/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_ARRAY_ALLOC_INL_H_ #define ART_RUNTIME_MIRROR_ARRAY_ALLOC_INL_H_ #include "array-inl.h" #include <android-base/logging.h> #include <android-base/stringprintf.h> #include "base/bit_utils.h" #include "base/casts.h" #include "class.h" #include "gc/heap-inl.h" #include "obj_ptr-inl.h" #include "runtime.h" namespace art { namespace mirror { static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) { DCHECK_GE(component_count, 0); size_t component_size = 1U << component_size_shift; size_t header_size = Array::DataOffset(component_size).SizeValue(); size_t data_size = static_cast<size_t>(component_count) << component_size_shift; size_t size = header_size + data_size; // Check for size_t overflow if this was an unreasonable request // but let the caller throw OutOfMemoryError. #ifdef __LP64__ // 64-bit. No overflow as component_count is 32-bit and the maximum // component size is 8. DCHECK_LE((1U << component_size_shift), 8U); #else // 32-bit. DCHECK_NE(header_size, 0U); DCHECK_EQ(RoundUp(header_size, component_size), header_size); // The array length limit (exclusive). const size_t length_limit = (0U - header_size) >> component_size_shift; if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) { return 0; // failure } #endif return size; } // Used for setting the array length in the allocation code path to ensure it is guarded by a // StoreStore fence. class SetLengthVisitor { public: explicit SetLengthVisitor(int32_t length) : length_(length) { } void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) { // Avoid AsArray as object is not yet in live bitmap or allocation stack. ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj); // DCHECK(array->IsArrayInstance()); array->SetLength(length_); } private: const int32_t length_; DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor); }; // Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an // array. class SetLengthToUsableSizeVisitor { public: SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size, size_t component_size_shift) : minimum_length_(min_length), header_size_(header_size), component_size_shift_(component_size_shift) { } void operator()(ObjPtr<Object> obj, size_t usable_size) const REQUIRES_SHARED(Locks::mutator_lock_) { // Avoid AsArray as object is not yet in live bitmap or allocation stack. ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj); // DCHECK(array->IsArrayInstance()); int32_t length = (usable_size - header_size_) >> component_size_shift_; DCHECK_GE(length, minimum_length_); uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_, minimum_length_)); uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_, length)); // Ensure space beyond original allocation is zeroed. memset(old_end, 0, new_end - old_end); array->SetLength(length); } private: const int32_t minimum_length_; const size_t header_size_; const size_t component_size_shift_; DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor); }; template <bool kIsInstrumented, bool kFillUsable> inline ObjPtr<Array> Array::Alloc(Thread* self, ObjPtr<Class> array_class, int32_t component_count, size_t component_size_shift, gc::AllocatorType allocator_type) { DCHECK(allocator_type != gc::kAllocatorTypeLOS); DCHECK(array_class != nullptr); DCHECK(array_class->IsArrayClass()); DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift); DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift)); size_t size = ComputeArraySize(component_count, component_size_shift); #ifdef __LP64__ // 64-bit. No size_t overflow. DCHECK_NE(size, 0U); #else // 32-bit. if (UNLIKELY(size == 0)) { self->ThrowOutOfMemoryError(android::base::StringPrintf("%s of length %d would overflow", array_class->PrettyDescriptor().c_str(), component_count).c_str()); return nullptr; } #endif gc::Heap* heap = Runtime::Current()->GetHeap(); ObjPtr<Array> result; if (!kFillUsable) { SetLengthVisitor visitor(component_count); result = ObjPtr<Array>::DownCast( heap->AllocObjectWithAllocator<kIsInstrumented, true>( self, array_class, size, allocator_type, visitor)); } else { SetLengthToUsableSizeVisitor visitor(component_count, DataOffset(1U << component_size_shift).SizeValue(), component_size_shift); result = ObjPtr<Array>::DownCast( heap->AllocObjectWithAllocator<kIsInstrumented, true>( self, array_class, size, allocator_type, visitor)); } if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) { array_class = result->GetClass(); // In case the array class moved. CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift); if (!kFillUsable) { CHECK_EQ(result->SizeOf(), size); } else { CHECK_GE(result->SizeOf(), size); } } return result; } template<typename T> inline ObjPtr<PrimitiveArray<T>> PrimitiveArray<T>::AllocateAndFill(Thread* self, const T* data, size_t length) { StackHandleScope<1> hs(self); Handle<PrimitiveArray<T>> arr(hs.NewHandle(PrimitiveArray<T>::Alloc(self, length))); if (!arr.IsNull()) { // Copy it in. Just skip if it's null memcpy(arr->GetData(), data, sizeof(T) * length); } return arr.Get(); } } // namespace mirror } // namespace art #endif // ART_RUNTIME_MIRROR_ARRAY_ALLOC_INL_H_