/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined(__BIONIC_LP32_USE_LONG_DOUBLE) #define COMPLEX_TEST complex_h_force_long_double #else #define COMPLEX_TEST complex_h #endif // This file is compiled against both glibc and bionic, and our complex.h // depends on bionic-specific macros, so hack around that. #include <sys/cdefs.h> #if !defined(__INTRODUCED_IN) #define __INTRODUCED_IN(x) #define __INTRODUCED_IN_32(x) #define __INTRODUCED_IN_64(x) #define __RENAME_LDBL(a,b,c) #endif // libc++ actively gets in the way of including <complex.h> from C++, so we // have to be naughty. #include "../libc/include/complex.h" // (libc++ also seems to have really bad implementations of its own that ignore // the intricacies of floating point math.) // http://llvm.org/bugs/show_bug.cgi?id=21504 #include <math.h> // For M_PI_2/M_PI_2l. // Prettify gtest Complex printing. #include <iostream> namespace testing { namespace internal { inline void PrintTo(const double _Complex& c, std::ostream* os) { *os << "(" << creal(c) << "," << cimag(c) << "i)"; } inline void PrintTo(const float _Complex& c, std::ostream* os) { *os << "(" << crealf(c) << "," << cimagf(c) << "i)"; } inline void PrintTo(const long double _Complex& c, std::ostream* os) { *os << "(" << creall(c) << "," << cimagl(c) << "i)"; } } } // Macro 'I' defined in complex.h conflicts with gtest.h. #pragma push_macro("I") #undef I #include <gtest/gtest.h> #pragma pop_macro("I") TEST(COMPLEX_TEST, cabs) { ASSERT_EQ(0.0, cabs(0)); } TEST(COMPLEX_TEST, cabsf) { ASSERT_EQ(0.0, cabsf(0)); } TEST(COMPLEX_TEST, cabsl) { ASSERT_EQ(0.0, cabsl(0)); } TEST(COMPLEX_TEST, cacos) { ASSERT_EQ(M_PI_2, cacos(0.0)); } TEST(COMPLEX_TEST, cacosf) { ASSERT_EQ(static_cast<float>(M_PI_2), cacosf(0.0)); } TEST(COMPLEX_TEST, cacosl) { ASSERT_EQ(M_PI_2l, cacosl(0.0)); } TEST(COMPLEX_TEST, cacosh) { ASSERT_EQ(0.0, cacosh(1.0)); } TEST(COMPLEX_TEST, cacoshl) { ASSERT_EQ(0.0, cacoshl(1.0)); } TEST(COMPLEX_TEST, cacoshf) { ASSERT_EQ(0.0, cacoshf(1.0)); } TEST(COMPLEX_TEST, carg) { ASSERT_EQ(0.0, carg(0)); } TEST(COMPLEX_TEST, cargf) { ASSERT_EQ(0.0, cargf(0)); } TEST(COMPLEX_TEST, cargl) { ASSERT_EQ(0.0, cargl(0)); } TEST(COMPLEX_TEST, casin) { ASSERT_EQ(0.0, casin(0)); } TEST(COMPLEX_TEST, casinf) { ASSERT_EQ(0.0, casinf(0)); } TEST(COMPLEX_TEST, casinl) { ASSERT_EQ(0.0, casinl(0)); } TEST(COMPLEX_TEST, casinh) { ASSERT_EQ(0.0, casinh(0)); } TEST(COMPLEX_TEST, casinhf) { ASSERT_EQ(0.0, casinhf(0)); } TEST(COMPLEX_TEST, casinhl) { ASSERT_EQ(0.0, casinhl(0)); } TEST(COMPLEX_TEST, catan) { ASSERT_EQ(0.0, catan(0)); } TEST(COMPLEX_TEST, catanf) { ASSERT_EQ(0.0, catanf(0)); } TEST(COMPLEX_TEST, catanl) { ASSERT_EQ(0.0, catanl(0)); } TEST(COMPLEX_TEST, catanh) { ASSERT_EQ(0.0, catanh(0)); } TEST(COMPLEX_TEST, catanhf) { ASSERT_EQ(0.0, catanhf(0)); } TEST(COMPLEX_TEST, catanhl) { ASSERT_EQ(0.0, catanhl(0)); } TEST(COMPLEX_TEST, ccos) { ASSERT_EQ(1.0, ccos(0)); } TEST(COMPLEX_TEST, ccosf) { ASSERT_EQ(1.0, ccosf(0)); } TEST(COMPLEX_TEST, ccosl) { ASSERT_EQ(1.0, ccosl(0)); } TEST(COMPLEX_TEST, ccosh) { ASSERT_EQ(1.0, ccosh(0)); } TEST(COMPLEX_TEST, ccoshf) { ASSERT_EQ(1.0, ccoshf(0)); } TEST(COMPLEX_TEST, ccoshl) { ASSERT_EQ(1.0, ccoshl(0)); } TEST(COMPLEX_TEST, cexp) { ASSERT_EQ(1.0, cexp(0)); } TEST(COMPLEX_TEST, cexpf) { ASSERT_EQ(1.0, cexpf(0)); } TEST(COMPLEX_TEST, cexpl) { ASSERT_EQ(1.0, cexpl(0)); } TEST(COMPLEX_TEST, cimag) { ASSERT_EQ(0.0, cimag(0)); } TEST(COMPLEX_TEST, cimagf) { ASSERT_EQ(0.0f, cimagf(0)); } TEST(COMPLEX_TEST, cimagl) { ASSERT_EQ(0.0, cimagl(0)); } TEST(COMPLEX_TEST, clog) { ASSERT_EQ(0.0, clog(1.0)); } TEST(COMPLEX_TEST, clogf) { ASSERT_EQ(0.0f, clogf(1.0f)); } TEST(COMPLEX_TEST, clogl) { ASSERT_EQ(0.0L, clogl(1.0L)); } TEST(COMPLEX_TEST, conj) { ASSERT_EQ(0.0, conj(0)); } TEST(COMPLEX_TEST, conjf) { ASSERT_EQ(0.0f, conjf(0)); } TEST(COMPLEX_TEST, conjl) { ASSERT_EQ(0.0, conjl(0)); } TEST(COMPLEX_TEST, cpow) { ASSERT_EQ(8.0, cpow(2.0, 3.0)); } TEST(COMPLEX_TEST, cpowf) { ASSERT_EQ(8.0f, cpowf(2.0f, 3.0f)); } TEST(COMPLEX_TEST, cpowl) { ASSERT_EQ(8.0L, cpowl(2.0L, 3.0L)); } TEST(COMPLEX_TEST, cproj) { ASSERT_EQ(0.0, cproj(0)); } TEST(COMPLEX_TEST, cprojf) { ASSERT_EQ(0.0f, cprojf(0)); } TEST(COMPLEX_TEST, cprojl) { ASSERT_EQ(0.0, cprojl(0)); } TEST(COMPLEX_TEST, creal) { ASSERT_EQ(2.0, creal(2.0 + 3.0I)); } TEST(COMPLEX_TEST, crealf) { ASSERT_EQ(2.0f, crealf(2.0f + 3.0fI)); } TEST(COMPLEX_TEST, creall) { ASSERT_EQ(2.0, creall(2.0L + 3.0LI)); } TEST(COMPLEX_TEST, csin) { ASSERT_EQ(0.0, csin(0)); } TEST(COMPLEX_TEST, csinf) { ASSERT_EQ(0.0, csinf(0)); } TEST(COMPLEX_TEST, csinl) { ASSERT_EQ(0.0, csinl(0)); } TEST(COMPLEX_TEST, csinh) { ASSERT_EQ(0.0, csinh(0)); } TEST(COMPLEX_TEST, csinhf) { ASSERT_EQ(0.0, csinhf(0)); } TEST(COMPLEX_TEST, csinhl) { ASSERT_EQ(0.0, csinhl(0)); } TEST(COMPLEX_TEST, csqrt) { ASSERT_EQ(0.0, csqrt(0)); } TEST(COMPLEX_TEST, csqrtf) { ASSERT_EQ(0.0f, csqrtf(0)); } TEST(COMPLEX_TEST, csqrtl) { ASSERT_EQ(0.0, csqrtl(0)); } TEST(COMPLEX_TEST, ctan) { ASSERT_EQ(0.0, ctan(0)); } TEST(COMPLEX_TEST, ctanf) { ASSERT_EQ(0.0, ctanf(0)); } TEST(COMPLEX_TEST, ctanl) { ASSERT_EQ(0.0, ctanl(0)); } TEST(COMPLEX_TEST, ctanh) { ASSERT_EQ(0.0, ctanh(0)); double complex z; // If z is NaN+0i, the result is NaN+0i. z = ctanh(nan("") + 0i); ASSERT_TRUE(isnan(creal(z))); ASSERT_EQ(0.0, cimag(z)); // If z is NaN+yi, the result is NaN+NaNi. z = ctanh(nan("") + 2.0i); ASSERT_TRUE(isnan(creal(z))); ASSERT_TRUE(isnan(cimag(z))); // If z is NaN+NaNi, the result is NaN+NaNi. z = ctanh(nan("") + nan("") * I); ASSERT_TRUE(isnan(creal(z))); ASSERT_TRUE(isnan(cimag(z))); } TEST(COMPLEX_TEST, ctanhf) { ASSERT_EQ(0.0f, ctanhf(0.0f)); float complex z; // If z is NaN+0i, the result is NaN+0i. z = ctanhf(nanf("") + 0.0fi); ASSERT_TRUE(isnan(crealf(z))); ASSERT_EQ(0.0f, cimagf(z)); // If z is NaN+yi, the result is NaN+NaNi. z = ctanhf(nanf("") + 2.0fi); ASSERT_TRUE(isnan(crealf(z))); ASSERT_TRUE(isnan(cimagf(z))); // If z is NaN+NaNi, the result is NaN+NaNi. z = ctanhf(nanf("") + nanf("") * I); ASSERT_TRUE(isnan(crealf(z))); ASSERT_TRUE(isnan(cimagf(z))); } TEST(COMPLEX_TEST, ctanhl) { ASSERT_EQ(0.0L, ctanhl(0.0L)); long double complex z; // If z is NaN+0i, the result is NaN+0i. z = ctanhl(nanl("") + 0.0Li); ASSERT_TRUE(isnan(creall(z))); // TODO: this case is currently broken in the netbsd ctanhl. // ASSERT_EQ(0.0L, cimagl(z)); // If z is NaN+yi, the result is NaN+NaNi. z = ctanhl(nanl("") + 2.0Li); ASSERT_TRUE(isnan(creall(z))); ASSERT_TRUE(isnan(cimagl(z))); // If z is NaN+NaNi, the result is NaN+NaNi. z = ctanhl(nanl("") + nanl("") * I); ASSERT_TRUE(isnan(creall(z))); ASSERT_TRUE(isnan(cimagl(z))); }