/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <gtest/gtest.h> #include <errno.h> #include <inttypes.h> #include <limits.h> #include <malloc.h> #include <pthread.h> #include <signal.h> #include <stdio.h> #include <sys/mman.h> #include <sys/prctl.h> #include <sys/resource.h> #include <sys/syscall.h> #include <time.h> #include <unistd.h> #include <unwind.h> #include <atomic> #include <future> #include <vector> #include <android-base/macros.h> #include <android-base/parseint.h> #include <android-base/scopeguard.h> #include <android-base/strings.h> #include "private/bionic_constants.h" #include "BionicDeathTest.h" #include "SignalUtils.h" #include "utils.h" TEST(pthread, pthread_key_create) { pthread_key_t key; ASSERT_EQ(0, pthread_key_create(&key, nullptr)); ASSERT_EQ(0, pthread_key_delete(key)); // Can't delete a key that's already been deleted. ASSERT_EQ(EINVAL, pthread_key_delete(key)); } TEST(pthread, pthread_keys_max) { // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX. ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX); } TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) { int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX); ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX); } TEST(pthread, pthread_key_many_distinct) { // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX // pthread keys, but We should be able to allocate at least this many keys. int nkeys = PTHREAD_KEYS_MAX / 2; std::vector<pthread_key_t> keys; auto scope_guard = android::base::make_scope_guard([&keys] { for (const auto& key : keys) { EXPECT_EQ(0, pthread_key_delete(key)); } }); for (int i = 0; i < nkeys; ++i) { pthread_key_t key; // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong. ASSERT_EQ(0, pthread_key_create(&key, nullptr)) << i << " of " << nkeys; keys.push_back(key); ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i))); } for (int i = keys.size() - 1; i >= 0; --i) { ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back())); pthread_key_t key = keys.back(); keys.pop_back(); ASSERT_EQ(0, pthread_key_delete(key)); } } TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) { std::vector<pthread_key_t> keys; int rv = 0; // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should // be more than we are allowed to allocate now. for (int i = 0; i < PTHREAD_KEYS_MAX; i++) { pthread_key_t key; rv = pthread_key_create(&key, nullptr); if (rv == EAGAIN) { break; } EXPECT_EQ(0, rv); keys.push_back(key); } // Don't leak keys. for (const auto& key : keys) { EXPECT_EQ(0, pthread_key_delete(key)); } keys.clear(); // We should have eventually reached the maximum number of keys and received // EAGAIN. ASSERT_EQ(EAGAIN, rv); } TEST(pthread, pthread_key_delete) { void* expected = reinterpret_cast<void*>(1234); pthread_key_t key; ASSERT_EQ(0, pthread_key_create(&key, nullptr)); ASSERT_EQ(0, pthread_setspecific(key, expected)); ASSERT_EQ(expected, pthread_getspecific(key)); ASSERT_EQ(0, pthread_key_delete(key)); // After deletion, pthread_getspecific returns nullptr. ASSERT_EQ(nullptr, pthread_getspecific(key)); // And you can't use pthread_setspecific with the deleted key. ASSERT_EQ(EINVAL, pthread_setspecific(key, expected)); } TEST(pthread, pthread_key_fork) { void* expected = reinterpret_cast<void*>(1234); pthread_key_t key; ASSERT_EQ(0, pthread_key_create(&key, nullptr)); ASSERT_EQ(0, pthread_setspecific(key, expected)); ASSERT_EQ(expected, pthread_getspecific(key)); pid_t pid = fork(); ASSERT_NE(-1, pid) << strerror(errno); if (pid == 0) { // The surviving thread inherits all the forking thread's TLS values... ASSERT_EQ(expected, pthread_getspecific(key)); _exit(99); } AssertChildExited(pid, 99); ASSERT_EQ(expected, pthread_getspecific(key)); ASSERT_EQ(0, pthread_key_delete(key)); } static void* DirtyKeyFn(void* key) { return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key)); } TEST(pthread, pthread_key_dirty) { pthread_key_t key; ASSERT_EQ(0, pthread_key_create(&key, nullptr)); size_t stack_size = 640 * 1024; void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); ASSERT_NE(MAP_FAILED, stack); memset(stack, 0xff, stack_size); pthread_attr_t attr; ASSERT_EQ(0, pthread_attr_init(&attr)); ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size)); pthread_t t; ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key)); void* result; ASSERT_EQ(0, pthread_join(t, &result)); ASSERT_EQ(nullptr, result); // Not ~0! ASSERT_EQ(0, munmap(stack, stack_size)); ASSERT_EQ(0, pthread_key_delete(key)); } TEST(pthread, static_pthread_key_used_before_creation) { #if defined(__BIONIC__) // See http://b/19625804. The bug is about a static/global pthread key being used before creation. // So here tests if the static/global default value 0 can be detected as invalid key. static pthread_key_t key; ASSERT_EQ(nullptr, pthread_getspecific(key)); ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr)); ASSERT_EQ(EINVAL, pthread_key_delete(key)); #else GTEST_SKIP() << "bionic-only test"; #endif } static void* IdFn(void* arg) { return arg; } class SpinFunctionHelper { public: SpinFunctionHelper() { SpinFunctionHelper::spin_flag_ = true; } ~SpinFunctionHelper() { UnSpin(); } auto GetFunction() -> void* (*)(void*) { return SpinFunctionHelper::SpinFn; } void UnSpin() { SpinFunctionHelper::spin_flag_ = false; } private: static void* SpinFn(void*) { while (spin_flag_) {} return nullptr; } static std::atomic<bool> spin_flag_; }; // It doesn't matter if spin_flag_ is used in several tests, // because it is always set to false after each test. Each thread // loops on spin_flag_ can find it becomes false at some time. std::atomic<bool> SpinFunctionHelper::spin_flag_; static void* JoinFn(void* arg) { return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), nullptr)); } static void AssertDetached(pthread_t t, bool is_detached) { pthread_attr_t attr; ASSERT_EQ(0, pthread_getattr_np(t, &attr)); int detach_state; ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state)); pthread_attr_destroy(&attr); ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED)); } static void MakeDeadThread(pthread_t& t) { ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, nullptr)); ASSERT_EQ(0, pthread_join(t, nullptr)); } TEST(pthread, pthread_create) { void* expected_result = reinterpret_cast<void*>(123); // Can we create a thread? pthread_t t; ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, expected_result)); // If we join, do we get the expected value back? void* result; ASSERT_EQ(0, pthread_join(t, &result)); ASSERT_EQ(expected_result, result); } TEST(pthread, pthread_create_EAGAIN) { pthread_attr_t attributes; ASSERT_EQ(0, pthread_attr_init(&attributes)); ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1))); pthread_t t; ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, nullptr)); } TEST(pthread, pthread_no_join_after_detach) { SpinFunctionHelper spin_helper; pthread_t t1; ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr)); // After a pthread_detach... ASSERT_EQ(0, pthread_detach(t1)); AssertDetached(t1, true); // ...pthread_join should fail. ASSERT_EQ(EINVAL, pthread_join(t1, nullptr)); } TEST(pthread, pthread_no_op_detach_after_join) { SpinFunctionHelper spin_helper; pthread_t t1; ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr)); // If thread 2 is already waiting to join thread 1... pthread_t t2; ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1))); sleep(1); // (Give t2 a chance to call pthread_join.) #if defined(__BIONIC__) ASSERT_EQ(EINVAL, pthread_detach(t1)); #else ASSERT_EQ(0, pthread_detach(t1)); #endif AssertDetached(t1, false); spin_helper.UnSpin(); // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). void* join_result; ASSERT_EQ(0, pthread_join(t2, &join_result)); ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); } TEST(pthread, pthread_join_self) { ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), nullptr)); } struct TestBug37410 { pthread_t main_thread; pthread_mutex_t mutex; static void main() { TestBug37410 data; data.main_thread = pthread_self(); ASSERT_EQ(0, pthread_mutex_init(&data.mutex, nullptr)); ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); pthread_t t; ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug37410::thread_fn, reinterpret_cast<void*>(&data))); // Wait for the thread to be running... ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex)); // ...and exit. pthread_exit(nullptr); } private: static void* thread_fn(void* arg) { TestBug37410* data = reinterpret_cast<TestBug37410*>(arg); // Unlocking data->mutex will cause the main thread to exit, invalidating *data. Save the handle. pthread_t main_thread = data->main_thread; // Let the main thread know we're running. pthread_mutex_unlock(&data->mutex); // And wait for the main thread to exit. pthread_join(main_thread, nullptr); return nullptr; } }; // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to // run this test (which exits normally) in its own process. class pthread_DeathTest : public BionicDeathTest {}; TEST_F(pthread_DeathTest, pthread_bug_37410) { // http://code.google.com/p/android/issues/detail?id=37410 ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), ""); } static void* SignalHandlerFn(void* arg) { sigset64_t wait_set; sigfillset64(&wait_set); return reinterpret_cast<void*>(sigwait64(&wait_set, reinterpret_cast<int*>(arg))); } TEST(pthread, pthread_sigmask) { // Check that SIGUSR1 isn't blocked. sigset_t original_set; sigemptyset(&original_set); ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &original_set)); ASSERT_FALSE(sigismember(&original_set, SIGUSR1)); // Block SIGUSR1. sigset_t set; sigemptyset(&set); sigaddset(&set, SIGUSR1); ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, nullptr)); // Check that SIGUSR1 is blocked. sigset_t final_set; sigemptyset(&final_set); ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &final_set)); ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); // ...and that sigprocmask agrees with pthread_sigmask. sigemptyset(&final_set); ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &final_set)); ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); // Spawn a thread that calls sigwait and tells us what it received. pthread_t signal_thread; int received_signal = -1; ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal)); // Send that thread SIGUSR1. pthread_kill(signal_thread, SIGUSR1); // See what it got. void* join_result; ASSERT_EQ(0, pthread_join(signal_thread, &join_result)); ASSERT_EQ(SIGUSR1, received_signal); ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); // Restore the original signal mask. ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, nullptr)); } TEST(pthread, pthread_sigmask64_SIGTRMIN) { // Check that SIGRTMIN isn't blocked. sigset64_t original_set; sigemptyset64(&original_set); ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &original_set)); ASSERT_FALSE(sigismember64(&original_set, SIGRTMIN)); // Block SIGRTMIN. sigset64_t set; sigemptyset64(&set); sigaddset64(&set, SIGRTMIN); ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, &set, nullptr)); // Check that SIGRTMIN is blocked. sigset64_t final_set; sigemptyset64(&final_set); ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &final_set)); ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN)); // ...and that sigprocmask64 agrees with pthread_sigmask64. sigemptyset64(&final_set); ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, nullptr, &final_set)); ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN)); // Spawn a thread that calls sigwait64 and tells us what it received. pthread_t signal_thread; int received_signal = -1; ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal)); // Send that thread SIGRTMIN. pthread_kill(signal_thread, SIGRTMIN); // See what it got. void* join_result; ASSERT_EQ(0, pthread_join(signal_thread, &join_result)); ASSERT_EQ(SIGRTMIN, received_signal); ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); // Restore the original signal mask. ASSERT_EQ(0, pthread_sigmask64(SIG_SETMASK, &original_set, nullptr)); } static void test_pthread_setname_np__pthread_getname_np(pthread_t t) { ASSERT_EQ(0, pthread_setname_np(t, "short")); char name[32]; ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name))); ASSERT_STREQ("short", name); // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL. ASSERT_EQ(0, pthread_setname_np(t, "123456789012345")); ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name))); ASSERT_STREQ("123456789012345", name); ASSERT_EQ(ERANGE, pthread_setname_np(t, "1234567890123456")); // The passed-in buffer should be at least 16 bytes. ASSERT_EQ(0, pthread_getname_np(t, name, 16)); ASSERT_EQ(ERANGE, pthread_getname_np(t, name, 15)); } TEST(pthread, pthread_setname_np__pthread_getname_np__self) { test_pthread_setname_np__pthread_getname_np(pthread_self()); } TEST(pthread, pthread_setname_np__pthread_getname_np__other) { SpinFunctionHelper spin_helper; pthread_t t; ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr)); test_pthread_setname_np__pthread_getname_np(t); spin_helper.UnSpin(); ASSERT_EQ(0, pthread_join(t, nullptr)); } // http://b/28051133: a kernel misfeature means that you can't change the // name of another thread if you've set PR_SET_DUMPABLE to 0. TEST(pthread, pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE) { ASSERT_EQ(0, prctl(PR_SET_DUMPABLE, 0)) << strerror(errno); SpinFunctionHelper spin_helper; pthread_t t; ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr)); test_pthread_setname_np__pthread_getname_np(t); spin_helper.UnSpin(); ASSERT_EQ(0, pthread_join(t, nullptr)); } TEST_F(pthread_DeathTest, pthread_setname_np__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); EXPECT_DEATH(pthread_setname_np(dead_thread, "short 3"), "invalid pthread_t (.*) passed to pthread_setname_np"); } TEST_F(pthread_DeathTest, pthread_setname_np__null_thread) { pthread_t null_thread = 0; EXPECT_EQ(ENOENT, pthread_setname_np(null_thread, "short 3")); } TEST_F(pthread_DeathTest, pthread_getname_np__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); char name[64]; EXPECT_DEATH(pthread_getname_np(dead_thread, name, sizeof(name)), "invalid pthread_t (.*) passed to pthread_getname_np"); } TEST_F(pthread_DeathTest, pthread_getname_np__null_thread) { pthread_t null_thread = 0; char name[64]; EXPECT_EQ(ENOENT, pthread_getname_np(null_thread, name, sizeof(name))); } TEST(pthread, pthread_kill__0) { // Signal 0 just tests that the thread exists, so it's safe to call on ourselves. ASSERT_EQ(0, pthread_kill(pthread_self(), 0)); } TEST(pthread, pthread_kill__invalid_signal) { ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1)); } static void pthread_kill__in_signal_handler_helper(int signal_number) { static int count = 0; ASSERT_EQ(SIGALRM, signal_number); if (++count == 1) { // Can we call pthread_kill from a signal handler? ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); } } TEST(pthread, pthread_kill__in_signal_handler) { ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper); ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); } TEST(pthread, pthread_kill__exited_thread) { static std::promise<pid_t> tid_promise; pthread_t thread; ASSERT_EQ(0, pthread_create(&thread, nullptr, [](void*) -> void* { tid_promise.set_value(gettid()); return nullptr; }, nullptr)); pid_t tid = tid_promise.get_future().get(); while (TEMP_FAILURE_RETRY(syscall(__NR_tgkill, getpid(), tid, 0)) != -1) { continue; } ASSERT_EQ(ESRCH, errno); ASSERT_EQ(ESRCH, pthread_kill(thread, 0)); } TEST_F(pthread_DeathTest, pthread_detach__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); EXPECT_DEATH(pthread_detach(dead_thread), "invalid pthread_t (.*) passed to pthread_detach"); } TEST_F(pthread_DeathTest, pthread_detach__null_thread) { pthread_t null_thread = 0; EXPECT_EQ(ESRCH, pthread_detach(null_thread)); } TEST(pthread, pthread_getcpuclockid__clock_gettime) { SpinFunctionHelper spin_helper; pthread_t t; ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr)); clockid_t c; ASSERT_EQ(0, pthread_getcpuclockid(t, &c)); timespec ts; ASSERT_EQ(0, clock_gettime(c, &ts)); spin_helper.UnSpin(); ASSERT_EQ(0, pthread_join(t, nullptr)); } TEST_F(pthread_DeathTest, pthread_getcpuclockid__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); clockid_t c; EXPECT_DEATH(pthread_getcpuclockid(dead_thread, &c), "invalid pthread_t (.*) passed to pthread_getcpuclockid"); } TEST_F(pthread_DeathTest, pthread_getcpuclockid__null_thread) { pthread_t null_thread = 0; clockid_t c; EXPECT_EQ(ESRCH, pthread_getcpuclockid(null_thread, &c)); } TEST_F(pthread_DeathTest, pthread_getschedparam__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); int policy; sched_param param; EXPECT_DEATH(pthread_getschedparam(dead_thread, &policy, ¶m), "invalid pthread_t (.*) passed to pthread_getschedparam"); } TEST_F(pthread_DeathTest, pthread_getschedparam__null_thread) { pthread_t null_thread = 0; int policy; sched_param param; EXPECT_EQ(ESRCH, pthread_getschedparam(null_thread, &policy, ¶m)); } TEST_F(pthread_DeathTest, pthread_setschedparam__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); int policy = 0; sched_param param; EXPECT_DEATH(pthread_setschedparam(dead_thread, policy, ¶m), "invalid pthread_t (.*) passed to pthread_setschedparam"); } TEST_F(pthread_DeathTest, pthread_setschedparam__null_thread) { pthread_t null_thread = 0; int policy = 0; sched_param param; EXPECT_EQ(ESRCH, pthread_setschedparam(null_thread, policy, ¶m)); } TEST_F(pthread_DeathTest, pthread_setschedprio__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); EXPECT_DEATH(pthread_setschedprio(dead_thread, 123), "invalid pthread_t (.*) passed to pthread_setschedprio"); } TEST_F(pthread_DeathTest, pthread_setschedprio__null_thread) { pthread_t null_thread = 0; EXPECT_EQ(ESRCH, pthread_setschedprio(null_thread, 123)); } TEST_F(pthread_DeathTest, pthread_join__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); EXPECT_DEATH(pthread_join(dead_thread, nullptr), "invalid pthread_t (.*) passed to pthread_join"); } TEST_F(pthread_DeathTest, pthread_join__null_thread) { pthread_t null_thread = 0; EXPECT_EQ(ESRCH, pthread_join(null_thread, nullptr)); } TEST_F(pthread_DeathTest, pthread_kill__no_such_thread) { pthread_t dead_thread; MakeDeadThread(dead_thread); EXPECT_DEATH(pthread_kill(dead_thread, 0), "invalid pthread_t (.*) passed to pthread_kill"); } TEST_F(pthread_DeathTest, pthread_kill__null_thread) { pthread_t null_thread = 0; EXPECT_EQ(ESRCH, pthread_kill(null_thread, 0)); } TEST(pthread, pthread_join__multijoin) { SpinFunctionHelper spin_helper; pthread_t t1; ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr)); pthread_t t2; ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1))); sleep(1); // (Give t2 a chance to call pthread_join.) // Multiple joins to the same thread should fail. ASSERT_EQ(EINVAL, pthread_join(t1, nullptr)); spin_helper.UnSpin(); // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). void* join_result; ASSERT_EQ(0, pthread_join(t2, &join_result)); ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); } TEST(pthread, pthread_join__race) { // http://b/11693195 --- pthread_join could return before the thread had actually exited. // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread. for (size_t i = 0; i < 1024; ++i) { size_t stack_size = 640*1024; void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0); pthread_attr_t a; pthread_attr_init(&a); pthread_attr_setstack(&a, stack, stack_size); pthread_t t; ASSERT_EQ(0, pthread_create(&t, &a, IdFn, nullptr)); ASSERT_EQ(0, pthread_join(t, nullptr)); ASSERT_EQ(0, munmap(stack, stack_size)); } } static void* GetActualGuardSizeFn(void* arg) { pthread_attr_t attributes; pthread_getattr_np(pthread_self(), &attributes); pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg)); return nullptr; } static size_t GetActualGuardSize(const pthread_attr_t& attributes) { size_t result; pthread_t t; pthread_create(&t, &attributes, GetActualGuardSizeFn, &result); pthread_join(t, nullptr); return result; } static void* GetActualStackSizeFn(void* arg) { pthread_attr_t attributes; pthread_getattr_np(pthread_self(), &attributes); pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg)); return nullptr; } static size_t GetActualStackSize(const pthread_attr_t& attributes) { size_t result; pthread_t t; pthread_create(&t, &attributes, GetActualStackSizeFn, &result); pthread_join(t, nullptr); return result; } TEST(pthread, pthread_attr_setguardsize_tiny) { pthread_attr_t attributes; ASSERT_EQ(0, pthread_attr_init(&attributes)); // No such thing as too small: will be rounded up to one page by pthread_create. ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128)); size_t guard_size; ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); ASSERT_EQ(128U, guard_size); ASSERT_EQ(4096U, GetActualGuardSize(attributes)); } TEST(pthread, pthread_attr_setguardsize_reasonable) { pthread_attr_t attributes; ASSERT_EQ(0, pthread_attr_init(&attributes)); // Large enough and a multiple of the page size. ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024)); size_t guard_size; ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); ASSERT_EQ(32*1024U, guard_size); ASSERT_EQ(32*1024U, GetActualGuardSize(attributes)); } TEST(pthread, pthread_attr_setguardsize_needs_rounding) { pthread_attr_t attributes; ASSERT_EQ(0, pthread_attr_init(&attributes)); // Large enough but not a multiple of the page size. ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1)); size_t guard_size; ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); ASSERT_EQ(32*1024U + 1, guard_size); ASSERT_EQ(36*1024U, GetActualGuardSize(attributes)); } TEST(pthread, pthread_attr_setguardsize_enormous) { pthread_attr_t attributes; ASSERT_EQ(0, pthread_attr_init(&attributes)); // Larger than the stack itself. (Historically we mistakenly carved // the guard out of the stack itself, rather than adding it after the // end.) ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024*1024)); size_t guard_size; ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); ASSERT_EQ(32*1024*1024U, guard_size); ASSERT_EQ(32*1024*1024U, GetActualGuardSize(attributes)); } TEST(pthread, pthread_attr_setstacksize) { pthread_attr_t attributes; ASSERT_EQ(0, pthread_attr_init(&attributes)); // Get the default stack size. size_t default_stack_size; ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size)); // Too small. ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128)); size_t stack_size; ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); ASSERT_EQ(default_stack_size, stack_size); ASSERT_GE(GetActualStackSize(attributes), default_stack_size); // Large enough and a multiple of the page size; may be rounded up by pthread_create. ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024)); ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); ASSERT_EQ(32*1024U, stack_size); ASSERT_GE(GetActualStackSize(attributes), 32*1024U); // Large enough but not aligned; will be rounded up by pthread_create. ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1)); ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); ASSERT_EQ(32*1024U + 1, stack_size); #if defined(__BIONIC__) ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1); #else // __BIONIC__ // glibc rounds down, in violation of POSIX. They document this in their BUGS section. ASSERT_EQ(GetActualStackSize(attributes), 32*1024U); #endif // __BIONIC__ } TEST(pthread, pthread_rwlockattr_smoke) { pthread_rwlockattr_t attr; ASSERT_EQ(0, pthread_rwlockattr_init(&attr)); int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED}; for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) { ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i])); int pshared; ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared)); ASSERT_EQ(pshared_value_array[i], pshared); } int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP}; for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) { ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i])); int kind; ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind)); ASSERT_EQ(kind_array[i], kind); } ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr)); } TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) { pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER; pthread_rwlock_t lock2; ASSERT_EQ(0, pthread_rwlock_init(&lock2, nullptr)); ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1))); } TEST(pthread, pthread_rwlock_smoke) { pthread_rwlock_t l; ASSERT_EQ(0, pthread_rwlock_init(&l, nullptr)); // Single read lock ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); ASSERT_EQ(0, pthread_rwlock_unlock(&l)); // Multiple read lock ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); ASSERT_EQ(0, pthread_rwlock_unlock(&l)); ASSERT_EQ(0, pthread_rwlock_unlock(&l)); // Write lock ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); ASSERT_EQ(0, pthread_rwlock_unlock(&l)); // Try writer lock ASSERT_EQ(0, pthread_rwlock_trywrlock(&l)); ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l)); ASSERT_EQ(0, pthread_rwlock_unlock(&l)); // Try reader lock ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); ASSERT_EQ(0, pthread_rwlock_unlock(&l)); ASSERT_EQ(0, pthread_rwlock_unlock(&l)); // Try writer lock after unlock ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); ASSERT_EQ(0, pthread_rwlock_unlock(&l)); // EDEADLK in "read after write" ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l)); ASSERT_EQ(0, pthread_rwlock_unlock(&l)); // EDEADLK in "write after write" ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l)); ASSERT_EQ(0, pthread_rwlock_unlock(&l)); ASSERT_EQ(0, pthread_rwlock_destroy(&l)); } struct RwlockWakeupHelperArg { pthread_rwlock_t lock; enum Progress { LOCK_INITIALIZED, LOCK_WAITING, LOCK_RELEASED, LOCK_ACCESSED, LOCK_TIMEDOUT, }; std::atomic<Progress> progress; std::atomic<pid_t> tid; std::function<int (pthread_rwlock_t*)> trylock_function; std::function<int (pthread_rwlock_t*)> lock_function; std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function; clockid_t clock; }; static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) { arg->tid = gettid(); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress); arg->progress = RwlockWakeupHelperArg::LOCK_WAITING; ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock)); ASSERT_EQ(0, arg->lock_function(&arg->lock)); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress); ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock)); arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED; } static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) { RwlockWakeupHelperArg wakeup_arg; ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock)); wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; wakeup_arg.tid = 0; wakeup_arg.trylock_function = &pthread_rwlock_trywrlock; wakeup_arg.lock_function = lock_function; pthread_t thread; ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg)); WaitUntilThreadSleep(wakeup_arg.tid); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED; ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); ASSERT_EQ(0, pthread_join(thread, nullptr)); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress); ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); } TEST(pthread, pthread_rwlock_reader_wakeup_writer) { test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock); } TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) { timespec ts; ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); ts.tv_sec += 1; test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) { return pthread_rwlock_timedwrlock(lock, &ts); }); } TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np) { #if defined(__BIONIC__) timespec ts; ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); ts.tv_sec += 1; test_pthread_rwlock_reader_wakeup_writer( [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedwrlock_monotonic_np(lock, &ts); }); #else // __BIONIC__ GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available"; #endif // __BIONIC__ } static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) { RwlockWakeupHelperArg wakeup_arg; ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock)); wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; wakeup_arg.tid = 0; wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock; wakeup_arg.lock_function = lock_function; pthread_t thread; ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg)); WaitUntilThreadSleep(wakeup_arg.tid); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED; ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); ASSERT_EQ(0, pthread_join(thread, nullptr)); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress); ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); } TEST(pthread, pthread_rwlock_writer_wakeup_reader) { test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock); } TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) { timespec ts; ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); ts.tv_sec += 1; test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) { return pthread_rwlock_timedrdlock(lock, &ts); }); } TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np) { #if defined(__BIONIC__) timespec ts; ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); ts.tv_sec += 1; test_pthread_rwlock_writer_wakeup_reader( [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedrdlock_monotonic_np(lock, &ts); }); #else // __BIONIC__ GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available"; #endif // __BIONIC__ } static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) { arg->tid = gettid(); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress); arg->progress = RwlockWakeupHelperArg::LOCK_WAITING; ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock)); timespec ts; ASSERT_EQ(0, clock_gettime(arg->clock, &ts)); ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts)); ts.tv_nsec = -1; ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts)); ts.tv_nsec = NS_PER_S; ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts)); ts.tv_nsec = NS_PER_S - 1; ts.tv_sec = -1; ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts)); ASSERT_EQ(0, clock_gettime(arg->clock, &ts)); ts.tv_sec += 1; ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts)); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress); arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT; } static void pthread_rwlock_timedrdlock_timeout_helper( clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) { RwlockWakeupHelperArg wakeup_arg; ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock)); wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; wakeup_arg.tid = 0; wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock; wakeup_arg.timed_lock_function = lock_function; wakeup_arg.clock = clock; pthread_t thread; ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg)); WaitUntilThreadSleep(wakeup_arg.tid); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); ASSERT_EQ(0, pthread_join(thread, nullptr)); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress); ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); } TEST(pthread, pthread_rwlock_timedrdlock_timeout) { pthread_rwlock_timedrdlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedrdlock); } TEST(pthread, pthread_rwlock_timedrdlock_monotonic_np_timeout) { #if defined(__BIONIC__) pthread_rwlock_timedrdlock_timeout_helper(CLOCK_MONOTONIC, pthread_rwlock_timedrdlock_monotonic_np); #else // __BIONIC__ GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available"; #endif // __BIONIC__ } static void pthread_rwlock_timedwrlock_timeout_helper( clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) { RwlockWakeupHelperArg wakeup_arg; ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock)); wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; wakeup_arg.tid = 0; wakeup_arg.trylock_function = &pthread_rwlock_trywrlock; wakeup_arg.timed_lock_function = lock_function; wakeup_arg.clock = clock; pthread_t thread; ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg)); WaitUntilThreadSleep(wakeup_arg.tid); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); ASSERT_EQ(0, pthread_join(thread, nullptr)); ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress); ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); } TEST(pthread, pthread_rwlock_timedwrlock_timeout) { pthread_rwlock_timedwrlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedwrlock); } TEST(pthread, pthread_rwlock_timedwrlock_monotonic_np_timeout) { #if defined(__BIONIC__) pthread_rwlock_timedwrlock_timeout_helper(CLOCK_MONOTONIC, pthread_rwlock_timedwrlock_monotonic_np); #else // __BIONIC__ GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available"; #endif // __BIONIC__ } class RwlockKindTestHelper { private: struct ThreadArg { RwlockKindTestHelper* helper; std::atomic<pid_t>& tid; ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid) : helper(helper), tid(tid) { } }; public: pthread_rwlock_t lock; public: explicit RwlockKindTestHelper(int kind_type) { InitRwlock(kind_type); } ~RwlockKindTestHelper() { DestroyRwlock(); } void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) { tid = 0; ThreadArg* arg = new ThreadArg(this, tid); ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg)); } void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) { tid = 0; ThreadArg* arg = new ThreadArg(this, tid); ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg)); } private: void InitRwlock(int kind_type) { pthread_rwlockattr_t attr; ASSERT_EQ(0, pthread_rwlockattr_init(&attr)); ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type)); ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr)); ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr)); } void DestroyRwlock() { ASSERT_EQ(0, pthread_rwlock_destroy(&lock)); } static void WriterThreadFn(ThreadArg* arg) { arg->tid = gettid(); RwlockKindTestHelper* helper = arg->helper; ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock)); ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock)); delete arg; } static void ReaderThreadFn(ThreadArg* arg) { arg->tid = gettid(); RwlockKindTestHelper* helper = arg->helper; ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock)); ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock)); delete arg; } }; TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) { RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP); ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock)); pthread_t writer_thread; std::atomic<pid_t> writer_tid; helper.CreateWriterThread(writer_thread, writer_tid); WaitUntilThreadSleep(writer_tid); pthread_t reader_thread; std::atomic<pid_t> reader_tid; helper.CreateReaderThread(reader_thread, reader_tid); ASSERT_EQ(0, pthread_join(reader_thread, nullptr)); ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock)); ASSERT_EQ(0, pthread_join(writer_thread, nullptr)); } TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) { RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP); ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock)); pthread_t writer_thread; std::atomic<pid_t> writer_tid; helper.CreateWriterThread(writer_thread, writer_tid); WaitUntilThreadSleep(writer_tid); pthread_t reader_thread; std::atomic<pid_t> reader_tid; helper.CreateReaderThread(reader_thread, reader_tid); WaitUntilThreadSleep(reader_tid); ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock)); ASSERT_EQ(0, pthread_join(writer_thread, nullptr)); ASSERT_EQ(0, pthread_join(reader_thread, nullptr)); } static int g_once_fn_call_count = 0; static void OnceFn() { ++g_once_fn_call_count; } TEST(pthread, pthread_once_smoke) { pthread_once_t once_control = PTHREAD_ONCE_INIT; ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); ASSERT_EQ(1, g_once_fn_call_count); } static std::string pthread_once_1934122_result = ""; static void Routine2() { pthread_once_1934122_result += "2"; } static void Routine1() { pthread_once_t once_control_2 = PTHREAD_ONCE_INIT; pthread_once_1934122_result += "1"; pthread_once(&once_control_2, &Routine2); } TEST(pthread, pthread_once_1934122) { // Very old versions of Android couldn't call pthread_once from a // pthread_once init routine. http://b/1934122. pthread_once_t once_control_1 = PTHREAD_ONCE_INIT; ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1)); ASSERT_EQ("12", pthread_once_1934122_result); } static int g_atfork_prepare_calls = 0; static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; } static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; } static int g_atfork_parent_calls = 0; static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; } static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; } static int g_atfork_child_calls = 0; static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; } static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; } TEST(pthread, pthread_atfork_smoke) { ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1)); ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2)); pid_t pid = fork(); ASSERT_NE(-1, pid) << strerror(errno); // Child and parent calls are made in the order they were registered. if (pid == 0) { ASSERT_EQ(12, g_atfork_child_calls); _exit(0); } ASSERT_EQ(12, g_atfork_parent_calls); // Prepare calls are made in the reverse order. ASSERT_EQ(21, g_atfork_prepare_calls); AssertChildExited(pid, 0); } TEST(pthread, pthread_attr_getscope) { pthread_attr_t attr; ASSERT_EQ(0, pthread_attr_init(&attr)); int scope; ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope)); ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope); } TEST(pthread, pthread_condattr_init) { pthread_condattr_t attr; pthread_condattr_init(&attr); clockid_t clock; ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); ASSERT_EQ(CLOCK_REALTIME, clock); int pshared; ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared); } TEST(pthread, pthread_condattr_setclock) { pthread_condattr_t attr; pthread_condattr_init(&attr); ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME)); clockid_t clock; ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); ASSERT_EQ(CLOCK_REALTIME, clock); ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); ASSERT_EQ(CLOCK_MONOTONIC, clock); ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID)); } TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) { #if defined(__BIONIC__) pthread_condattr_t attr; pthread_condattr_init(&attr); ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED)); pthread_cond_t cond_var; ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr)); ASSERT_EQ(0, pthread_cond_signal(&cond_var)); ASSERT_EQ(0, pthread_cond_broadcast(&cond_var)); attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private)); clockid_t clock; ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); ASSERT_EQ(CLOCK_MONOTONIC, clock); int pshared; ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared); #else // !defined(__BIONIC__) GTEST_SKIP() << "bionic-only test"; #endif // !defined(__BIONIC__) } class pthread_CondWakeupTest : public ::testing::Test { protected: pthread_mutex_t mutex; pthread_cond_t cond; enum Progress { INITIALIZED, WAITING, SIGNALED, FINISHED, }; std::atomic<Progress> progress; pthread_t thread; std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function; protected: void SetUp() override { ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr)); } void InitCond(clockid_t clock=CLOCK_REALTIME) { pthread_condattr_t attr; ASSERT_EQ(0, pthread_condattr_init(&attr)); ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock)); ASSERT_EQ(0, pthread_cond_init(&cond, &attr)); ASSERT_EQ(0, pthread_condattr_destroy(&attr)); } void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) { progress = INITIALIZED; this->wait_function = wait_function; ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this)); while (progress != WAITING) { usleep(5000); } usleep(5000); } void TearDown() override { ASSERT_EQ(0, pthread_join(thread, nullptr)); ASSERT_EQ(FINISHED, progress); ASSERT_EQ(0, pthread_cond_destroy(&cond)); ASSERT_EQ(0, pthread_mutex_destroy(&mutex)); } private: static void WaitThreadFn(pthread_CondWakeupTest* test) { ASSERT_EQ(0, pthread_mutex_lock(&test->mutex)); test->progress = WAITING; while (test->progress == WAITING) { ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex)); } ASSERT_EQ(SIGNALED, test->progress); test->progress = FINISHED; ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex)); } }; TEST_F(pthread_CondWakeupTest, signal_wait) { InitCond(); StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) { return pthread_cond_wait(cond, mutex); }); progress = SIGNALED; ASSERT_EQ(0, pthread_cond_signal(&cond)); } TEST_F(pthread_CondWakeupTest, broadcast_wait) { InitCond(); StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) { return pthread_cond_wait(cond, mutex); }); progress = SIGNALED; ASSERT_EQ(0, pthread_cond_broadcast(&cond)); } TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) { InitCond(CLOCK_REALTIME); timespec ts; ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); ts.tv_sec += 1; StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) { return pthread_cond_timedwait(cond, mutex, &ts); }); progress = SIGNALED; ASSERT_EQ(0, pthread_cond_signal(&cond)); } TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) { InitCond(CLOCK_MONOTONIC); timespec ts; ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); ts.tv_sec += 1; StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) { return pthread_cond_timedwait(cond, mutex, &ts); }); progress = SIGNALED; ASSERT_EQ(0, pthread_cond_signal(&cond)); } TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC_np) { #if defined(__BIONIC__) InitCond(CLOCK_REALTIME); timespec ts; ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); ts.tv_sec += 1; StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) { return pthread_cond_timedwait_monotonic_np(cond, mutex, &ts); }); progress = SIGNALED; ASSERT_EQ(0, pthread_cond_signal(&cond)); #else // __BIONIC__ GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available"; #endif // __BIONIC__ } static void pthread_cond_timedwait_timeout_helper(clockid_t clock, int (*wait_function)(pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout)) { pthread_mutex_t mutex; ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr)); pthread_cond_t cond; ASSERT_EQ(0, pthread_cond_init(&cond, nullptr)); ASSERT_EQ(0, pthread_mutex_lock(&mutex)); timespec ts; ASSERT_EQ(0, clock_gettime(clock, &ts)); ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts)); ts.tv_nsec = -1; ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts)); ts.tv_nsec = NS_PER_S; ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts)); ts.tv_nsec = NS_PER_S - 1; ts.tv_sec = -1; ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts)); ASSERT_EQ(0, pthread_mutex_unlock(&mutex)); } TEST(pthread, pthread_cond_timedwait_timeout) { pthread_cond_timedwait_timeout_helper(CLOCK_REALTIME, pthread_cond_timedwait); } TEST(pthread, pthread_cond_timedwait_monotonic_np_timeout) { #if defined(__BIONIC__) pthread_cond_timedwait_timeout_helper(CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np); #else // __BIONIC__ GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available"; #endif // __BIONIC__ } TEST(pthread, pthread_attr_getstack__main_thread) { // This test is only meaningful for the main thread, so make sure we're running on it! ASSERT_EQ(getpid(), syscall(__NR_gettid)); // Get the main thread's attributes. pthread_attr_t attributes; ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); // Check that we correctly report that the main thread has no guard page. size_t guard_size; ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); ASSERT_EQ(0U, guard_size); // The main thread has no guard page. // Get the stack base and the stack size (both ways). void* stack_base; size_t stack_size; ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); size_t stack_size2; ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); // The two methods of asking for the stack size should agree. EXPECT_EQ(stack_size, stack_size2); #if defined(__BIONIC__) // Find stack in /proc/self/maps using a pointer to the stack. // // We do not use "[stack]" label because in native-bridge environment it is not // guaranteed to point to the right stack. A native bridge implementation may // keep separate stack for the guest code. void* maps_stack_hi = nullptr; std::vector<map_record> maps; ASSERT_TRUE(Maps::parse_maps(&maps)); uintptr_t stack_address = reinterpret_cast<uintptr_t>(untag_address(&maps_stack_hi)); for (const auto& map : maps) { if (map.addr_start <= stack_address && map.addr_end > stack_address){ maps_stack_hi = reinterpret_cast<void*>(map.addr_end); break; } } // The high address of the /proc/self/maps stack region should equal stack_base + stack_size. // Remember that the stack grows down (and is mapped in on demand), so the low address of the // region isn't very interesting. EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size); // The stack size should correspond to RLIMIT_STACK. rlimit rl; ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl)); uint64_t original_rlim_cur = rl.rlim_cur; if (rl.rlim_cur == RLIM_INFINITY) { rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB. } EXPECT_EQ(rl.rlim_cur, stack_size); auto guard = android::base::make_scope_guard([&rl, original_rlim_cur]() { rl.rlim_cur = original_rlim_cur; ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); }); // // What if RLIMIT_STACK is smaller than the stack's current extent? // rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already. rl.rlim_max = RLIM_INFINITY; ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); EXPECT_EQ(stack_size, stack_size2); ASSERT_EQ(1024U, stack_size); // // What if RLIMIT_STACK isn't a whole number of pages? // rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages. rl.rlim_max = RLIM_INFINITY; ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); EXPECT_EQ(stack_size, stack_size2); ASSERT_EQ(6666U, stack_size); #endif } struct GetStackSignalHandlerArg { volatile bool done; void* signal_stack_base; size_t signal_stack_size; void* main_stack_base; size_t main_stack_size; }; static GetStackSignalHandlerArg getstack_signal_handler_arg; static void getstack_signal_handler(int sig) { ASSERT_EQ(SIGUSR1, sig); // Use sleep() to make current thread be switched out by the kernel to provoke the error. sleep(1); pthread_attr_t attr; ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr)); void* stack_base; size_t stack_size; ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size)); // Verify if the stack used by the signal handler is the alternate stack just registered. ASSERT_LE(getstack_signal_handler_arg.signal_stack_base, &attr); ASSERT_LT(static_cast<void*>(untag_address(&attr)), static_cast<char*>(getstack_signal_handler_arg.signal_stack_base) + getstack_signal_handler_arg.signal_stack_size); // Verify if the main thread's stack got in the signal handler is correct. ASSERT_EQ(getstack_signal_handler_arg.main_stack_base, stack_base); ASSERT_LE(getstack_signal_handler_arg.main_stack_size, stack_size); getstack_signal_handler_arg.done = true; } // The previous code obtained the main thread's stack by reading the entry in // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel // switches a process while the main thread is in an alternate stack, then the kernel will label // the wrong map with [stack]. This test verifies that when the above situation happens, the main // thread's stack is found correctly. TEST(pthread, pthread_attr_getstack_in_signal_handler) { // This test is only meaningful for the main thread, so make sure we're running on it! ASSERT_EQ(getpid(), syscall(__NR_gettid)); const size_t sig_stack_size = 16 * 1024; void* sig_stack = mmap(nullptr, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); ASSERT_NE(MAP_FAILED, sig_stack); stack_t ss; ss.ss_sp = sig_stack; ss.ss_size = sig_stack_size; ss.ss_flags = 0; stack_t oss; ASSERT_EQ(0, sigaltstack(&ss, &oss)); pthread_attr_t attr; ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr)); void* main_stack_base; size_t main_stack_size; ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size)); ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK); getstack_signal_handler_arg.done = false; getstack_signal_handler_arg.signal_stack_base = sig_stack; getstack_signal_handler_arg.signal_stack_size = sig_stack_size; getstack_signal_handler_arg.main_stack_base = main_stack_base; getstack_signal_handler_arg.main_stack_size = main_stack_size; kill(getpid(), SIGUSR1); ASSERT_EQ(true, getstack_signal_handler_arg.done); ASSERT_EQ(0, sigaltstack(&oss, nullptr)); ASSERT_EQ(0, munmap(sig_stack, sig_stack_size)); } static void pthread_attr_getstack_18908062_helper(void*) { char local_variable; pthread_attr_t attributes; pthread_getattr_np(pthread_self(), &attributes); void* stack_base; size_t stack_size; pthread_attr_getstack(&attributes, &stack_base, &stack_size); // Test whether &local_variable is in [stack_base, stack_base + stack_size). ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable); ASSERT_LT(untag_address(&local_variable), reinterpret_cast<char*>(stack_base) + stack_size); } // Check whether something on stack is in the range of // [stack_base, stack_base + stack_size). see b/18908062. TEST(pthread, pthread_attr_getstack_18908062) { pthread_t t; ASSERT_EQ(0, pthread_create(&t, nullptr, reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper), nullptr)); ASSERT_EQ(0, pthread_join(t, nullptr)); } #if defined(__BIONIC__) static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER; static void* pthread_gettid_np_helper(void* arg) { *reinterpret_cast<pid_t*>(arg) = gettid(); // Wait for our parent to call pthread_gettid_np on us before exiting. pthread_mutex_lock(&pthread_gettid_np_mutex); pthread_mutex_unlock(&pthread_gettid_np_mutex); return nullptr; } #endif TEST(pthread, pthread_gettid_np) { #if defined(__BIONIC__) ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self())); // Ensure the other thread doesn't exit until after we've called // pthread_gettid_np on it. pthread_mutex_lock(&pthread_gettid_np_mutex); pid_t t_gettid_result; pthread_t t; pthread_create(&t, nullptr, pthread_gettid_np_helper, &t_gettid_result); pid_t t_pthread_gettid_np_result = pthread_gettid_np(t); // Release the other thread and wait for it to exit. pthread_mutex_unlock(&pthread_gettid_np_mutex); ASSERT_EQ(0, pthread_join(t, nullptr)); ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result); #else GTEST_SKIP() << "pthread_gettid_np not available"; #endif } static size_t cleanup_counter = 0; static void AbortCleanupRoutine(void*) { abort(); } static void CountCleanupRoutine(void*) { ++cleanup_counter; } static void PthreadCleanupTester() { pthread_cleanup_push(CountCleanupRoutine, nullptr); pthread_cleanup_push(CountCleanupRoutine, nullptr); pthread_cleanup_push(AbortCleanupRoutine, nullptr); pthread_cleanup_pop(0); // Pop the abort without executing it. pthread_cleanup_pop(1); // Pop one count while executing it. ASSERT_EQ(1U, cleanup_counter); // Exit while the other count is still on the cleanup stack. pthread_exit(nullptr); // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced. pthread_cleanup_pop(0); } static void* PthreadCleanupStartRoutine(void*) { PthreadCleanupTester(); return nullptr; } TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) { pthread_t t; ASSERT_EQ(0, pthread_create(&t, nullptr, PthreadCleanupStartRoutine, nullptr)); ASSERT_EQ(0, pthread_join(t, nullptr)); ASSERT_EQ(2U, cleanup_counter); } TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) { ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT); } TEST(pthread, pthread_mutexattr_gettype) { pthread_mutexattr_t attr; ASSERT_EQ(0, pthread_mutexattr_init(&attr)); int attr_type; ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL)); ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type); ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)); ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type); ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)); ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type); ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); } TEST(pthread, pthread_mutexattr_protocol) { pthread_mutexattr_t attr; ASSERT_EQ(0, pthread_mutexattr_init(&attr)); int protocol; ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol)); ASSERT_EQ(PTHREAD_PRIO_NONE, protocol); for (size_t repeat = 0; repeat < 2; ++repeat) { for (int set_protocol : {PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT}) { ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, set_protocol)); ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol)); ASSERT_EQ(protocol, set_protocol); } } } struct PthreadMutex { pthread_mutex_t lock; explicit PthreadMutex(int mutex_type, int protocol = PTHREAD_PRIO_NONE) { init(mutex_type, protocol); } ~PthreadMutex() { destroy(); } private: void init(int mutex_type, int protocol) { pthread_mutexattr_t attr; ASSERT_EQ(0, pthread_mutexattr_init(&attr)); ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type)); ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, protocol)); ASSERT_EQ(0, pthread_mutex_init(&lock, &attr)); ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); } void destroy() { ASSERT_EQ(0, pthread_mutex_destroy(&lock)); } DISALLOW_COPY_AND_ASSIGN(PthreadMutex); }; static int UnlockFromAnotherThread(pthread_mutex_t* mutex) { pthread_t thread; pthread_create(&thread, nullptr, [](void* mutex_voidp) -> void* { pthread_mutex_t* mutex = static_cast<pthread_mutex_t*>(mutex_voidp); intptr_t result = pthread_mutex_unlock(mutex); return reinterpret_cast<void*>(result); }, mutex); void* result; EXPECT_EQ(0, pthread_join(thread, &result)); return reinterpret_cast<intptr_t>(result); }; static void TestPthreadMutexLockNormal(int protocol) { PthreadMutex m(PTHREAD_MUTEX_NORMAL, protocol); ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); if (protocol == PTHREAD_PRIO_INHERIT) { ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock)); } ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock)); ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); } static void TestPthreadMutexLockErrorCheck(int protocol) { PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK, protocol); ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock)); ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock)); ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); if (protocol == PTHREAD_PRIO_NONE) { ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock)); } else { ASSERT_EQ(EDEADLK, pthread_mutex_trylock(&m.lock)); } ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock)); } static void TestPthreadMutexLockRecursive(int protocol) { PthreadMutex m(PTHREAD_MUTEX_RECURSIVE, protocol); ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock)); ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock)); ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock)); } TEST(pthread, pthread_mutex_lock_NORMAL) { TestPthreadMutexLockNormal(PTHREAD_PRIO_NONE); } TEST(pthread, pthread_mutex_lock_ERRORCHECK) { TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_NONE); } TEST(pthread, pthread_mutex_lock_RECURSIVE) { TestPthreadMutexLockRecursive(PTHREAD_PRIO_NONE); } TEST(pthread, pthread_mutex_lock_pi) { TestPthreadMutexLockNormal(PTHREAD_PRIO_INHERIT); TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_INHERIT); TestPthreadMutexLockRecursive(PTHREAD_PRIO_INHERIT); } TEST(pthread, pthread_mutex_pi_count_limit) { #if defined(__BIONIC__) && !defined(__LP64__) // Bionic only supports 65536 pi mutexes in 32-bit programs. pthread_mutexattr_t attr; ASSERT_EQ(0, pthread_mutexattr_init(&attr)); ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT)); std::vector<pthread_mutex_t> mutexes(65536); // Test if we can use 65536 pi mutexes at the same time. // Run 2 times to check if freed pi mutexes can be recycled. for (int repeat = 0; repeat < 2; ++repeat) { for (auto& m : mutexes) { ASSERT_EQ(0, pthread_mutex_init(&m, &attr)); } pthread_mutex_t m; ASSERT_EQ(ENOMEM, pthread_mutex_init(&m, &attr)); for (auto& m : mutexes) { ASSERT_EQ(0, pthread_mutex_lock(&m)); } for (auto& m : mutexes) { ASSERT_EQ(0, pthread_mutex_unlock(&m)); } for (auto& m : mutexes) { ASSERT_EQ(0, pthread_mutex_destroy(&m)); } } ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); #else GTEST_SKIP() << "pi mutex count not limited to 64Ki"; #endif } TEST(pthread, pthread_mutex_init_same_as_static_initializers) { pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER; PthreadMutex m1(PTHREAD_MUTEX_NORMAL); ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t))); pthread_mutex_destroy(&lock_normal); pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP; PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK); ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t))); pthread_mutex_destroy(&lock_errorcheck); pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE); ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t))); ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive)); } class MutexWakeupHelper { private: PthreadMutex m; enum Progress { LOCK_INITIALIZED, LOCK_WAITING, LOCK_RELEASED, LOCK_ACCESSED }; std::atomic<Progress> progress; std::atomic<pid_t> tid; static void thread_fn(MutexWakeupHelper* helper) { helper->tid = gettid(); ASSERT_EQ(LOCK_INITIALIZED, helper->progress); helper->progress = LOCK_WAITING; ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock)); ASSERT_EQ(LOCK_RELEASED, helper->progress); ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock)); helper->progress = LOCK_ACCESSED; } public: explicit MutexWakeupHelper(int mutex_type) : m(mutex_type) { } void test() { ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); progress = LOCK_INITIALIZED; tid = 0; pthread_t thread; ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this)); WaitUntilThreadSleep(tid); ASSERT_EQ(LOCK_WAITING, progress); progress = LOCK_RELEASED; ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); ASSERT_EQ(0, pthread_join(thread, nullptr)); ASSERT_EQ(LOCK_ACCESSED, progress); } }; TEST(pthread, pthread_mutex_NORMAL_wakeup) { MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL); helper.test(); } TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) { MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK); helper.test(); } TEST(pthread, pthread_mutex_RECURSIVE_wakeup) { MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE); helper.test(); } static int GetThreadPriority(pid_t tid) { // sched_getparam() returns the static priority of a thread, which can't reflect a thread's // priority after priority inheritance. So read /proc/<pid>/stat to get the dynamic priority. std::string filename = android::base::StringPrintf("/proc/%d/stat", tid); std::string content; int result = INT_MAX; if (!android::base::ReadFileToString(filename, &content)) { return result; } std::vector<std::string> strs = android::base::Split(content, " "); if (strs.size() < 18) { return result; } if (!android::base::ParseInt(strs[17], &result)) { return INT_MAX; } return result; } class PIMutexWakeupHelper { private: PthreadMutex m; int protocol; enum Progress { LOCK_INITIALIZED, LOCK_CHILD_READY, LOCK_WAITING, LOCK_RELEASED, }; std::atomic<Progress> progress; std::atomic<pid_t> main_tid; std::atomic<pid_t> child_tid; PthreadMutex start_thread_m; static void thread_fn(PIMutexWakeupHelper* helper) { helper->child_tid = gettid(); ASSERT_EQ(LOCK_INITIALIZED, helper->progress); ASSERT_EQ(0, setpriority(PRIO_PROCESS, gettid(), 1)); ASSERT_EQ(21, GetThreadPriority(gettid())); ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock)); helper->progress = LOCK_CHILD_READY; ASSERT_EQ(0, pthread_mutex_lock(&helper->start_thread_m.lock)); ASSERT_EQ(0, pthread_mutex_unlock(&helper->start_thread_m.lock)); WaitUntilThreadSleep(helper->main_tid); ASSERT_EQ(LOCK_WAITING, helper->progress); if (helper->protocol == PTHREAD_PRIO_INHERIT) { ASSERT_EQ(20, GetThreadPriority(gettid())); } else { ASSERT_EQ(21, GetThreadPriority(gettid())); } helper->progress = LOCK_RELEASED; ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock)); } public: explicit PIMutexWakeupHelper(int mutex_type, int protocol) : m(mutex_type, protocol), protocol(protocol), start_thread_m(PTHREAD_MUTEX_NORMAL) { } void test() { ASSERT_EQ(0, pthread_mutex_lock(&start_thread_m.lock)); main_tid = gettid(); ASSERT_EQ(20, GetThreadPriority(main_tid)); progress = LOCK_INITIALIZED; child_tid = 0; pthread_t thread; ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(PIMutexWakeupHelper::thread_fn), this)); WaitUntilThreadSleep(child_tid); ASSERT_EQ(LOCK_CHILD_READY, progress); ASSERT_EQ(0, pthread_mutex_unlock(&start_thread_m.lock)); progress = LOCK_WAITING; ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); ASSERT_EQ(LOCK_RELEASED, progress); ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); ASSERT_EQ(0, pthread_join(thread, nullptr)); } }; TEST(pthread, pthread_mutex_pi_wakeup) { for (int type : {PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK}) { for (int protocol : {PTHREAD_PRIO_INHERIT}) { PIMutexWakeupHelper helper(type, protocol); helper.test(); } } } TEST(pthread, pthread_mutex_owner_tid_limit) { #if defined(__BIONIC__) && !defined(__LP64__) FILE* fp = fopen("/proc/sys/kernel/pid_max", "r"); ASSERT_TRUE(fp != nullptr); long pid_max; ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max)); fclose(fp); // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid. ASSERT_LE(pid_max, 65536); #else GTEST_SKIP() << "pthread_mutex supports 32-bit tid"; #endif } static void pthread_mutex_timedlock_helper(clockid_t clock, int (*lock_function)(pthread_mutex_t* __mutex, const timespec* __timeout)) { pthread_mutex_t m; ASSERT_EQ(0, pthread_mutex_init(&m, nullptr)); // If the mutex is already locked, pthread_mutex_timedlock should time out. ASSERT_EQ(0, pthread_mutex_lock(&m)); timespec ts; ASSERT_EQ(0, clock_gettime(clock, &ts)); ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts)); ts.tv_nsec = -1; ASSERT_EQ(EINVAL, lock_function(&m, &ts)); ts.tv_nsec = NS_PER_S; ASSERT_EQ(EINVAL, lock_function(&m, &ts)); ts.tv_nsec = NS_PER_S - 1; ts.tv_sec = -1; ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts)); // If the mutex is unlocked, pthread_mutex_timedlock should succeed. ASSERT_EQ(0, pthread_mutex_unlock(&m)); ASSERT_EQ(0, clock_gettime(clock, &ts)); ts.tv_sec += 1; ASSERT_EQ(0, lock_function(&m, &ts)); ASSERT_EQ(0, pthread_mutex_unlock(&m)); ASSERT_EQ(0, pthread_mutex_destroy(&m)); } TEST(pthread, pthread_mutex_timedlock) { pthread_mutex_timedlock_helper(CLOCK_REALTIME, pthread_mutex_timedlock); } TEST(pthread, pthread_mutex_timedlock_monotonic_np) { #if defined(__BIONIC__) pthread_mutex_timedlock_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np); #else // __BIONIC__ GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available"; #endif // __BIONIC__ } static void pthread_mutex_timedlock_pi_helper(clockid_t clock, int (*lock_function)(pthread_mutex_t* __mutex, const timespec* __timeout)) { PthreadMutex m(PTHREAD_MUTEX_NORMAL, PTHREAD_PRIO_INHERIT); timespec ts; clock_gettime(clock, &ts); ts.tv_sec += 1; ASSERT_EQ(0, lock_function(&m.lock, &ts)); struct ThreadArgs { clockid_t clock; int (*lock_function)(pthread_mutex_t* __mutex, const timespec* __timeout); PthreadMutex& m; }; ThreadArgs thread_args = { .clock = clock, .lock_function = lock_function, .m = m, }; auto ThreadFn = [](void* arg) -> void* { auto args = static_cast<ThreadArgs*>(arg); timespec ts; clock_gettime(args->clock, &ts); ts.tv_sec += 1; intptr_t result = args->lock_function(&args->m.lock, &ts); return reinterpret_cast<void*>(result); }; pthread_t thread; ASSERT_EQ(0, pthread_create(&thread, nullptr, ThreadFn, &thread_args)); void* result; ASSERT_EQ(0, pthread_join(thread, &result)); ASSERT_EQ(ETIMEDOUT, reinterpret_cast<intptr_t>(result)); ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); } TEST(pthread, pthread_mutex_timedlock_pi) { pthread_mutex_timedlock_pi_helper(CLOCK_REALTIME, pthread_mutex_timedlock); } TEST(pthread, pthread_mutex_timedlock_monotonic_np_pi) { #if defined(__BIONIC__) pthread_mutex_timedlock_pi_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np); #else // __BIONIC__ GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available"; #endif // __BIONIC__ } TEST(pthread, pthread_mutex_using_destroyed_mutex) { #if defined(__BIONIC__) pthread_mutex_t m; ASSERT_EQ(0, pthread_mutex_init(&m, nullptr)); ASSERT_EQ(0, pthread_mutex_destroy(&m)); ASSERT_EXIT(pthread_mutex_lock(&m), ::testing::KilledBySignal(SIGABRT), "pthread_mutex_lock called on a destroyed mutex"); ASSERT_EXIT(pthread_mutex_unlock(&m), ::testing::KilledBySignal(SIGABRT), "pthread_mutex_unlock called on a destroyed mutex"); ASSERT_EXIT(pthread_mutex_trylock(&m), ::testing::KilledBySignal(SIGABRT), "pthread_mutex_trylock called on a destroyed mutex"); timespec ts; ASSERT_EXIT(pthread_mutex_timedlock(&m, &ts), ::testing::KilledBySignal(SIGABRT), "pthread_mutex_timedlock called on a destroyed mutex"); ASSERT_EXIT(pthread_mutex_timedlock_monotonic_np(&m, &ts), ::testing::KilledBySignal(SIGABRT), "pthread_mutex_timedlock_monotonic_np called on a destroyed mutex"); ASSERT_EXIT(pthread_mutex_destroy(&m), ::testing::KilledBySignal(SIGABRT), "pthread_mutex_destroy called on a destroyed mutex"); #else GTEST_SKIP() << "bionic-only test"; #endif } class StrictAlignmentAllocator { public: void* allocate(size_t size, size_t alignment) { char* p = new char[size + alignment * 2]; allocated_array.push_back(p); while (!is_strict_aligned(p, alignment)) { ++p; } return p; } ~StrictAlignmentAllocator() { for (const auto& p : allocated_array) { delete[] p; } } private: bool is_strict_aligned(char* p, size_t alignment) { return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment; } std::vector<char*> allocated_array; }; TEST(pthread, pthread_types_allow_four_bytes_alignment) { #if defined(__BIONIC__) // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types. StrictAlignmentAllocator allocator; pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>( allocator.allocate(sizeof(pthread_mutex_t), 4)); ASSERT_EQ(0, pthread_mutex_init(mutex, nullptr)); ASSERT_EQ(0, pthread_mutex_lock(mutex)); ASSERT_EQ(0, pthread_mutex_unlock(mutex)); ASSERT_EQ(0, pthread_mutex_destroy(mutex)); pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>( allocator.allocate(sizeof(pthread_cond_t), 4)); ASSERT_EQ(0, pthread_cond_init(cond, nullptr)); ASSERT_EQ(0, pthread_cond_signal(cond)); ASSERT_EQ(0, pthread_cond_broadcast(cond)); ASSERT_EQ(0, pthread_cond_destroy(cond)); pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>( allocator.allocate(sizeof(pthread_rwlock_t), 4)); ASSERT_EQ(0, pthread_rwlock_init(rwlock, nullptr)); ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock)); ASSERT_EQ(0, pthread_rwlock_unlock(rwlock)); ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock)); ASSERT_EQ(0, pthread_rwlock_unlock(rwlock)); ASSERT_EQ(0, pthread_rwlock_destroy(rwlock)); #else GTEST_SKIP() << "bionic-only test"; #endif } TEST(pthread, pthread_mutex_lock_null_32) { #if defined(__BIONIC__) && !defined(__LP64__) // For LP32, the pthread lock/unlock functions allow a NULL mutex and return // EINVAL in that case: http://b/19995172. // // We decorate the public defintion with _Nonnull so that people recompiling // their code with get a warning and might fix their bug, but need to pass // NULL here to test that we remain compatible. pthread_mutex_t* null_value = nullptr; ASSERT_EQ(EINVAL, pthread_mutex_lock(null_value)); #else GTEST_SKIP() << "32-bit bionic-only test"; #endif } TEST(pthread, pthread_mutex_unlock_null_32) { #if defined(__BIONIC__) && !defined(__LP64__) // For LP32, the pthread lock/unlock functions allow a NULL mutex and return // EINVAL in that case: http://b/19995172. // // We decorate the public defintion with _Nonnull so that people recompiling // their code with get a warning and might fix their bug, but need to pass // NULL here to test that we remain compatible. pthread_mutex_t* null_value = nullptr; ASSERT_EQ(EINVAL, pthread_mutex_unlock(null_value)); #else GTEST_SKIP() << "32-bit bionic-only test"; #endif } TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) { #if defined(__BIONIC__) && defined(__LP64__) pthread_mutex_t* null_value = nullptr; ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), ""); #else GTEST_SKIP() << "64-bit bionic-only test"; #endif } TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) { #if defined(__BIONIC__) && defined(__LP64__) pthread_mutex_t* null_value = nullptr; ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), ""); #else GTEST_SKIP() << "64-bit bionic-only test"; #endif } extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg); static volatile bool signal_handler_on_altstack_done; __attribute__((__noinline__)) static void signal_handler_backtrace() { // Check if we have enough stack space for unwinding. int count = 0; _Unwind_Backtrace(FrameCounter, &count); ASSERT_GT(count, 0); } __attribute__((__noinline__)) static void signal_handler_logging() { // Check if we have enough stack space for logging. std::string s(2048, '*'); GTEST_LOG_(INFO) << s; signal_handler_on_altstack_done = true; } __attribute__((__noinline__)) static void signal_handler_snprintf() { // Check if we have enough stack space for snprintf to a PATH_MAX buffer, plus some extra. char buf[PATH_MAX + 2048]; ASSERT_GT(snprintf(buf, sizeof(buf), "/proc/%d/status", getpid()), 0); } static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) { ASSERT_EQ(SIGUSR1, signo); signal_handler_backtrace(); signal_handler_logging(); signal_handler_snprintf(); } TEST(pthread, big_enough_signal_stack) { signal_handler_on_altstack_done = false; ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK); kill(getpid(), SIGUSR1); ASSERT_TRUE(signal_handler_on_altstack_done); } TEST(pthread, pthread_barrierattr_smoke) { pthread_barrierattr_t attr; ASSERT_EQ(0, pthread_barrierattr_init(&attr)); int pshared; ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared)); ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared); ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED)); ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared)); ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared); ASSERT_EQ(0, pthread_barrierattr_destroy(&attr)); } struct BarrierTestHelperData { size_t thread_count; pthread_barrier_t barrier; std::atomic<int> finished_mask; std::atomic<int> serial_thread_count; size_t iteration_count; std::atomic<size_t> finished_iteration_count; BarrierTestHelperData(size_t thread_count, size_t iteration_count) : thread_count(thread_count), finished_mask(0), serial_thread_count(0), iteration_count(iteration_count), finished_iteration_count(0) { } }; struct BarrierTestHelperArg { int id; BarrierTestHelperData* data; }; static void BarrierTestHelper(BarrierTestHelperArg* arg) { for (size_t i = 0; i < arg->data->iteration_count; ++i) { int result = pthread_barrier_wait(&arg->data->barrier); if (result == PTHREAD_BARRIER_SERIAL_THREAD) { arg->data->serial_thread_count++; } else { ASSERT_EQ(0, result); } int mask = arg->data->finished_mask.fetch_or(1 << arg->id); mask |= 1 << arg->id; if (mask == ((1 << arg->data->thread_count) - 1)) { ASSERT_EQ(1, arg->data->serial_thread_count); arg->data->finished_iteration_count++; arg->data->finished_mask = 0; arg->data->serial_thread_count = 0; } } } TEST(pthread, pthread_barrier_smoke) { const size_t BARRIER_ITERATION_COUNT = 10; const size_t BARRIER_THREAD_COUNT = 10; BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT); ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count)); std::vector<pthread_t> threads(data.thread_count); std::vector<BarrierTestHelperArg> args(threads.size()); for (size_t i = 0; i < threads.size(); ++i) { args[i].id = i; args[i].data = &data; ASSERT_EQ(0, pthread_create(&threads[i], nullptr, reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i])); } for (size_t i = 0; i < threads.size(); ++i) { ASSERT_EQ(0, pthread_join(threads[i], nullptr)); } ASSERT_EQ(data.iteration_count, data.finished_iteration_count); ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier)); } struct BarrierDestroyTestArg { std::atomic<int> tid; pthread_barrier_t* barrier; }; static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) { arg->tid = gettid(); ASSERT_EQ(0, pthread_barrier_wait(arg->barrier)); } TEST(pthread, pthread_barrier_destroy) { pthread_barrier_t barrier; ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2)); pthread_t thread; BarrierDestroyTestArg arg; arg.tid = 0; arg.barrier = &barrier; ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg)); WaitUntilThreadSleep(arg.tid); ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier)); ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier)); // Verify if the barrier can be destroyed directly after pthread_barrier_wait(). ASSERT_EQ(0, pthread_barrier_destroy(&barrier)); ASSERT_EQ(0, pthread_join(thread, nullptr)); #if defined(__BIONIC__) ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier)); #endif } struct BarrierOrderingTestHelperArg { pthread_barrier_t* barrier; size_t* array; size_t array_length; size_t id; }; void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) { const size_t ITERATION_COUNT = 10000; for (size_t i = 1; i <= ITERATION_COUNT; ++i) { arg->array[arg->id] = i; int result = pthread_barrier_wait(arg->barrier); ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD); for (size_t j = 0; j < arg->array_length; ++j) { ASSERT_EQ(i, arg->array[j]); } result = pthread_barrier_wait(arg->barrier); ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD); } } TEST(pthread, pthread_barrier_check_ordering) { const size_t THREAD_COUNT = 4; pthread_barrier_t barrier; ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT)); size_t array[THREAD_COUNT]; std::vector<pthread_t> threads(THREAD_COUNT); std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT); for (size_t i = 0; i < THREAD_COUNT; ++i) { args[i].barrier = &barrier; args[i].array = array; args[i].array_length = THREAD_COUNT; args[i].id = i; ASSERT_EQ(0, pthread_create(&threads[i], nullptr, reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper), &args[i])); } for (size_t i = 0; i < THREAD_COUNT; ++i) { ASSERT_EQ(0, pthread_join(threads[i], nullptr)); } } TEST(pthread, pthread_barrier_init_zero_count) { pthread_barrier_t barrier; ASSERT_EQ(EINVAL, pthread_barrier_init(&barrier, nullptr, 0)); } TEST(pthread, pthread_spinlock_smoke) { pthread_spinlock_t lock; ASSERT_EQ(0, pthread_spin_init(&lock, 0)); ASSERT_EQ(0, pthread_spin_trylock(&lock)); ASSERT_EQ(0, pthread_spin_unlock(&lock)); ASSERT_EQ(0, pthread_spin_lock(&lock)); ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock)); ASSERT_EQ(0, pthread_spin_unlock(&lock)); ASSERT_EQ(0, pthread_spin_destroy(&lock)); } TEST(pthread, pthread_attr_getdetachstate__pthread_attr_setdetachstate) { pthread_attr_t attr; ASSERT_EQ(0, pthread_attr_init(&attr)); int state; ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)); ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state)); ASSERT_EQ(PTHREAD_CREATE_DETACHED, state); ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE)); ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state)); ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state); ASSERT_EQ(EINVAL, pthread_attr_setdetachstate(&attr, 123)); ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state)); ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state); } TEST(pthread, pthread_create__mmap_failures) { pthread_attr_t attr; ASSERT_EQ(0, pthread_attr_init(&attr)); ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)); const auto kPageSize = sysconf(_SC_PAGE_SIZE); // Use up all the VMAs. By default this is 64Ki (though some will already be in use). std::vector<void*> pages; pages.reserve(64 * 1024); int prot = PROT_NONE; while (true) { void* page = mmap(nullptr, kPageSize, prot, MAP_ANON|MAP_PRIVATE, -1, 0); if (page == MAP_FAILED) break; pages.push_back(page); prot = (prot == PROT_NONE) ? PROT_READ : PROT_NONE; } // Try creating threads, freeing up a page each time we fail. size_t EAGAIN_count = 0; size_t i = 0; for (; i < pages.size(); ++i) { pthread_t t; int status = pthread_create(&t, &attr, IdFn, nullptr); if (status != EAGAIN) break; ++EAGAIN_count; ASSERT_EQ(0, munmap(pages[i], kPageSize)); } // Creating a thread uses at least three VMAs: the combined stack and TLS, and a guard on each // side. So we should have seen at least three failures. ASSERT_GE(EAGAIN_count, 3U); for (; i < pages.size(); ++i) { ASSERT_EQ(0, munmap(pages[i], kPageSize)); } } TEST(pthread, pthread_setschedparam) { sched_param p = { .sched_priority = INT_MIN }; ASSERT_EQ(EINVAL, pthread_setschedparam(pthread_self(), INT_MIN, &p)); } TEST(pthread, pthread_setschedprio) { ASSERT_EQ(EINVAL, pthread_setschedprio(pthread_self(), INT_MIN)); } TEST(pthread, pthread_attr_getinheritsched__pthread_attr_setinheritsched) { pthread_attr_t attr; ASSERT_EQ(0, pthread_attr_init(&attr)); int state; ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state)); ASSERT_EQ(PTHREAD_INHERIT_SCHED, state); ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED)); ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state)); ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state); ASSERT_EQ(EINVAL, pthread_attr_setinheritsched(&attr, 123)); ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state)); ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state); } TEST(pthread, pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED) { pthread_attr_t attr; ASSERT_EQ(0, pthread_attr_init(&attr)); // If we set invalid scheduling attributes but choose to inherit, everything's fine... sched_param param = { .sched_priority = sched_get_priority_max(SCHED_FIFO) + 1 }; ASSERT_EQ(0, pthread_attr_setschedparam(&attr, ¶m)); ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_FIFO)); ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); pthread_t t; ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, nullptr)); ASSERT_EQ(0, pthread_join(t, nullptr)); #if defined(__LP64__) // If we ask to use them, though, we'll see a failure... ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED)); ASSERT_EQ(EINVAL, pthread_create(&t, &attr, IdFn, nullptr)); #else // For backwards compatibility with broken apps, we just ignore failures // to set scheduler attributes on LP32. #endif } TEST(pthread, pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect) { sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) }; int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m); if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM"; ASSERT_EQ(0, rc); pthread_attr_t attr; ASSERT_EQ(0, pthread_attr_init(&attr)); ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); SpinFunctionHelper spin_helper; pthread_t t; ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr)); int actual_policy; sched_param actual_param; ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param)); ASSERT_EQ(SCHED_FIFO, actual_policy); spin_helper.UnSpin(); ASSERT_EQ(0, pthread_join(t, nullptr)); } TEST(pthread, pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect) { sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) }; int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m); if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM"; ASSERT_EQ(0, rc); pthread_attr_t attr; ASSERT_EQ(0, pthread_attr_init(&attr)); ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED)); ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_OTHER)); SpinFunctionHelper spin_helper; pthread_t t; ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr)); int actual_policy; sched_param actual_param; ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param)); ASSERT_EQ(SCHED_OTHER, actual_policy); spin_helper.UnSpin(); ASSERT_EQ(0, pthread_join(t, nullptr)); } TEST(pthread, pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK) { sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) }; int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO | SCHED_RESET_ON_FORK, ¶m); if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM"; ASSERT_EQ(0, rc); pthread_attr_t attr; ASSERT_EQ(0, pthread_attr_init(&attr)); ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); SpinFunctionHelper spin_helper; pthread_t t; ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr)); int actual_policy; sched_param actual_param; ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param)); ASSERT_EQ(SCHED_FIFO | SCHED_RESET_ON_FORK, actual_policy); spin_helper.UnSpin(); ASSERT_EQ(0, pthread_join(t, nullptr)); }