEnabled) && IsSdkVersionSetAndMoreThan(runtime->GetTargetSdkVersion(), api_list.GetMaxAllowedSdkVersion()); MemberSignature member_signature(member); // Check for an exemption first. Exempted APIs are treated as white list. if (member_signature.IsExempted(runtime->GetHiddenApiExemptions())) { // Avoid re-examining the exemption list next time. // Note this results in no warning for the member, which seems like what one would expect. // Exemptions effectively adds new members to the whitelist. MaybeUpdateAccessFlags(runtime, member, kAccPublicApi); return false; } if (access_method != AccessMethod::kNone) { // Print a log message with information about this class member access. // We do this if we're about to deny access, or the app is debuggable. if (kLogAllAccesses || deny_access || runtime->IsJavaDebuggable()) { member_signature.WarnAboutAccess(access_method, api_list, deny_access); } // If there is a StrictMode listener, notify it about this violation. member_signature.NotifyHiddenApiListener(access_method); // If event log sampling is enabled, report this violation. if (kIsTargetBuild && !kIsTargetLinux) { uint32_t eventLogSampleRate = runtime->GetHiddenApiEventLogSampleRate(); // Assert that RAND_MAX is big enough, to ensure sampling below works as expected. static_assert(RAND_MAX >= 0xffff, "RAND_MAX too small"); if (eventLogSampleRate != 0) { const uint32_t sampled_value = static_cast<uint32_t>(std::rand()) & 0xffff; if (sampled_value < eventLogSampleRate) { member_signature.LogAccessToEventLog(sampled_value, access_method, deny_access); } } } // If this access was not denied, move the member into whitelist and skip // the warning the next time the member is accessed. if (!deny_access) { MaybeUpdateAccessFlags(runtime, member, kAccPublicApi); } } return deny_access; } // Need to instantiate these. template uint32_t GetDexFlags<ArtField>(ArtField* member); template uint32_t GetDexFlags<ArtMethod>(ArtMethod* member); template bool HandleCorePlatformApiViolation(ArtField* member, const AccessContext& caller_context, AccessMethod access_method, EnforcementPolicy policy); template bool HandleCorePlatformApiViolation(ArtMethod* member, const AccessContext& caller_context, AccessMethod access_method, EnforcementPolicy policy); template bool ShouldDenyAccessToMemberImpl<ArtField>(ArtField* member, ApiList api_list, AccessMethod access_method); template bool ShouldDenyAccessToMemberImpl<ArtMethod>(ArtMethod* member, ApiList api_list, AccessMethod access_method); } // namespace detail } // namespace hiddenapi } // namespace art