/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_THREAD_H_ #define ART_RUNTIME_THREAD_H_ #include <atomic> #include <bitset> #include <deque> #include <iosfwd> #include <list> #include <memory> #include <string> #include "base/atomic.h" #include "base/enums.h" #include "base/locks.h" #include "base/macros.h" #include "base/safe_map.h" #include "base/value_object.h" #include "entrypoints/jni/jni_entrypoints.h" #include "entrypoints/quick/quick_entrypoints.h" #include "handle_scope.h" #include "interpreter/interpreter_cache.h" #include "jvalue.h" #include "managed_stack.h" #include "offsets.h" #include "read_barrier_config.h" #include "runtime_globals.h" #include "runtime_stats.h" #include "suspend_reason.h" #include "thread_state.h" class BacktraceMap; namespace art { namespace gc { namespace accounting { template<class T> class AtomicStack; } // namespace accounting namespace collector { class SemiSpace; } // namespace collector } // namespace gc namespace instrumentation { struct InstrumentationStackFrame; } // namespace instrumentation namespace mirror { class Array; class Class; class ClassLoader; class Object; template<class T> class ObjectArray; template<class T> class PrimitiveArray; typedef PrimitiveArray<int32_t> IntArray; class StackTraceElement; class String; class Throwable; } // namespace mirror namespace verifier { class MethodVerifier; class VerifierDeps; } // namespace verifier class ArtMethod; class BaseMutex; class ClassLinker; class Closure; class Context; struct DebugInvokeReq; class DeoptimizationContextRecord; class DexFile; class FrameIdToShadowFrame; class JavaVMExt; class JNIEnvExt; class Monitor; class RootVisitor; class ScopedObjectAccessAlreadyRunnable; class ShadowFrame; class SingleStepControl; class StackedShadowFrameRecord; class Thread; class ThreadList; enum VisitRootFlags : uint8_t; // A piece of data that can be held in the CustomTls. The destructor will be called during thread // shutdown. The thread the destructor is called on is not necessarily the same thread it was stored // on. class TLSData { public: virtual ~TLSData() {} }; // Thread priorities. These must match the Thread.MIN_PRIORITY, // Thread.NORM_PRIORITY, and Thread.MAX_PRIORITY constants. enum ThreadPriority { kMinThreadPriority = 1, kNormThreadPriority = 5, kMaxThreadPriority = 10, }; enum ThreadFlag { kSuspendRequest = 1, // If set implies that suspend_count_ > 0 and the Thread should enter the // safepoint handler. kCheckpointRequest = 2, // Request that the thread do some checkpoint work and then continue. kEmptyCheckpointRequest = 4, // Request that the thread do empty checkpoint and then continue. kActiveSuspendBarrier = 8, // Register that at least 1 suspend barrier needs to be passed. }; enum class StackedShadowFrameType { kShadowFrameUnderConstruction, kDeoptimizationShadowFrame, }; // The type of method that triggers deoptimization. It contains info on whether // the deoptimized method should advance dex_pc. enum class DeoptimizationMethodType { kKeepDexPc, // dex pc is required to be kept upon deoptimization. kDefault // dex pc may or may not advance depending on other conditions. }; // This should match RosAlloc::kNumThreadLocalSizeBrackets. static constexpr size_t kNumRosAllocThreadLocalSizeBracketsInThread = 16; // Thread's stack layout for implicit stack overflow checks: // // +---------------------+ <- highest address of stack memory // | | // . . <- SP // | | // | | // +---------------------+ <- stack_end // | | // | Gap | // | | // +---------------------+ <- stack_begin // | | // | Protected region | // | | // +---------------------+ <- lowest address of stack memory // // The stack always grows down in memory. At the lowest address is a region of memory // that is set mprotect(PROT_NONE). Any attempt to read/write to this region will // result in a segmentation fault signal. At any point, the thread's SP will be somewhere // between the stack_end and the highest address in stack memory. An implicit stack // overflow check is a read of memory at a certain offset below the current SP (4K typically). // If the thread's SP is below the stack_end address this will be a read into the protected // region. If the SP is above the stack_end address, the thread is guaranteed to have // at least 4K of space. Because stack overflow checks are only performed in generated code, // if the thread makes a call out to a native function (through JNI), that native function // might only have 4K of memory (if the SP is adjacent to stack_end). class Thread { public: static const size_t kStackOverflowImplicitCheckSize; static constexpr bool kVerifyStack = kIsDebugBuild; // Creates a new native thread corresponding to the given managed peer. // Used to implement Thread.start. static void CreateNativeThread(JNIEnv* env, jobject peer, size_t stack_size, bool daemon); // Attaches the calling native thread to the runtime, returning the new native peer. // Used to implement JNI AttachCurrentThread and AttachCurrentThreadAsDaemon calls. static Thread* Attach(const char* thread_name, bool as_daemon, jobject thread_group, bool create_peer); // Attaches the calling native thread to the runtime, returning the new native peer. static Thread* Attach(const char* thread_name, bool as_daemon, jobject thread_peer); // Reset internal state of child thread after fork. void InitAfterFork(); // Get the currently executing thread, frequently referred to as 'self'. This call has reasonably // high cost and so we favor passing self around when possible. // TODO: mark as PURE so the compiler may coalesce and remove? static Thread* Current(); // On a runnable thread, check for pending thread suspension request and handle if pending. void AllowThreadSuspension() REQUIRES_SHARED(Locks::mutator_lock_); // Process pending thread suspension request and handle if pending. void CheckSuspend() REQUIRES_SHARED(Locks::mutator_lock_); // Process a pending empty checkpoint if pending. void CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex); void CheckEmptyCheckpointFromMutex(); static Thread* FromManagedThread(const ScopedObjectAccessAlreadyRunnable& ts, ObjPtr<mirror::Object> thread_peer) REQUIRES(Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_) REQUIRES_SHARED(Locks::mutator_lock_); static Thread* FromManagedThread(const ScopedObjectAccessAlreadyRunnable& ts, jobject thread) REQUIRES(Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_) REQUIRES_SHARED(Locks::mutator_lock_); // Translates 172 to pAllocArrayFromCode and so on. template<PointerSize size_of_pointers> static void DumpThreadOffset(std::ostream& os, uint32_t offset); // Dumps a one-line summary of thread state (used for operator<<). void ShortDump(std::ostream& os) const; // Dumps the detailed thread state and the thread stack (used for SIGQUIT). void Dump(std::ostream& os, bool dump_native_stack = true, BacktraceMap* backtrace_map = nullptr, bool force_dump_stack = false) const REQUIRES_SHARED(Locks::mutator_lock_); void DumpJavaStack(std::ostream& os, bool check_suspended = true, bool dump_locks = true) const REQUIRES_SHARED(Locks::mutator_lock_); // Dumps the SIGQUIT per-thread header. 'thread' can be null for a non-attached thread, in which // case we use 'tid' to identify the thread, and we'll include as much information as we can. static void DumpState(std::ostream& os, const Thread* thread, pid_t tid) REQUIRES_SHARED(Locks::mutator_lock_); ThreadState GetState() const { DCHECK_GE(tls32_.state_and_flags.as_struct.state, kTerminated); DCHECK_LE(tls32_.state_and_flags.as_struct.state, kSuspended); return static_cast<ThreadState>(tls32_.state_and_flags.as_struct.state); } ThreadState SetState(ThreadState new_state); int GetSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_) { return tls32_.suspend_count; } int GetUserCodeSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_, Locks::user_code_suspension_lock_) { return tls32_.user_code_suspend_count; } int GetDebugSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_) { return tls32_.debug_suspend_count; } bool IsSuspended() const { union StateAndFlags state_and_flags; state_and_flags.as_int = tls32_.state_and_flags.as_int; return state_and_flags.as_struct.state != kRunnable && (state_and_flags.as_struct.flags & kSuspendRequest) != 0; } // If delta > 0 and (this != self or suspend_barrier is not null), this function may temporarily // release thread_suspend_count_lock_ internally. ALWAYS_INLINE bool ModifySuspendCount(Thread* self, int delta, AtomicInteger* suspend_barrier, SuspendReason reason) WARN_UNUSED REQUIRES(Locks::thread_suspend_count_lock_); // Requests a checkpoint closure to run on another thread. The closure will be run when the thread // gets suspended. This will return true if the closure was added and will (eventually) be // executed. It returns false otherwise. // // Since multiple closures can be queued and some closures can delay other threads from running no // closure should attempt to suspend another thread while running. // TODO We should add some debug option that verifies this. bool RequestCheckpoint(Closure* function) REQUIRES(Locks::thread_suspend_count_lock_); // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution. This is // due to the fact that Thread::Current() needs to go to sleep to allow the targeted thread to // execute the checkpoint for us if it is Runnable. The suspend_state is the state that the thread // will go into while it is awaiting the checkpoint to be run. // NB Passing ThreadState::kRunnable may cause the current thread to wait in a condition variable // while holding the mutator_lock_. Callers should ensure that this will not cause any problems // for the closure or the rest of the system. // NB Since multiple closures can be queued and some closures can delay other threads from running // no closure should attempt to suspend another thread while running. bool RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state = ThreadState::kWaiting) REQUIRES_SHARED(Locks::mutator_lock_) RELEASE(Locks::thread_list_lock_) REQUIRES(!Locks::thread_suspend_count_lock_); bool RequestEmptyCheckpoint() REQUIRES(Locks::thread_suspend_count_lock_); void SetFlipFunction(Closure* function); Closure* GetFlipFunction(); gc::accounting::AtomicStack<mirror::Object>* GetThreadLocalMarkStack() { CHECK(kUseReadBarrier); return tlsPtr_.thread_local_mark_stack; } void SetThreadLocalMarkStack(gc::accounting::AtomicStack<mirror::Object>* stack) { CHECK(kUseReadBarrier); tlsPtr_.thread_local_mark_stack = stack; } // Called when thread detected that the thread_suspend_count_ was non-zero. Gives up share of // mutator_lock_ and waits until it is resumed and thread_suspend_count_ is zero. void FullSuspendCheck() REQUIRES(!Locks::thread_suspend_count_lock_) REQUIRES_SHARED(Locks::mutator_lock_); // Transition from non-runnable to runnable state acquiring share on mutator_lock_. ALWAYS_INLINE ThreadState TransitionFromSuspendedToRunnable() REQUIRES(!Locks::thread_suspend_count_lock_) SHARED_LOCK_FUNCTION(Locks::mutator_lock_); // Transition from runnable into a state where mutator privileges are denied. Releases share of // mutator lock. ALWAYS_INLINE void TransitionFromRunnableToSuspended(ThreadState new_state) REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_) UNLOCK_FUNCTION(Locks::mutator_lock_); // Once called thread suspension will cause an assertion failure. const char* StartAssertNoThreadSuspension(const char* cause) ACQUIRE(Roles::uninterruptible_) { Roles::uninterruptible_.Acquire(); // No-op. if (kIsDebugBuild) { CHECK(cause != nullptr); const char* previous_cause = tlsPtr_.last_no_thread_suspension_cause; tls32_.no_thread_suspension++; tlsPtr_.last_no_thread_suspension_cause = cause; return previous_cause; } else { return nullptr; } } // End region where no thread suspension is expected. void EndAssertNoThreadSuspension(const char* old_cause) RELEASE(Roles::uninterruptible_) { if (kIsDebugBuild) { CHECK(old_cause != nullptr || tls32_.no_thread_suspension == 1); CHECK_GT(tls32_.no_thread_suspension, 0U); tls32_.no_thread_suspension--; tlsPtr_.last_no_thread_suspension_cause = old_cause; } Roles::uninterruptible_.Release(); // No-op. } void AssertThreadSuspensionIsAllowable(bool check_locks = true) const; // Return true if thread suspension is allowable. bool IsThreadSuspensionAllowable() const; bool IsDaemon() const { return tls32_.daemon; } size_t NumberOfHeldMutexes() const; bool HoldsLock(ObjPtr<mirror::Object> object) const REQUIRES_SHARED(Locks::mutator_lock_); /* * Changes the priority of this thread to match that of the java.lang.Thread object. * * We map a priority value from 1-10 to Linux "nice" values, where lower * numbers indicate higher priority. */ void SetNativePriority(int newPriority); /* * Returns the thread priority for the current thread by querying the system. * This is useful when attaching a thread through JNI. * * Returns a value from 1 to 10 (compatible with java.lang.Thread values). */ static int GetNativePriority(); // Guaranteed to be non-zero. uint32_t GetThreadId() const { return tls32_.thin_lock_thread_id; } pid_t GetTid() const { return tls32_.tid; } // Returns the java.lang.Thread's name, or null if this Thread* doesn't have a peer. ObjPtr<mirror::String> GetThreadName() const REQUIRES_SHARED(Locks::mutator_lock_); // Sets 'name' to the java.lang.Thread's name. This requires no transition to managed code, // allocation, or locking. void GetThreadName(std::string& name) const; // Sets the thread's name. void SetThreadName(const char* name) REQUIRES_SHARED(Locks::mutator_lock_); // Returns the thread-specific CPU-time clock in microseconds or -1 if unavailable. uint64_t GetCpuMicroTime() const; mirror::Object* GetPeer() const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(Thread::Current() == this) << "Use GetPeerFromOtherThread instead"; CHECK(tlsPtr_.jpeer == nullptr); return tlsPtr_.opeer; } // GetPeer is not safe if called on another thread in the middle of the CC thread flip and // the thread's stack may have not been flipped yet and peer may be a from-space (stale) ref. // This function will explicitly mark/forward it. mirror::Object* GetPeerFromOtherThread() const REQUIRES_SHARED(Locks::mutator_lock_); bool HasPeer() const { return tlsPtr_.jpeer != nullptr || tlsPtr_.opeer != nullptr; } RuntimeStats* GetStats() { return &tls64_.stats; } bool IsStillStarting() const; bool IsExceptionPending() const { return tlsPtr_.exception != nullptr; } bool IsAsyncExceptionPending() const { return tlsPtr_.async_exception != nullptr; } mirror::Throwable* GetException() const REQUIRES_SHARED(Locks::mutator_lock_) { return tlsPtr_.exception; } void AssertPendingException() const; void AssertPendingOOMException() const REQUIRES_SHARED(Locks::mutator_lock_); void AssertNoPendingException() const; void AssertNoPendingExceptionForNewException(const char* msg) const; void SetException(ObjPtr<mirror::Throwable> new_exception) REQUIRES_SHARED(Locks::mutator_lock_); // Set an exception that is asynchronously thrown from a different thread. This will be checked // periodically and might overwrite the current 'Exception'. This can only be called from a // checkpoint. // // The caller should also make sure that the thread has been deoptimized so that the exception // could be detected on back-edges. void SetAsyncException(ObjPtr<mirror::Throwable> new_exception) REQUIRES_SHARED(Locks::mutator_lock_); void ClearException() REQUIRES_SHARED(Locks::mutator_lock_) { tlsPtr_.exception = nullptr; } // Move the current async-exception to the main exception. This should be called when the current // thread is ready to deal with any async exceptions. Returns true if there is an async exception // that needs to be dealt with, false otherwise. bool ObserveAsyncException() REQUIRES_SHARED(Locks::mutator_lock_); // Find catch block and perform long jump to appropriate exception handle NO_RETURN void QuickDeliverException() REQUIRES_SHARED(Locks::mutator_lock_); Context* GetLongJumpContext(); void ReleaseLongJumpContext(Context* context) { if (tlsPtr_.long_jump_context != nullptr) { ReleaseLongJumpContextInternal(); } tlsPtr_.long_jump_context = context; } // Get the current method and dex pc. If there are errors in retrieving the dex pc, this will // abort the runtime iff abort_on_error is true. ArtMethod* GetCurrentMethod(uint32_t* dex_pc, bool check_suspended = true, bool abort_on_error = true) const REQUIRES_SHARED(Locks::mutator_lock_); // Returns whether the given exception was thrown by the current Java method being executed // (Note that this includes native Java methods). bool IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const REQUIRES_SHARED(Locks::mutator_lock_); void SetTopOfStack(ArtMethod** top_method) { tlsPtr_.managed_stack.SetTopQuickFrame(top_method); } void SetTopOfStackTagged(ArtMethod** top_method) { tlsPtr_.managed_stack.SetTopQuickFrameTagged(top_method); } void SetTopOfShadowStack(ShadowFrame* top) { tlsPtr_.managed_stack.SetTopShadowFrame(top); } bool HasManagedStack() const { return tlsPtr_.managed_stack.HasTopQuickFrame() || tlsPtr_.managed_stack.HasTopShadowFrame(); } // If 'msg' is null, no detail message is set. void ThrowNewException(const char* exception_class_descriptor, const char* msg) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); // If 'msg' is null, no detail message is set. An exception must be pending, and will be // used as the new exception's cause. void ThrowNewWrappedException(const char* exception_class_descriptor, const char* msg) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); void ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) __attribute__((format(printf, 3, 4))) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); void ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); // OutOfMemoryError is special, because we need to pre-allocate an instance. // Only the GC should call this. void ThrowOutOfMemoryError(const char* msg) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); static void Startup(); static void FinishStartup(); static void Shutdown(); // Notify this thread's thread-group that this thread has started. // Note: the given thread-group is used as a fast path and verified in debug build. If the value // is null, the thread's thread-group is loaded from the peer. void NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group = nullptr) REQUIRES_SHARED(Locks::mutator_lock_); // JNI methods JNIEnvExt* GetJniEnv() const { return tlsPtr_.jni_env; } // Convert a jobject into a Object* ObjPtr<mirror::Object> DecodeJObject(jobject obj) const REQUIRES_SHARED(Locks::mutator_lock_); // Checks if the weak global ref has been cleared by the GC without decoding it. bool IsJWeakCleared(jweak obj) const REQUIRES_SHARED(Locks::mutator_lock_); mirror::Object* GetMonitorEnterObject() const REQUIRES_SHARED(Locks::mutator_lock_) { return tlsPtr_.monitor_enter_object; } void SetMonitorEnterObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { tlsPtr_.monitor_enter_object = obj; } // Implements java.lang.Thread.interrupted. bool Interrupted(); // Implements java.lang.Thread.isInterrupted. bool IsInterrupted(); void Interrupt(Thread* self) REQUIRES(!wait_mutex_); void SetInterrupted(bool i) { tls32_.interrupted.store(i, std::memory_order_seq_cst); } void Notify() REQUIRES(!wait_mutex_); ALWAYS_INLINE void PoisonObjectPointers() { ++poison_object_cookie_; } ALWAYS_INLINE static void PoisonObjectPointersIfDebug(); ALWAYS_INLINE uintptr_t GetPoisonObjectCookie() const { return poison_object_cookie_; } // Parking for 0ns of relative time means an untimed park, negative (though // should be handled in java code) returns immediately void Park(bool is_absolute, int64_t time) REQUIRES_SHARED(Locks::mutator_lock_); void Unpark(); private: void NotifyLocked(Thread* self) REQUIRES(wait_mutex_); public: Mutex* GetWaitMutex() const LOCK_RETURNED(wait_mutex_) { return wait_mutex_; } ConditionVariable* GetWaitConditionVariable() const REQUIRES(wait_mutex_) { return wait_cond_; } Monitor* GetWaitMonitor() const REQUIRES(wait_mutex_) { return wait_monitor_; } void SetWaitMonitor(Monitor* mon) REQUIRES(wait_mutex_) { wait_monitor_ = mon; } // Waiter link-list support. Thread* GetWaitNext() const { return tlsPtr_.wait_next; } void SetWaitNext(Thread* next) { tlsPtr_.wait_next = next; } jobject GetClassLoaderOverride() { return tlsPtr_.class_loader_override; } void SetClassLoaderOverride(jobject class_loader_override); // Create the internal representation of a stack trace, that is more time // and space efficient to compute than the StackTraceElement[]. template<bool kTransactionActive> jobject CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const REQUIRES_SHARED(Locks::mutator_lock_); // Convert an internal stack trace representation (returned by CreateInternalStackTrace) to a // StackTraceElement[]. If output_array is null, a new array is created, otherwise as many // frames as will fit are written into the given array. If stack_depth is non-null, it's updated // with the number of valid frames in the returned array. static jobjectArray InternalStackTraceToStackTraceElementArray( const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array = nullptr, int* stack_depth = nullptr) REQUIRES_SHARED(Locks::mutator_lock_); jobjectArray CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const REQUIRES_SHARED(Locks::mutator_lock_); bool HasDebuggerShadowFrames() const { return tlsPtr_.frame_id_to_shadow_frame != nullptr; } void VisitRoots(RootVisitor* visitor, VisitRootFlags flags) REQUIRES_SHARED(Locks::mutator_lock_); void VerifyStack() REQUIRES_SHARED(Locks::mutator_lock_) { if (kVerifyStack) { VerifyStackImpl(); } } // // Offsets of various members of native Thread class, used by compiled code. // template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> ThinLockIdOffset() { return ThreadOffset<pointer_size>( OFFSETOF_MEMBER(Thread, tls32_) + OFFSETOF_MEMBER(tls_32bit_sized_values, thin_lock_thread_id)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> InterruptedOffset() { return ThreadOffset<pointer_size>( OFFSETOF_MEMBER(Thread, tls32_) + OFFSETOF_MEMBER(tls_32bit_sized_values, interrupted)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> ThreadFlagsOffset() { return ThreadOffset<pointer_size>( OFFSETOF_MEMBER(Thread, tls32_) + OFFSETOF_MEMBER(tls_32bit_sized_values, state_and_flags)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> UseMterpOffset() { return ThreadOffset<pointer_size>( OFFSETOF_MEMBER(Thread, tls32_) + OFFSETOF_MEMBER(tls_32bit_sized_values, use_mterp)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> IsGcMarkingOffset() { return ThreadOffset<pointer_size>( OFFSETOF_MEMBER(Thread, tls32_) + OFFSETOF_MEMBER(tls_32bit_sized_values, is_gc_marking)); } static constexpr size_t IsGcMarkingSize() { return sizeof(tls32_.is_gc_marking); } // Deoptimize the Java stack. void DeoptimizeWithDeoptimizationException(JValue* result) REQUIRES_SHARED(Locks::mutator_lock_); private: template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> ThreadOffsetFromTlsPtr(size_t tls_ptr_offset) { size_t base = OFFSETOF_MEMBER(Thread, tlsPtr_); size_t scale = (pointer_size > kRuntimePointerSize) ? static_cast<size_t>(pointer_size) / static_cast<size_t>(kRuntimePointerSize) : 1; size_t shrink = (kRuntimePointerSize > pointer_size) ? static_cast<size_t>(kRuntimePointerSize) / static_cast<size_t>(pointer_size) : 1; return ThreadOffset<pointer_size>(base + ((tls_ptr_offset * scale) / shrink)); } public: static uint32_t QuickEntryPointOffsetWithSize(size_t quick_entrypoint_offset, PointerSize pointer_size) { if (pointer_size == PointerSize::k32) { return QuickEntryPointOffset<PointerSize::k32>(quick_entrypoint_offset). Uint32Value(); } else { return QuickEntryPointOffset<PointerSize::k64>(quick_entrypoint_offset). Uint32Value(); } } template<PointerSize pointer_size> static ThreadOffset<pointer_size> QuickEntryPointOffset(size_t quick_entrypoint_offset) { return ThreadOffsetFromTlsPtr<pointer_size>( OFFSETOF_MEMBER(tls_ptr_sized_values, quick_entrypoints) + quick_entrypoint_offset); } template<PointerSize pointer_size> static ThreadOffset<pointer_size> JniEntryPointOffset(size_t jni_entrypoint_offset) { return ThreadOffsetFromTlsPtr<pointer_size>( OFFSETOF_MEMBER(tls_ptr_sized_values, jni_entrypoints) + jni_entrypoint_offset); } // Return the entry point offset integer value for ReadBarrierMarkRegX, where X is `reg`. template <PointerSize pointer_size> static int32_t ReadBarrierMarkEntryPointsOffset(size_t reg) { // The entry point list defines 30 ReadBarrierMarkRegX entry points. DCHECK_LT(reg, 30u); // The ReadBarrierMarkRegX entry points are ordered by increasing // register number in Thread::tls_Ptr_.quick_entrypoints. return QUICK_ENTRYPOINT_OFFSET(pointer_size, pReadBarrierMarkReg00).Int32Value() + static_cast<size_t>(pointer_size) * reg; } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> SelfOffset() { return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, self)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> MterpCurrentIBaseOffset() { return ThreadOffsetFromTlsPtr<pointer_size>( OFFSETOF_MEMBER(tls_ptr_sized_values, mterp_current_ibase)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> ExceptionOffset() { return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, exception)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> PeerOffset() { return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, opeer)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> CardTableOffset() { return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, card_table)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> ThreadSuspendTriggerOffset() { return ThreadOffsetFromTlsPtr<pointer_size>( OFFSETOF_MEMBER(tls_ptr_sized_values, suspend_trigger)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> ThreadLocalPosOffset() { return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, thread_local_pos)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> ThreadLocalEndOffset() { return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, thread_local_end)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> ThreadLocalObjectsOffset() { return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, thread_local_objects)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> RosAllocRunsOffset() { return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, rosalloc_runs)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> ThreadLocalAllocStackTopOffset() { return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, thread_local_alloc_stack_top)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> ThreadLocalAllocStackEndOffset() { return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, thread_local_alloc_stack_end)); } // Size of stack less any space reserved for stack overflow size_t GetStackSize() const { return tlsPtr_.stack_size - (tlsPtr_.stack_end - tlsPtr_.stack_begin); } ALWAYS_INLINE uint8_t* GetStackEndForInterpreter(bool implicit_overflow_check) const; uint8_t* GetStackEnd() const { return tlsPtr_.stack_end; } // Set the stack end to that to be used during a stack overflow void SetStackEndForStackOverflow() REQUIRES_SHARED(Locks::mutator_lock_); // Set the stack end to that to be used during regular execution ALWAYS_INLINE void ResetDefaultStackEnd(); bool IsHandlingStackOverflow() const { return tlsPtr_.stack_end == tlsPtr_.stack_begin; } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> StackEndOffset() { return ThreadOffsetFromTlsPtr<pointer_size>( OFFSETOF_MEMBER(tls_ptr_sized_values, stack_end)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> JniEnvOffset() { return ThreadOffsetFromTlsPtr<pointer_size>( OFFSETOF_MEMBER(tls_ptr_sized_values, jni_env)); } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> TopOfManagedStackOffset() { return ThreadOffsetFromTlsPtr<pointer_size>( OFFSETOF_MEMBER(tls_ptr_sized_values, managed_stack) + ManagedStack::TaggedTopQuickFrameOffset()); } const ManagedStack* GetManagedStack() const { return &tlsPtr_.managed_stack; } // Linked list recording fragments of managed stack. void PushManagedStackFragment(ManagedStack* fragment) { tlsPtr_.managed_stack.PushManagedStackFragment(fragment); } void PopManagedStackFragment(const ManagedStack& fragment) { tlsPtr_.managed_stack.PopManagedStackFragment(fragment); } ALWAYS_INLINE ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame); ALWAYS_INLINE ShadowFrame* PopShadowFrame(); template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> TopShadowFrameOffset() { return ThreadOffsetFromTlsPtr<pointer_size>( OFFSETOF_MEMBER(tls_ptr_sized_values, managed_stack) + ManagedStack::TopShadowFrameOffset()); } // Is the given obj in this thread's stack indirect reference table? bool HandleScopeContains(jobject obj) const; void HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) REQUIRES_SHARED(Locks::mutator_lock_); BaseHandleScope* GetTopHandleScope() { return tlsPtr_.top_handle_scope; } void PushHandleScope(BaseHandleScope* handle_scope) { DCHECK_EQ(handle_scope->GetLink(), tlsPtr_.top_handle_scope); tlsPtr_.top_handle_scope = handle_scope; } BaseHandleScope* PopHandleScope() { BaseHandleScope* handle_scope = tlsPtr_.top_handle_scope; DCHECK(handle_scope != nullptr); tlsPtr_.top_handle_scope = tlsPtr_.top_handle_scope->GetLink(); return handle_scope; } template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> TopHandleScopeOffset() { return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, top_handle_scope)); } DebugInvokeReq* GetInvokeReq() const { return tlsPtr_.debug_invoke_req; } SingleStepControl* GetSingleStepControl() const { return tlsPtr_.single_step_control; } // Indicates whether this thread is ready to invoke a method for debugging. This // is only true if the thread has been suspended by a debug event. bool IsReadyForDebugInvoke() const { return tls32_.ready_for_debug_invoke; } void SetReadyForDebugInvoke(bool ready) { tls32_.ready_for_debug_invoke = ready; } bool IsDebugMethodEntry() const { return tls32_.debug_method_entry_; } void SetDebugMethodEntry() { tls32_.debug_method_entry_ = true; } void ClearDebugMethodEntry() { tls32_.debug_method_entry_ = false; } bool GetIsGcMarking() const { CHECK(kUseReadBarrier); return tls32_.is_gc_marking; } void SetIsGcMarkingAndUpdateEntrypoints(bool is_marking); bool GetWeakRefAccessEnabled() const { CHECK(kUseReadBarrier); return tls32_.weak_ref_access_enabled; } void SetWeakRefAccessEnabled(bool enabled) { CHECK(kUseReadBarrier); tls32_.weak_ref_access_enabled = enabled; } uint32_t GetDisableThreadFlipCount() const { CHECK(kUseReadBarrier); return tls32_.disable_thread_flip_count; } void IncrementDisableThreadFlipCount() { CHECK(kUseReadBarrier); ++tls32_.disable_thread_flip_count; } void DecrementDisableThreadFlipCount() { CHECK(kUseReadBarrier); DCHECK_GT(tls32_.disable_thread_flip_count, 0U); --tls32_.disable_thread_flip_count; } // Returns true if the thread is a runtime thread (eg from a ThreadPool). bool IsRuntimeThread() const { return is_runtime_thread_; } void SetIsRuntimeThread(bool is_runtime_thread) { is_runtime_thread_ = is_runtime_thread; } // Returns true if the thread is allowed to load java classes. bool CanLoadClasses() const; // Activates single step control for debugging. The thread takes the // ownership of the given SingleStepControl*. It is deleted by a call // to DeactivateSingleStepControl or upon thread destruction. void ActivateSingleStepControl(SingleStepControl* ssc); // Deactivates single step control for debugging. void DeactivateSingleStepControl(); // Sets debug invoke request for debugging. When the thread is resumed, // it executes the method described by this request then sends the reply // before suspending itself. The thread takes the ownership of the given // DebugInvokeReq*. It is deleted by a call to ClearDebugInvokeReq. void SetDebugInvokeReq(DebugInvokeReq* req); // Clears debug invoke request for debugging. When the thread completes // method invocation, it deletes its debug invoke request and suspends // itself. void ClearDebugInvokeReq(); // Returns the fake exception used to activate deoptimization. static mirror::Throwable* GetDeoptimizationException() { // Note that the mirror::Throwable must be aligned to kObjectAlignment or else it cannot be // represented by ObjPtr. return reinterpret_cast<mirror::Throwable*>(0x100); } // Currently deoptimization invokes verifier which can trigger class loading // and execute Java code, so there might be nested deoptimizations happening. // We need to save the ongoing deoptimization shadow frames and return // values on stacks. // 'from_code' denotes whether the deoptimization was explicitly made from // compiled code. // 'method_type' contains info on whether deoptimization should advance // dex_pc. void PushDeoptimizationContext(const JValue& return_value, bool is_reference, ObjPtr<mirror::Throwable> exception, bool from_code, DeoptimizationMethodType method_type) REQUIRES_SHARED(Locks::mutator_lock_); void PopDeoptimizationContext(JValue* result, ObjPtr<mirror::Throwable>* exception, bool* from_code, DeoptimizationMethodType* method_type) REQUIRES_SHARED(Locks::mutator_lock_); void AssertHasDeoptimizationContext() REQUIRES_SHARED(Locks::mutator_lock_); void PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type); ShadowFrame* PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present = true); // For debugger, find the shadow frame that corresponds to a frame id. // Or return null if there is none. ShadowFrame* FindDebuggerShadowFrame(size_t frame_id) REQUIRES_SHARED(Locks::mutator_lock_); // For debugger, find the bool array that keeps track of the updated vreg set // for a frame id. bool* GetUpdatedVRegFlags(size_t frame_id) REQUIRES_SHARED(Locks::mutator_lock_); // For debugger, find the shadow frame that corresponds to a frame id. If // one doesn't exist yet, create one and track it in frame_id_to_shadow_frame. ShadowFrame* FindOrCreateDebuggerShadowFrame(size_t frame_id, uint32_t num_vregs, ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_); // Delete the entry that maps from frame_id to shadow_frame. void RemoveDebuggerShadowFrameMapping(size_t frame_id) REQUIRES_SHARED(Locks::mutator_lock_); std::deque<instrumentation::InstrumentationStackFrame>* GetInstrumentationStack() { return tlsPtr_.instrumentation_stack; } std::vector<ArtMethod*>* GetStackTraceSample() const { DCHECK(!IsAotCompiler()); return tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample; } void SetStackTraceSample(std::vector<ArtMethod*>* sample) { DCHECK(!IsAotCompiler()); tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample = sample; } verifier::VerifierDeps* GetVerifierDeps() const { DCHECK(IsAotCompiler()); return tlsPtr_.deps_or_stack_trace_sample.verifier_deps; } // It is the responsability of the caller to make sure the verifier_deps // entry in the thread is cleared before destruction of the actual VerifierDeps // object, or the thread. void SetVerifierDeps(verifier::VerifierDeps* verifier_deps) { DCHECK(IsAotCompiler()); DCHECK(verifier_deps == nullptr || tlsPtr_.deps_or_stack_trace_sample.verifier_deps == nullptr); tlsPtr_.deps_or_stack_trace_sample.verifier_deps = verifier_deps; } uint64_t GetTraceClockBase() const { return tls64_.trace_clock_base; } void SetTraceClockBase(uint64_t clock_base) { tls64_.trace_clock_base = clock_base; } BaseMutex* GetHeldMutex(LockLevel level) const { return tlsPtr_.held_mutexes[level]; } void SetHeldMutex(LockLevel level, BaseMutex* mutex) { tlsPtr_.held_mutexes[level] = mutex; } void ClearSuspendBarrier(AtomicInteger* target) REQUIRES(Locks::thread_suspend_count_lock_); bool ReadFlag(ThreadFlag flag) const { return (tls32_.state_and_flags.as_struct.flags & flag) != 0; } bool TestAllFlags() const { return (tls32_.state_and_flags.as_struct.flags != 0); } void AtomicSetFlag(ThreadFlag flag) { tls32_.state_and_flags.as_atomic_int.fetch_or(flag, std::memory_order_seq_cst); } void AtomicClearFlag(ThreadFlag flag) { tls32_.state_and_flags.as_atomic_int.fetch_and(-1 ^ flag, std::memory_order_seq_cst); } bool UseMterp() const { return tls32_.use_mterp.load(); } void ResetQuickAllocEntryPointsForThread(bool is_marking); // Returns the remaining space in the TLAB. size_t TlabSize() const { return tlsPtr_.thread_local_end - tlsPtr_.thread_local_pos; } // Returns the remaining space in the TLAB if we were to expand it to maximum capacity. size_t TlabRemainingCapacity() const { return tlsPtr_.thread_local_limit - tlsPtr_.thread_local_pos; } // Expand the TLAB by a fixed number of bytes. There must be enough capacity to do so. void ExpandTlab(size_t bytes) { tlsPtr_.thread_local_end += bytes; DCHECK_LE(tlsPtr_.thread_local_end, tlsPtr_.thread_local_limit); } // Doesn't check that there is room. mirror::Object* AllocTlab(size_t bytes); void SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit); bool HasTlab() const; uint8_t* GetTlabStart() { return tlsPtr_.thread_local_start; } uint8_t* GetTlabPos() { return tlsPtr_.thread_local_pos; } // Remove the suspend trigger for this thread by making the suspend_trigger_ TLS value // equal to a valid pointer. // TODO: does this need to atomic? I don't think so. void RemoveSuspendTrigger() { tlsPtr_.suspend_trigger = reinterpret_cast<uintptr_t*>(&tlsPtr_.suspend_trigger); } // Trigger a suspend check by making the suspend_trigger_ TLS value an invalid pointer. // The next time a suspend check is done, it will load from the value at this address // and trigger a SIGSEGV. void TriggerSuspend() { tlsPtr_.suspend_trigger = nullptr; } // Push an object onto the allocation stack. bool PushOnThreadLocalAllocationStack(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_); // Set the thread local allocation pointers to the given pointers. void SetThreadLocalAllocationStack(StackReference<mirror::Object>* start, StackReference<mirror::Object>* end); // Resets the thread local allocation pointers. void RevokeThreadLocalAllocationStack(); size_t GetThreadLocalBytesAllocated() const { return tlsPtr_.thread_local_end - tlsPtr_.thread_local_start; } size_t GetThreadLocalObjectsAllocated() const { return tlsPtr_.thread_local_objects; } void* GetRosAllocRun(size_t index) const { return tlsPtr_.rosalloc_runs[index]; } void SetRosAllocRun(size_t index, void* run) { tlsPtr_.rosalloc_runs[index] = run; } bool ProtectStack(bool fatal_on_error = true); bool UnprotectStack(); void SetMterpCurrentIBase(void* ibase) { tlsPtr_.mterp_current_ibase = ibase; } const void* GetMterpCurrentIBase() const { return tlsPtr_.mterp_current_ibase; } bool HandlingSignal() const { return tls32_.handling_signal_; } void SetHandlingSignal(bool handling_signal) { tls32_.handling_signal_ = handling_signal; } bool IsTransitioningToRunnable() const { return tls32_.is_transitioning_to_runnable; } void SetIsTransitioningToRunnable(bool value) { tls32_.is_transitioning_to_runnable = value; } uint32_t DecrementForceInterpreterCount() REQUIRES(Locks::thread_list_lock_) { return --tls32_.force_interpreter_count; } uint32_t IncrementForceInterpreterCount() REQUIRES(Locks::thread_list_lock_) { return ++tls32_.force_interpreter_count; } void SetForceInterpreterCount(uint32_t value) REQUIRES(Locks::thread_list_lock_) { tls32_.force_interpreter_count = value; } uint32_t ForceInterpreterCount() const { return tls32_.force_interpreter_count; } bool IsForceInterpreter() const { return tls32_.force_interpreter_count != 0; } void PushVerifier(verifier::MethodVerifier* verifier); void PopVerifier(verifier::MethodVerifier* verifier); void InitStringEntryPoints(); void ModifyDebugDisallowReadBarrier(int8_t delta) { debug_disallow_read_barrier_ += delta; } uint8_t GetDebugDisallowReadBarrierCount() const { return debug_disallow_read_barrier_; } // Gets the current TLSData associated with the key or nullptr if there isn't any. Note that users // do not gain ownership of TLSData and must synchronize with SetCustomTls themselves to prevent // it from being deleted. TLSData* GetCustomTLS(const char* key) REQUIRES(!Locks::custom_tls_lock_); // Sets the tls entry at 'key' to data. The thread takes ownership of the TLSData. The destructor // will be run when the thread exits or when SetCustomTLS is called again with the same key. void SetCustomTLS(const char* key, TLSData* data) REQUIRES(!Locks::custom_tls_lock_); // Returns true if the current thread is the jit sensitive thread. bool IsJitSensitiveThread() const { return this == jit_sensitive_thread_; } bool IsSystemDaemon() const REQUIRES_SHARED(Locks::mutator_lock_); // Returns true if StrictMode events are traced for the current thread. static bool IsSensitiveThread() { if (is_sensitive_thread_hook_ != nullptr) { return (*is_sensitive_thread_hook_)(); } return false; } // Set to the read barrier marking entrypoints to be non-null. void SetReadBarrierEntrypoints(); static jobject CreateCompileTimePeer(JNIEnv* env, const char* name, bool as_daemon, jobject thread_group) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE InterpreterCache* GetInterpreterCache() { return &interpreter_cache_; } // Clear all thread-local interpreter caches. // // Since the caches are keyed by memory pointer to dex instructions, this must be // called when any dex code is unloaded (before different code gets loaded at the // same memory location). // // If presence of cache entry implies some pre-conditions, this must also be // called if the pre-conditions might no longer hold true. static void ClearAllInterpreterCaches(); template<PointerSize pointer_size> static constexpr ThreadOffset<pointer_size> InterpreterCacheOffset() { return ThreadOffset<pointer_size>(OFFSETOF_MEMBER(Thread, interpreter_cache_)); } static constexpr int InterpreterCacheSizeLog2() { return WhichPowerOf2(InterpreterCache::kSize); } private: explicit Thread(bool daemon); ~Thread() REQUIRES(!Locks::mutator_lock_, !Locks::thread_suspend_count_lock_); void Destroy(); void NotifyInTheadList() REQUIRES_SHARED(Locks::thread_list_lock_); // Attaches the calling native thread to the runtime, returning the new native peer. // Used to implement JNI AttachCurrentThread and AttachCurrentThreadAsDaemon calls. template <typename PeerAction> static Thread* Attach(const char* thread_name, bool as_daemon, PeerAction p); void CreatePeer(const char* name, bool as_daemon, jobject thread_group); template<bool kTransactionActive> static void InitPeer(ScopedObjectAccessAlreadyRunnable& soa, ObjPtr<mirror::Object> peer, jboolean thread_is_daemon, jobject thread_group, jobject thread_name, jint thread_priority) REQUIRES_SHARED(Locks::mutator_lock_); // Avoid use, callers should use SetState. Used only by SignalCatcher::HandleSigQuit, ~Thread and // Dbg::ManageDeoptimization. ThreadState SetStateUnsafe(ThreadState new_state) { ThreadState old_state = GetState(); if (old_state == kRunnable && new_state != kRunnable) { // Need to run pending checkpoint and suspend barriers. Run checkpoints in runnable state in // case they need to use a ScopedObjectAccess. If we are holding the mutator lock and a SOA // attempts to TransitionFromSuspendedToRunnable, it results in a deadlock. TransitionToSuspendedAndRunCheckpoints(new_state); // Since we transitioned to a suspended state, check the pass barrier requests. PassActiveSuspendBarriers(); } else { tls32_.state_and_flags.as_struct.state = new_state; } return old_state; } void VerifyStackImpl() REQUIRES_SHARED(Locks::mutator_lock_); void DumpState(std::ostream& os) const REQUIRES_SHARED(Locks::mutator_lock_); void DumpStack(std::ostream& os, bool dump_native_stack = true, BacktraceMap* backtrace_map = nullptr, bool force_dump_stack = false) const REQUIRES_SHARED(Locks::mutator_lock_); // Out-of-line conveniences for debugging in gdb. static Thread* CurrentFromGdb(); // Like Thread::Current. // Like Thread::Dump(std::cerr). void DumpFromGdb() const REQUIRES_SHARED(Locks::mutator_lock_); static void* CreateCallback(void* arg); void HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) REQUIRES_SHARED(Locks::mutator_lock_); void RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) REQUIRES_SHARED(Locks::mutator_lock_); // Initialize a thread. // // The third parameter is not mandatory. If given, the thread will use this JNIEnvExt. In case // Init succeeds, this means the thread takes ownership of it. If Init fails, it is the caller's // responsibility to destroy the given JNIEnvExt. If the parameter is null, Init will try to // create a JNIEnvExt on its own (and potentially fail at that stage, indicated by a return value // of false). bool Init(ThreadList*, JavaVMExt*, JNIEnvExt* jni_env_ext = nullptr) REQUIRES(Locks::runtime_shutdown_lock_); void InitCardTable(); void InitCpu(); void CleanupCpu(); void InitTlsEntryPoints(); void InitTid(); void InitPthreadKeySelf(); bool InitStackHwm(); void SetUpAlternateSignalStack(); void TearDownAlternateSignalStack(); ALWAYS_INLINE void TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_); ALWAYS_INLINE void PassActiveSuspendBarriers() REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_); // Registers the current thread as the jit sensitive thread. Should be called just once. static void SetJitSensitiveThread() { if (jit_sensitive_thread_ == nullptr) { jit_sensitive_thread_ = Thread::Current(); } else { LOG(WARNING) << "Attempt to set the sensitive thread twice. Tid:" << Thread::Current()->GetTid(); } } static void SetSensitiveThreadHook(bool (*is_sensitive_thread_hook)()) { is_sensitive_thread_hook_ = is_sensitive_thread_hook; } bool ModifySuspendCountInternal(Thread* self, int delta, AtomicInteger* suspend_barrier, SuspendReason reason) WARN_UNUSED REQUIRES(Locks::thread_suspend_count_lock_); // Runs a single checkpoint function. If there are no more pending checkpoint functions it will // clear the kCheckpointRequest flag. The caller is responsible for calling this in a loop until // the kCheckpointRequest flag is cleared. void RunCheckpointFunction(); void RunEmptyCheckpoint(); bool PassActiveSuspendBarriers(Thread* self) REQUIRES(!Locks::thread_suspend_count_lock_); // Install the protected region for implicit stack checks. void InstallImplicitProtection(); template <bool kPrecise> void VisitRoots(RootVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_); static bool IsAotCompiler(); void ReleaseLongJumpContextInternal(); // 32 bits of atomically changed state and flags. Keeping as 32 bits allows and atomic CAS to // change from being Suspended to Runnable without a suspend request occurring. union PACKED(4) StateAndFlags { StateAndFlags() {} struct PACKED(4) { // Bitfield of flag values. Must be changed atomically so that flag values aren't lost. See // ThreadFlags for bit field meanings. volatile uint16_t flags; // Holds the ThreadState. May be changed non-atomically between Suspended (ie not Runnable) // transitions. Changing to Runnable requires that the suspend_request be part of the atomic // operation. If a thread is suspended and a suspend_request is present, a thread may not // change to Runnable as a GC or other operation is in progress. volatile uint16_t state; } as_struct; AtomicInteger as_atomic_int; volatile int32_t as_int; private: // gcc does not handle struct with volatile member assignments correctly. // See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47409 DISALLOW_COPY_AND_ASSIGN(StateAndFlags); }; static_assert(sizeof(StateAndFlags) == sizeof(int32_t), "Weird state_and_flags size"); static void ThreadExitCallback(void* arg); // Maximum number of suspend barriers. static constexpr uint32_t kMaxSuspendBarriers = 3; // Has Thread::Startup been called? static bool is_started_; // TLS key used to retrieve the Thread*. static pthread_key_t pthread_key_self_; // Used to notify threads that they should attempt to resume, they will suspend again if // their suspend count is > 0. static ConditionVariable* resume_cond_ GUARDED_BY(Locks::thread_suspend_count_lock_); // Hook passed by framework which returns true // when StrictMode events are traced for the current thread. static bool (*is_sensitive_thread_hook_)(); // Stores the jit sensitive thread (which for now is the UI thread). static Thread* jit_sensitive_thread_; /***********************************************************************************************/ // Thread local storage. Fields are grouped by size to enable 32 <-> 64 searching to account for // pointer size differences. To encourage shorter encoding, more frequently used values appear // first if possible. /***********************************************************************************************/ struct PACKED(4) tls_32bit_sized_values { // We have no control over the size of 'bool', but want our boolean fields // to be 4-byte quantities. typedef uint32_t bool32_t; explicit tls_32bit_sized_values(bool is_daemon) : suspend_count(0), debug_suspend_count(0), thin_lock_thread_id(0), tid(0), daemon(is_daemon), throwing_OutOfMemoryError(false), no_thread_suspension(0), thread_exit_check_count(0), handling_signal_(false), is_transitioning_to_runnable(false), ready_for_debug_invoke(false), debug_method_entry_(false), is_gc_marking(false), weak_ref_access_enabled(true), disable_thread_flip_count(0), user_code_suspend_count(0), force_interpreter_count(0) { } union StateAndFlags state_and_flags; static_assert(sizeof(union StateAndFlags) == sizeof(int32_t), "Size of state_and_flags and int32 are different"); // A non-zero value is used to tell the current thread to enter a safe point // at the next poll. int suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_); // How much of 'suspend_count_' is by request of the debugger, used to set things right // when the debugger detaches. Must be <= suspend_count_. int debug_suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_); // Thin lock thread id. This is a small integer used by the thin lock implementation. // This is not to be confused with the native thread's tid, nor is it the value returned // by java.lang.Thread.getId --- this is a distinct value, used only for locking. One // important difference between this id and the ids visible to managed code is that these // ones get reused (to ensure that they fit in the number of bits available). uint32_t thin_lock_thread_id; // System thread id. uint32_t tid; // Is the thread a daemon? const bool32_t daemon; // A boolean telling us whether we're recursively throwing OOME. bool32_t throwing_OutOfMemoryError; // A positive value implies we're in a region where thread suspension isn't expected. uint32_t no_thread_suspension; // How many times has our pthread key's destructor been called? uint32_t thread_exit_check_count; // True if signal is being handled by this thread. bool32_t handling_signal_; // True if the thread is in TransitionFromSuspendedToRunnable(). This is used to distinguish the // non-runnable threads (eg. kNative, kWaiting) that are about to transition to runnable from // the rest of them. bool32_t is_transitioning_to_runnable; // True if the thread has been suspended by a debugger event. This is // used to invoke method from the debugger which is only allowed when // the thread is suspended by an event. bool32_t ready_for_debug_invoke; // True if the thread enters a method. This is used to detect method entry // event for the debugger. bool32_t debug_method_entry_; // True if the GC is in the marking phase. This is used for the CC collector only. This is // thread local so that we can simplify the logic to check for the fast path of read barriers of // GC roots. bool32_t is_gc_marking; // Thread "interrupted" status; stays raised until queried or thrown. Atomic<bool32_t> interrupted; AtomicInteger park_state_; // True if the thread is allowed to access a weak ref (Reference::GetReferent() and system // weaks) and to potentially mark an object alive/gray. This is used for concurrent reference // processing of the CC collector only. This is thread local so that we can enable/disable weak // ref access by using a checkpoint and avoid a race around the time weak ref access gets // disabled and concurrent reference processing begins (if weak ref access is disabled during a // pause, this is not an issue.) Other collectors use Runtime::DisallowNewSystemWeaks() and // ReferenceProcessor::EnableSlowPath(). bool32_t weak_ref_access_enabled; // A thread local version of Heap::disable_thread_flip_count_. This keeps track of how many // levels of (nested) JNI critical sections the thread is in and is used to detect a nested JNI // critical section enter. uint32_t disable_thread_flip_count; // How much of 'suspend_count_' is by request of user code, used to distinguish threads // suspended by the runtime from those suspended by user code. // This should have GUARDED_BY(Locks::user_code_suspension_lock_) but auto analysis cannot be // told that AssertHeld should be good enough. int user_code_suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_); // Count of how many times this thread has been forced to interpreter. If this is not 0 the // thread must remain in interpreted code as much as possible. uint32_t force_interpreter_count; // True if everything is in the ideal state for fast interpretation. // False if we need to switch to the C++ interpreter to handle special cases. std::atomic<bool32_t> use_mterp; } tls32_; struct PACKED(8) tls_64bit_sized_values { tls_64bit_sized_values() : trace_clock_base(0) { } // The clock base used for tracing. uint64_t trace_clock_base; RuntimeStats stats; } tls64_; struct PACKED(sizeof(void*)) tls_ptr_sized_values { tls_ptr_sized_values() : card_table(nullptr), exception(nullptr), stack_end(nullptr), managed_stack(), suspend_trigger(nullptr), jni_env(nullptr), tmp_jni_env(nullptr), self(nullptr), opeer(nullptr), jpeer(nullptr), stack_begin(nullptr), stack_size(0), deps_or_stack_trace_sample(), wait_next(nullptr), monitor_enter_object(nullptr), top_handle_scope(nullptr), class_loader_override(nullptr), long_jump_context(nullptr), instrumentation_stack(nullptr), debug_invoke_req(nullptr), single_step_control(nullptr), stacked_shadow_frame_record(nullptr), deoptimization_context_stack(nullptr), frame_id_to_shadow_frame(nullptr), name(nullptr), pthread_self(0), last_no_thread_suspension_cause(nullptr), checkpoint_function(nullptr), thread_local_start(nullptr), thread_local_pos(nullptr), thread_local_end(nullptr), thread_local_limit(nullptr), thread_local_objects(0), mterp_current_ibase(nullptr), thread_local_alloc_stack_top(nullptr), thread_local_alloc_stack_end(nullptr), flip_function(nullptr), method_verifier(nullptr), thread_local_mark_stack(nullptr), async_exception(nullptr) { std::fill(held_mutexes, held_mutexes + kLockLevelCount, nullptr); } // The biased card table, see CardTable for details. uint8_t* card_table; // The pending exception or null. mirror::Throwable* exception; // The end of this thread's stack. This is the lowest safely-addressable address on the stack. // We leave extra space so there's room for the code that throws StackOverflowError. uint8_t* stack_end; // The top of the managed stack often manipulated directly by compiler generated code. ManagedStack managed_stack; // In certain modes, setting this to 0 will trigger a SEGV and thus a suspend check. It is // normally set to the address of itself. uintptr_t* suspend_trigger; // Every thread may have an associated JNI environment JNIEnvExt* jni_env; // Temporary storage to transfer a pre-allocated JNIEnvExt from the creating thread to the // created thread. JNIEnvExt* tmp_jni_env; // Initialized to "this". On certain architectures (such as x86) reading off of Thread::Current // is easy but getting the address of Thread::Current is hard. This field can be read off of // Thread::Current to give the address. Thread* self; // Our managed peer (an instance of java.lang.Thread). The jobject version is used during thread // start up, until the thread is registered and the local opeer_ is used. mirror::Object* opeer; jobject jpeer; // The "lowest addressable byte" of the stack. uint8_t* stack_begin; // Size of the stack. size_t stack_size; // Sampling profiler and AOT verification cannot happen on the same run, so we share // the same entry for the stack trace and the verifier deps. union DepsOrStackTraceSample { DepsOrStackTraceSample() { verifier_deps = nullptr; stack_trace_sample = nullptr; } // Pointer to previous stack trace captured by sampling profiler. std::vector<ArtMethod*>* stack_trace_sample; // When doing AOT verification, per-thread VerifierDeps. verifier::VerifierDeps* verifier_deps; } deps_or_stack_trace_sample; // The next thread in the wait set this thread is part of or null if not waiting. Thread* wait_next; // If we're blocked in MonitorEnter, this is the object we're trying to lock. mirror::Object* monitor_enter_object; // Top of linked list of handle scopes or null for none. BaseHandleScope* top_handle_scope; // Needed to get the right ClassLoader in JNI_OnLoad, but also // useful for testing. jobject class_loader_override; // Thread local, lazily allocated, long jump context. Used to deliver exceptions. Context* long_jump_context; // Additional stack used by method instrumentation to store method and return pc values. // Stored as a pointer since std::deque is not PACKED. std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack; // JDWP invoke-during-breakpoint support. DebugInvokeReq* debug_invoke_req; // JDWP single-stepping support. SingleStepControl* single_step_control; // For gc purpose, a shadow frame record stack that keeps track of: // 1) shadow frames under construction. // 2) deoptimization shadow frames. StackedShadowFrameRecord* stacked_shadow_frame_record; // Deoptimization return value record stack. DeoptimizationContextRecord* deoptimization_context_stack; // For debugger, a linked list that keeps the mapping from frame_id to shadow frame. // Shadow frames may be created before deoptimization happens so that the debugger can // set local values there first. FrameIdToShadowFrame* frame_id_to_shadow_frame; // A cached copy of the java.lang.Thread's name. std::string* name; // A cached pthread_t for the pthread underlying this Thread*. pthread_t pthread_self; // If no_thread_suspension_ is > 0, what is causing that assertion. const char* last_no_thread_suspension_cause; // Pending checkpoint function or null if non-pending. If this checkpoint is set and someone\ // requests another checkpoint, it goes to the checkpoint overflow list. Closure* checkpoint_function GUARDED_BY(Locks::thread_suspend_count_lock_); // Pending barriers that require passing or NULL if non-pending. Installation guarding by // Locks::thread_suspend_count_lock_. // They work effectively as art::Barrier, but implemented directly using AtomicInteger and futex // to avoid additional cost of a mutex and a condition variable, as used in art::Barrier. AtomicInteger* active_suspend_barriers[kMaxSuspendBarriers]; // Thread-local allocation pointer. Moved here to force alignment for thread_local_pos on ARM. uint8_t* thread_local_start; // thread_local_pos and thread_local_end must be consecutive for ldrd and are 8 byte aligned for // potentially better performance. uint8_t* thread_local_pos; uint8_t* thread_local_end; // Thread local limit is how much we can expand the thread local buffer to, it is greater or // equal to thread_local_end. uint8_t* thread_local_limit; size_t thread_local_objects; // Entrypoint function pointers. // TODO: move this to more of a global offset table model to avoid per-thread duplication. JniEntryPoints jni_entrypoints; QuickEntryPoints quick_entrypoints; // Mterp jump table base. void* mterp_current_ibase; // There are RosAlloc::kNumThreadLocalSizeBrackets thread-local size brackets per thread. void* rosalloc_runs[kNumRosAllocThreadLocalSizeBracketsInThread]; // Thread-local allocation stack data/routines. StackReference<mirror::Object>* thread_local_alloc_stack_top; StackReference<mirror::Object>* thread_local_alloc_stack_end; // Support for Mutex lock hierarchy bug detection. BaseMutex* held_mutexes[kLockLevelCount]; // The function used for thread flip. Closure* flip_function; // Current method verifier, used for root marking. verifier::MethodVerifier* method_verifier; // Thread-local mark stack for the concurrent copying collector. gc::accounting::AtomicStack<mirror::Object>* thread_local_mark_stack; // The pending async-exception or null. mirror::Throwable* async_exception; } tlsPtr_; // Small thread-local cache to be used from the interpreter. // It is keyed by dex instruction pointer. // The value is opcode-depended (e.g. field offset). InterpreterCache interpreter_cache_; // All fields below this line should not be accessed by native code. This means these fields can // be modified, rearranged, added or removed without having to modify asm_support.h // Guards the 'wait_monitor_' members. Mutex* wait_mutex_ DEFAULT_MUTEX_ACQUIRED_AFTER; // Condition variable waited upon during a wait. ConditionVariable* wait_cond_ GUARDED_BY(wait_mutex_); // Pointer to the monitor lock we're currently waiting on or null if not waiting. Monitor* wait_monitor_ GUARDED_BY(wait_mutex_); // Debug disable read barrier count, only is checked for debug builds and only in the runtime. uint8_t debug_disallow_read_barrier_ = 0; // Note that it is not in the packed struct, may not be accessed for cross compilation. uintptr_t poison_object_cookie_ = 0; // Pending extra checkpoints if checkpoint_function_ is already used. std::list<Closure*> checkpoint_overflow_ GUARDED_BY(Locks::thread_suspend_count_lock_); // Custom TLS field that can be used by plugins or the runtime. Should not be accessed directly by // compiled code or entrypoints. SafeMap<std::string, std::unique_ptr<TLSData>> custom_tls_ GUARDED_BY(Locks::custom_tls_lock_); // True if the thread is some form of runtime thread (ex, GC or JIT). bool is_runtime_thread_; friend class Dbg; // For SetStateUnsafe. friend class gc::collector::SemiSpace; // For getting stack traces. friend class Runtime; // For CreatePeer. friend class QuickExceptionHandler; // For dumping the stack. friend class ScopedThreadStateChange; friend class StubTest; // For accessing entrypoints. friend class ThreadList; // For ~Thread and Destroy. friend class EntrypointsOrderTest; // To test the order of tls entries. DISALLOW_COPY_AND_ASSIGN(Thread); }; class SCOPED_CAPABILITY ScopedAssertNoThreadSuspension { public: ALWAYS_INLINE ScopedAssertNoThreadSuspension(const char* cause, bool enabled = true) ACQUIRE(Roles::uninterruptible_) : enabled_(enabled) { if (!enabled_) { return; } if (kIsDebugBuild) { self_ = Thread::Current(); old_cause_ = self_->StartAssertNoThreadSuspension(cause); } else { Roles::uninterruptible_.Acquire(); // No-op. } } ALWAYS_INLINE ~ScopedAssertNoThreadSuspension() RELEASE(Roles::uninterruptible_) { if (!enabled_) { return; } if (kIsDebugBuild) { self_->EndAssertNoThreadSuspension(old_cause_); } else { Roles::uninterruptible_.Release(); // No-op. } } private: Thread* self_; const bool enabled_; const char* old_cause_; }; class ScopedStackedShadowFramePusher { public: ScopedStackedShadowFramePusher(Thread* self, ShadowFrame* sf, StackedShadowFrameType type) : self_(self), type_(type) { self_->PushStackedShadowFrame(sf, type); } ~ScopedStackedShadowFramePusher() { self_->PopStackedShadowFrame(type_); } private: Thread* const self_; const StackedShadowFrameType type_; DISALLOW_COPY_AND_ASSIGN(ScopedStackedShadowFramePusher); }; // Only works for debug builds. class ScopedDebugDisallowReadBarriers { public: explicit ScopedDebugDisallowReadBarriers(Thread* self) : self_(self) { self_->ModifyDebugDisallowReadBarrier(1); } ~ScopedDebugDisallowReadBarriers() { self_->ModifyDebugDisallowReadBarrier(-1); } private: Thread* const self_; }; class ScopedTransitioningToRunnable : public ValueObject { public: explicit ScopedTransitioningToRunnable(Thread* self) : self_(self) { DCHECK_EQ(self, Thread::Current()); if (kUseReadBarrier) { self_->SetIsTransitioningToRunnable(true); } } ~ScopedTransitioningToRunnable() { if (kUseReadBarrier) { self_->SetIsTransitioningToRunnable(false); } } private: Thread* const self_; }; class ThreadLifecycleCallback { public: virtual ~ThreadLifecycleCallback() {} virtual void ThreadStart(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) = 0; virtual void ThreadDeath(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) = 0; }; std::ostream& operator<<(std::ostream& os, const Thread& thread); std::ostream& operator<<(std::ostream& os, const StackedShadowFrameType& thread); } // namespace art #endif // ART_RUNTIME_THREAD_H_