/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <dlfcn.h> #include <errno.h> #include <pthread.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <algorithm> #include <initializer_list> #include <mutex> #include <type_traits> #include <utility> #include "log.h" #include "sigchain.h" #if defined(__APPLE__) #define _NSIG NSIG #define sighandler_t sig_t // Darwin has an #error when ucontext.h is included without _XOPEN_SOURCE defined. #define _XOPEN_SOURCE #endif #include <ucontext.h> // libsigchain provides an interception layer for signal handlers, to allow ART and others to give // their signal handlers the first stab at handling signals before passing them on to user code. // // It implements wrapper functions for signal, sigaction, and sigprocmask, and a handler that // forwards signals appropriately. // // In our handler, we start off with all signals blocked, fetch the original signal mask from the // passed in ucontext, and then adjust our signal mask appropriately for the user handler. // // It's somewhat tricky for us to properly handle some flag cases: // SA_NOCLDSTOP and SA_NOCLDWAIT: shouldn't matter, we don't have special handlers for SIGCHLD. // SA_NODEFER: unimplemented, we can manually change the signal mask appropriately. // ~SA_ONSTACK: always silently enable this // SA_RESETHAND: unimplemented, but we can probably do this? // ~SA_RESTART: unimplemented, maybe we can reserve an RT signal, register an empty handler that // doesn't have SA_RESTART, and raise the signal to avoid restarting syscalls that are // expected to be interrupted? #if defined(__BIONIC__) && !defined(__LP64__) && !defined(__mips__) static int sigismember(const sigset64_t* sigset, int signum) { return sigismember64(sigset, signum); } static int sigemptyset(sigset64_t* sigset) { return sigemptyset64(sigset); } static int sigaddset(sigset64_t* sigset, int signum) { return sigaddset64(sigset, signum); } static int sigdelset(sigset64_t* sigset, int signum) { return sigdelset64(sigset, signum); } #endif template<typename SigsetType> static int sigorset(SigsetType* dest, SigsetType* left, SigsetType* right) { sigemptyset(dest); for (size_t i = 0; i < sizeof(SigsetType) * CHAR_BIT; ++i) { if (sigismember(left, i) == 1 || sigismember(right, i) == 1) { sigaddset(dest, i); } } return 0; } namespace art { static decltype(&sigaction) linked_sigaction; static decltype(&sigprocmask) linked_sigprocmask; #if defined(__BIONIC__) static decltype(&sigaction64) linked_sigaction64; static decltype(&sigprocmask64) linked_sigprocmask64; #endif template<typename T> static void lookup_next_symbol(T* output, T wrapper, const char* name) { void* sym = dlsym(RTLD_NEXT, name); // NOLINT glibc triggers cert-dcl16-c with RTLD_NEXT. if (sym == nullptr) { sym = dlsym(RTLD_DEFAULT, name); if (sym == wrapper || sym == sigaction) { fatal("Unable to find next %s in signal chain", name); } } *output = reinterpret_cast<T>(sym); } __attribute__((constructor)) static void InitializeSignalChain() { static std::once_flag once; std::call_once(once, []() { lookup_next_symbol(&linked_sigaction, sigaction, "sigaction"); lookup_next_symbol(&linked_sigprocmask, sigprocmask, "sigprocmask"); #if defined(__BIONIC__) lookup_next_symbol(&linked_sigaction64, sigaction64, "sigaction64"); lookup_next_symbol(&linked_sigprocmask64, sigprocmask64, "sigprocmask64"); #endif }); } static pthread_key_t GetHandlingSignalKey() { static pthread_key_t key; static std::once_flag once; std::call_once(once, []() { int rc = pthread_key_create(&key, nullptr); if (rc != 0) { fatal("failed to create sigchain pthread key: %s", strerror(rc)); } }); return key; } static bool GetHandlingSignal() { void* result = pthread_getspecific(GetHandlingSignalKey()); return reinterpret_cast<uintptr_t>(result); } static void SetHandlingSignal(bool value) { pthread_setspecific(GetHandlingSignalKey(), reinterpret_cast<void*>(static_cast<uintptr_t>(value))); } class ScopedHandlingSignal { public: ScopedHandlingSignal() : original_value_(GetHandlingSignal()) { } ~ScopedHandlingSignal() { SetHandlingSignal(original_value_); } private: bool original_value_; }; class SignalChain { public: SignalChain() : claimed_(false) { } bool IsClaimed() { return claimed_; } void Claim(int signo) { if (!claimed_) { Register(signo); claimed_ = true; } } // Register the signal chain with the kernel if needed. void Register(int signo) { #if defined(__BIONIC__) struct sigaction64 handler_action = {}; sigfillset64(&handler_action.sa_mask); #else struct sigaction handler_action = {}; sigfillset(&handler_action.sa_mask); #endif handler_action.sa_sigaction = SignalChain::Handler; handler_action.sa_flags = SA_RESTART | SA_SIGINFO | SA_ONSTACK; #if defined(__BIONIC__) linked_sigaction64(signo, &handler_action, &action_); #else linked_sigaction(signo, &handler_action, &action_); #endif } template <typename SigactionType> SigactionType GetAction() { if constexpr (std::is_same_v<decltype(action_), SigactionType>) { return action_; } else { SigactionType result; result.sa_flags = action_.sa_flags; result.sa_handler = action_.sa_handler; #if defined(SA_RESTORER) result.sa_restorer = action_.sa_restorer; #endif memcpy(&result.sa_mask, &action_.sa_mask, std::min(sizeof(action_.sa_mask), sizeof(result.sa_mask))); return result; } } template <typename SigactionType> void SetAction(const SigactionType* new_action) { if constexpr (std::is_same_v<decltype(action_), SigactionType>) { action_ = *new_action; } else { action_.sa_flags = new_action->sa_flags; action_.sa_handler = new_action->sa_handler; #if defined(SA_RESTORER) action_.sa_restorer = new_action->sa_restorer; #endif sigemptyset(&action_.sa_mask); memcpy(&action_.sa_mask, &new_action->sa_mask, std::min(sizeof(action_.sa_mask), sizeof(new_action->sa_mask))); } } void AddSpecialHandler(SigchainAction* sa) { for (SigchainAction& slot : special_handlers_) { if (slot.sc_sigaction == nullptr) { slot = *sa; return; } } fatal("too many special signal handlers"); } void RemoveSpecialHandler(bool (*fn)(int, siginfo_t*, void*)) { // This isn't thread safe, but it's unlikely to be a real problem. size_t len = sizeof(special_handlers_)/sizeof(*special_handlers_); for (size_t i = 0; i < len; ++i) { if (special_handlers_[i].sc_sigaction == fn) { for (size_t j = i; j < len - 1; ++j) { special_handlers_[j] = special_handlers_[j + 1]; } special_handlers_[len - 1].sc_sigaction = nullptr; return; } } fatal("failed to find special handler to remove"); } static void Handler(int signo, siginfo_t* siginfo, void*); private: bool claimed_; #if defined(__BIONIC__) struct sigaction64 action_; #else struct sigaction action_; #endif SigchainAction special_handlers_[2]; }; // _NSIG is 1 greater than the highest valued signal, but signals start from 1. // Leave an empty element at index 0 for convenience. static SignalChain chains[_NSIG + 1]; void SignalChain::Handler(int signo, siginfo_t* siginfo, void* ucontext_raw) { // Try the special handlers first. // If one of them crashes, we'll reenter this handler and pass that crash onto the user handler. if (!GetHandlingSignal()) { for (const auto& handler : chains[signo].special_handlers_) { if (handler.sc_sigaction == nullptr) { break; } // The native bridge signal handler might not return. // Avoid setting the thread local flag in this case, since we'll never // get a chance to restore it. bool handler_noreturn = (handler.sc_flags & SIGCHAIN_ALLOW_NORETURN); sigset_t previous_mask; linked_sigprocmask(SIG_SETMASK, &handler.sc_mask, &previous_mask); ScopedHandlingSignal restorer; if (!handler_noreturn) { SetHandlingSignal(true); } if (handler.sc_sigaction(signo, siginfo, ucontext_raw)) { return; } linked_sigprocmask(SIG_SETMASK, &previous_mask, nullptr); } } // Forward to the user's signal handler. int handler_flags = chains[signo].action_.sa_flags; ucontext_t* ucontext = static_cast<ucontext_t*>(ucontext_raw); #if defined(__BIONIC__) sigset64_t mask; sigorset(&mask, &ucontext->uc_sigmask64, &chains[signo].action_.sa_mask); #else sigset_t mask; sigorset(&mask, &ucontext->uc_sigmask, &chains[signo].action_.sa_mask); #endif if (!(handler_flags & SA_NODEFER)) { sigaddset(&mask, signo); } #if defined(__BIONIC__) linked_sigprocmask64(SIG_SETMASK, &mask, nullptr); #else linked_sigprocmask(SIG_SETMASK, &mask, nullptr); #endif if ((handler_flags & SA_SIGINFO)) { chains[signo].action_.sa_sigaction(signo, siginfo, ucontext_raw); } else { auto handler = chains[signo].action_.sa_handler; if (handler == SIG_IGN) { return; } else if (handler == SIG_DFL) { fatal("exiting due to SIG_DFL handler for signal %d", signo); } else { handler(signo); } } } template <typename SigactionType> static int __sigaction(int signal, const SigactionType* new_action, SigactionType* old_action, int (*linked)(int, const SigactionType*, SigactionType*)) { // If this signal has been claimed as a signal chain, record the user's // action but don't pass it on to the kernel. // Note that we check that the signal number is in range here. An out of range signal // number should behave exactly as the libc sigaction. if (signal <= 0 || signal >= _NSIG) { errno = EINVAL; return -1; } if (chains[signal].IsClaimed()) { SigactionType saved_action = chains[signal].GetAction<SigactionType>(); if (new_action != nullptr) { chains[signal].SetAction(new_action); } if (old_action != nullptr) { *old_action = saved_action; } return 0; } // Will only get here if the signal chain has not been claimed. We want // to pass the sigaction on to the kernel via the real sigaction in libc. return linked(signal, new_action, old_action); } extern "C" int sigaction(int signal, const struct sigaction* new_action, struct sigaction* old_action) { InitializeSignalChain(); return __sigaction(signal, new_action, old_action, linked_sigaction); } #if defined(__BIONIC__) extern "C" int sigaction64(int signal, const struct sigaction64* new_action, struct sigaction64* old_action) { InitializeSignalChain(); return __sigaction(signal, new_action, old_action, linked_sigaction64); } #endif extern "C" sighandler_t signal(int signo, sighandler_t handler) { InitializeSignalChain(); if (signo <= 0 || signo >= _NSIG) { errno = EINVAL; return SIG_ERR; } struct sigaction sa = {}; sigemptyset(&sa.sa_mask); sa.sa_handler = handler; sa.sa_flags = SA_RESTART | SA_ONSTACK; sighandler_t oldhandler; // If this signal has been claimed as a signal chain, record the user's // action but don't pass it on to the kernel. if (chains[signo].IsClaimed()) { oldhandler = reinterpret_cast<sighandler_t>( chains[signo].GetAction<struct sigaction>().sa_handler); chains[signo].SetAction(&sa); return oldhandler; } // Will only get here if the signal chain has not been claimed. We want // to pass the sigaction on to the kernel via the real sigaction in libc. if (linked_sigaction(signo, &sa, &sa) == -1) { return SIG_ERR; } return reinterpret_cast<sighandler_t>(sa.sa_handler); } #if !defined(__LP64__) extern "C" sighandler_t bsd_signal(int signo, sighandler_t handler) { InitializeSignalChain(); return signal(signo, handler); } #endif template <typename SigsetType> int __sigprocmask(int how, const SigsetType* new_set, SigsetType* old_set, int (*linked)(int, const SigsetType*, SigsetType*)) { // When inside a signal handler, forward directly to the actual sigprocmask. if (GetHandlingSignal()) { return linked(how, new_set, old_set); } const SigsetType* new_set_ptr = new_set; SigsetType tmpset; if (new_set != nullptr) { tmpset = *new_set; if (how == SIG_BLOCK || how == SIG_SETMASK) { // Don't allow claimed signals in the mask. If a signal chain has been claimed // we can't allow the user to block that signal. for (int i = 1; i < _NSIG; ++i) { if (chains[i].IsClaimed() && sigismember(&tmpset, i)) { sigdelset(&tmpset, i); } } } new_set_ptr = &tmpset; } return linked(how, new_set_ptr, old_set); } extern "C" int sigprocmask(int how, const sigset_t* new_set, sigset_t* old_set) { InitializeSignalChain(); return __sigprocmask(how, new_set, old_set, linked_sigprocmask); } #if defined(__BIONIC__) extern "C" int sigprocmask64(int how, const sigset64_t* new_set, sigset64_t* old_set) { InitializeSignalChain(); return __sigprocmask(how, new_set, old_set, linked_sigprocmask64); } #endif extern "C" void AddSpecialSignalHandlerFn(int signal, SigchainAction* sa) { InitializeSignalChain(); if (signal <= 0 || signal >= _NSIG) { fatal("Invalid signal %d", signal); } // Set the managed_handler. chains[signal].AddSpecialHandler(sa); chains[signal].Claim(signal); } extern "C" void RemoveSpecialSignalHandlerFn(int signal, bool (*fn)(int, siginfo_t*, void*)) { InitializeSignalChain(); if (signal <= 0 || signal >= _NSIG) { fatal("Invalid signal %d", signal); } chains[signal].RemoveSpecialHandler(fn); } extern "C" void EnsureFrontOfChain(int signal) { InitializeSignalChain(); if (signal <= 0 || signal >= _NSIG) { fatal("Invalid signal %d", signal); } // Read the current action without looking at the chain, it should be the expected action. #if defined(__BIONIC__) struct sigaction64 current_action; linked_sigaction64(signal, nullptr, ¤t_action); #else struct sigaction current_action; linked_sigaction(signal, nullptr, ¤t_action); #endif // If the sigactions don't match then we put the current action on the chain and make ourself as // the main action. if (current_action.sa_sigaction != SignalChain::Handler) { log("Warning: Unexpected sigaction action found %p\n", current_action.sa_sigaction); chains[signal].Register(signal); } } } // namespace art