/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdio.h> #include <algorithm> #include <string> #include <tuple> #include <vector> #include <android-base/file.h> #include <android-base/memory.h> #include <android-base/stringprintf.h> #include <android-base/strings.h> #include <applypatch/imgdiff.h> #include <applypatch/imgdiff_image.h> #include <applypatch/imgpatch.h> #include <gtest/gtest.h> #include <ziparchive/zip_writer.h> #include "common/test_constants.h" using android::base::get_unaligned; // Sanity check for the given imgdiff patch header. static void verify_patch_header(const std::string& patch, size_t* num_normal, size_t* num_raw, size_t* num_deflate) { const size_t size = patch.size(); const char* data = patch.data(); ASSERT_GE(size, 12U); ASSERT_EQ("IMGDIFF2", std::string(data, 8)); const int num_chunks = get_unaligned<int32_t>(data + 8); ASSERT_GE(num_chunks, 0); size_t normal = 0; size_t raw = 0; size_t deflate = 0; size_t pos = 12; for (int i = 0; i < num_chunks; ++i) { ASSERT_LE(pos + 4, size); int type = get_unaligned<int32_t>(data + pos); pos += 4; if (type == CHUNK_NORMAL) { pos += 24; ASSERT_LE(pos, size); normal++; } else if (type == CHUNK_RAW) { ASSERT_LE(pos + 4, size); ssize_t data_len = get_unaligned<int32_t>(data + pos); ASSERT_GT(data_len, 0); pos += 4 + data_len; ASSERT_LE(pos, size); raw++; } else if (type == CHUNK_DEFLATE) { pos += 60; ASSERT_LE(pos, size); deflate++; } else { FAIL() << "Invalid patch type: " << type; } } if (num_normal != nullptr) *num_normal = normal; if (num_raw != nullptr) *num_raw = raw; if (num_deflate != nullptr) *num_deflate = deflate; } static void GenerateTarget(const std::string& src, const std::string& patch, std::string* patched) { patched->clear(); ASSERT_EQ(0, ApplyImagePatch(reinterpret_cast<const unsigned char*>(src.data()), src.size(), reinterpret_cast<const unsigned char*>(patch.data()), patch.size(), [&](const unsigned char* data, size_t len) { patched->append(reinterpret_cast<const char*>(data), len); return len; })); } static void verify_patched_image(const std::string& src, const std::string& patch, const std::string& tgt) { std::string patched; GenerateTarget(src, patch, &patched); ASSERT_EQ(tgt, patched); } TEST(ImgdiffTest, invalid_args) { // Insufficient inputs. ASSERT_EQ(2, imgdiff(1, (const char* []){ "imgdiff" })); ASSERT_EQ(2, imgdiff(2, (const char* []){ "imgdiff", "-z" })); ASSERT_EQ(2, imgdiff(2, (const char* []){ "imgdiff", "-b" })); ASSERT_EQ(2, imgdiff(3, (const char* []){ "imgdiff", "-z", "-b" })); // Failed to read bonus file. ASSERT_EQ(1, imgdiff(3, (const char* []){ "imgdiff", "-b", "doesntexist" })); // Failed to read input files. ASSERT_EQ(1, imgdiff(4, (const char* []){ "imgdiff", "doesntexist", "doesntexist", "output" })); ASSERT_EQ( 1, imgdiff(5, (const char* []){ "imgdiff", "-z", "doesntexist", "doesntexist", "output" })); } TEST(ImgdiffTest, image_mode_smoke) { // Random bytes. const std::string src("abcdefg"); TemporaryFile src_file; ASSERT_TRUE(android::base::WriteStringToFile(src, src_file.path)); const std::string tgt("abcdefgxyz"); TemporaryFile tgt_file; ASSERT_TRUE(android::base::WriteStringToFile(tgt, tgt_file.path)); TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); // Expect one CHUNK_RAW entry. size_t num_normal; size_t num_raw; size_t num_deflate; verify_patch_header(patch, &num_normal, &num_raw, &num_deflate); ASSERT_EQ(0U, num_normal); ASSERT_EQ(0U, num_deflate); ASSERT_EQ(1U, num_raw); verify_patched_image(src, patch, tgt); } TEST(ImgdiffTest, zip_mode_smoke_store) { // Construct src and tgt zip files. TemporaryFile src_file; FILE* src_file_ptr = fdopen(src_file.release(), "wb"); ZipWriter src_writer(src_file_ptr); ASSERT_EQ(0, src_writer.StartEntry("file1.txt", 0)); // Store mode. const std::string src_content("abcdefg"); ASSERT_EQ(0, src_writer.WriteBytes(src_content.data(), src_content.size())); ASSERT_EQ(0, src_writer.FinishEntry()); ASSERT_EQ(0, src_writer.Finish()); ASSERT_EQ(0, fclose(src_file_ptr)); TemporaryFile tgt_file; FILE* tgt_file_ptr = fdopen(tgt_file.release(), "wb"); ZipWriter tgt_writer(tgt_file_ptr); ASSERT_EQ(0, tgt_writer.StartEntry("file1.txt", 0)); // Store mode. const std::string tgt_content("abcdefgxyz"); ASSERT_EQ(0, tgt_writer.WriteBytes(tgt_content.data(), tgt_content.size())); ASSERT_EQ(0, tgt_writer.FinishEntry()); ASSERT_EQ(0, tgt_writer.Finish()); ASSERT_EQ(0, fclose(tgt_file_ptr)); // Compute patch. TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", "-z", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string tgt; ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt)); std::string src; ASSERT_TRUE(android::base::ReadFileToString(src_file.path, &src)); std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); // Expect one CHUNK_RAW entry. size_t num_normal; size_t num_raw; size_t num_deflate; verify_patch_header(patch, &num_normal, &num_raw, &num_deflate); ASSERT_EQ(0U, num_normal); ASSERT_EQ(0U, num_deflate); ASSERT_EQ(1U, num_raw); verify_patched_image(src, patch, tgt); } TEST(ImgdiffTest, zip_mode_smoke_compressed) { // Generate 1 block of random data. std::string random_data; random_data.reserve(4096); generate_n(back_inserter(random_data), 4096, []() { return rand() % 256; }); // Construct src and tgt zip files. TemporaryFile src_file; FILE* src_file_ptr = fdopen(src_file.release(), "wb"); ZipWriter src_writer(src_file_ptr); ASSERT_EQ(0, src_writer.StartEntry("file1.txt", ZipWriter::kCompress)); const std::string src_content = random_data; ASSERT_EQ(0, src_writer.WriteBytes(src_content.data(), src_content.size())); ASSERT_EQ(0, src_writer.FinishEntry()); ASSERT_EQ(0, src_writer.Finish()); ASSERT_EQ(0, fclose(src_file_ptr)); TemporaryFile tgt_file; FILE* tgt_file_ptr = fdopen(tgt_file.release(), "wb"); ZipWriter tgt_writer(tgt_file_ptr); ASSERT_EQ(0, tgt_writer.StartEntry("file1.txt", ZipWriter::kCompress)); const std::string tgt_content = random_data + "extra contents"; ASSERT_EQ(0, tgt_writer.WriteBytes(tgt_content.data(), tgt_content.size())); ASSERT_EQ(0, tgt_writer.FinishEntry()); ASSERT_EQ(0, tgt_writer.Finish()); ASSERT_EQ(0, fclose(tgt_file_ptr)); // Compute patch. TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", "-z", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string tgt; ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt)); std::string src; ASSERT_TRUE(android::base::ReadFileToString(src_file.path, &src)); std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); // Expect three entries: CHUNK_RAW (header) + CHUNK_DEFLATE (data) + CHUNK_RAW (footer). size_t num_normal; size_t num_raw; size_t num_deflate; verify_patch_header(patch, &num_normal, &num_raw, &num_deflate); ASSERT_EQ(0U, num_normal); ASSERT_EQ(1U, num_deflate); ASSERT_EQ(2U, num_raw); verify_patched_image(src, patch, tgt); } TEST(ImgdiffTest, zip_mode_empty_target) { TemporaryFile src_file; FILE* src_file_ptr = fdopen(src_file.release(), "wb"); ZipWriter src_writer(src_file_ptr); ASSERT_EQ(0, src_writer.StartEntry("file1.txt", ZipWriter::kCompress)); const std::string src_content = "abcdefg"; ASSERT_EQ(0, src_writer.WriteBytes(src_content.data(), src_content.size())); ASSERT_EQ(0, src_writer.FinishEntry()); ASSERT_EQ(0, src_writer.Finish()); ASSERT_EQ(0, fclose(src_file_ptr)); // Construct a empty entry in the target zip. TemporaryFile tgt_file; FILE* tgt_file_ptr = fdopen(tgt_file.release(), "wb"); ZipWriter tgt_writer(tgt_file_ptr); ASSERT_EQ(0, tgt_writer.StartEntry("file1.txt", ZipWriter::kCompress)); const std::string tgt_content; ASSERT_EQ(0, tgt_writer.WriteBytes(tgt_content.data(), tgt_content.size())); ASSERT_EQ(0, tgt_writer.FinishEntry()); ASSERT_EQ(0, tgt_writer.Finish()); // Compute patch. TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", "-z", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string tgt; ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt)); std::string src; ASSERT_TRUE(android::base::ReadFileToString(src_file.path, &src)); std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); verify_patched_image(src, patch, tgt); } TEST(ImgdiffTest, zip_mode_smoke_trailer_zeros) { // Generate 1 block of random data. std::string random_data; random_data.reserve(4096); generate_n(back_inserter(random_data), 4096, []() { return rand() % 256; }); // Construct src and tgt zip files. TemporaryFile src_file; FILE* src_file_ptr = fdopen(src_file.release(), "wb"); ZipWriter src_writer(src_file_ptr); ASSERT_EQ(0, src_writer.StartEntry("file1.txt", ZipWriter::kCompress)); const std::string src_content = random_data; ASSERT_EQ(0, src_writer.WriteBytes(src_content.data(), src_content.size())); ASSERT_EQ(0, src_writer.FinishEntry()); ASSERT_EQ(0, src_writer.Finish()); ASSERT_EQ(0, fclose(src_file_ptr)); TemporaryFile tgt_file; FILE* tgt_file_ptr = fdopen(tgt_file.release(), "wb"); ZipWriter tgt_writer(tgt_file_ptr); ASSERT_EQ(0, tgt_writer.StartEntry("file1.txt", ZipWriter::kCompress)); const std::string tgt_content = random_data + "abcdefg"; ASSERT_EQ(0, tgt_writer.WriteBytes(tgt_content.data(), tgt_content.size())); ASSERT_EQ(0, tgt_writer.FinishEntry()); ASSERT_EQ(0, tgt_writer.Finish()); // Add trailing zeros to the target zip file. std::vector<uint8_t> zeros(10); ASSERT_EQ(zeros.size(), fwrite(zeros.data(), sizeof(uint8_t), zeros.size(), tgt_file_ptr)); ASSERT_EQ(0, fclose(tgt_file_ptr)); // Compute patch. TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", "-z", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string tgt; ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt)); std::string src; ASSERT_TRUE(android::base::ReadFileToString(src_file.path, &src)); std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); // Expect three entries: CHUNK_RAW (header) + CHUNK_DEFLATE (data) + CHUNK_RAW (footer). size_t num_normal; size_t num_raw; size_t num_deflate; verify_patch_header(patch, &num_normal, &num_raw, &num_deflate); ASSERT_EQ(0U, num_normal); ASSERT_EQ(1U, num_deflate); ASSERT_EQ(2U, num_raw); verify_patched_image(src, patch, tgt); } TEST(ImgdiffTest, image_mode_simple) { std::string gzipped_source_path = from_testdata_base("gzipped_source"); std::string gzipped_source; ASSERT_TRUE(android::base::ReadFileToString(gzipped_source_path, &gzipped_source)); const std::string src = "abcdefg" + gzipped_source; TemporaryFile src_file; ASSERT_TRUE(android::base::WriteStringToFile(src, src_file.path)); std::string gzipped_target_path = from_testdata_base("gzipped_target"); std::string gzipped_target; ASSERT_TRUE(android::base::ReadFileToString(gzipped_target_path, &gzipped_target)); const std::string tgt = "abcdefgxyz" + gzipped_target; TemporaryFile tgt_file; ASSERT_TRUE(android::base::WriteStringToFile(tgt, tgt_file.path)); TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); // Expect three entries: CHUNK_RAW (header) + CHUNK_DEFLATE (data) + CHUNK_RAW (footer). size_t num_normal; size_t num_raw; size_t num_deflate; verify_patch_header(patch, &num_normal, &num_raw, &num_deflate); ASSERT_EQ(0U, num_normal); ASSERT_EQ(1U, num_deflate); ASSERT_EQ(2U, num_raw); verify_patched_image(src, patch, tgt); } TEST(ImgdiffTest, image_mode_bad_gzip) { // Modify the uncompressed length in the gzip footer. const std::vector<char> src_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', '\x1f', '\x8b', '\x08', '\x00', '\xc4', '\x1e', '\x53', '\x58', '\x00', '\x03', '\xab', '\xa8', '\xac', '\x02', '\x00', '\x67', '\xba', '\x8e', '\xeb', '\x03', '\xff', '\xff', '\xff' }; const std::string src(src_data.cbegin(), src_data.cend()); TemporaryFile src_file; ASSERT_TRUE(android::base::WriteStringToFile(src, src_file.path)); // Modify the uncompressed length in the gzip footer. const std::vector<char> tgt_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'x', 'y', 'z', '\x1f', '\x8b', '\x08', '\x00', '\x62', '\x1f', '\x53', '\x58', '\x00', '\x03', '\xab', '\xa8', '\xa8', '\xac', '\xac', '\xaa', '\x02', '\x00', '\x96', '\x30', '\x06', '\xb7', '\x06', '\xff', '\xff', '\xff' }; const std::string tgt(tgt_data.cbegin(), tgt_data.cend()); TemporaryFile tgt_file; ASSERT_TRUE(android::base::WriteStringToFile(tgt, tgt_file.path)); TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); verify_patched_image(src, patch, tgt); } TEST(ImgdiffTest, image_mode_different_num_chunks) { // src: "abcdefgh" + gzipped "xyz" (echo -n "xyz" | gzip -f | hd) + gzipped "test". const std::vector<char> src_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', '\x1f', '\x8b', '\x08', '\x00', '\xc4', '\x1e', '\x53', '\x58', '\x00', '\x03', '\xab', '\xa8', '\xac', '\x02', '\x00', '\x67', '\xba', '\x8e', '\xeb', '\x03', '\x00', '\x00', '\x00', '\x1f', '\x8b', '\x08', '\x00', '\xb2', '\x3a', '\x53', '\x58', '\x00', '\x03', '\x2b', '\x49', '\x2d', '\x2e', '\x01', '\x00', '\x0c', '\x7e', '\x7f', '\xd8', '\x04', '\x00', '\x00', '\x00' }; const std::string src(src_data.cbegin(), src_data.cend()); TemporaryFile src_file; ASSERT_TRUE(android::base::WriteStringToFile(src, src_file.path)); // tgt: "abcdefgxyz" + gzipped "xxyyzz". const std::vector<char> tgt_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'x', 'y', 'z', '\x1f', '\x8b', '\x08', '\x00', '\x62', '\x1f', '\x53', '\x58', '\x00', '\x03', '\xab', '\xa8', '\xa8', '\xac', '\xac', '\xaa', '\x02', '\x00', '\x96', '\x30', '\x06', '\xb7', '\x06', '\x00', '\x00', '\x00' }; const std::string tgt(tgt_data.cbegin(), tgt_data.cend()); TemporaryFile tgt_file; ASSERT_TRUE(android::base::WriteStringToFile(tgt, tgt_file.path)); TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(1, imgdiff(args.size(), args.data())); } TEST(ImgdiffTest, image_mode_merge_chunks) { // src: "abcdefg" + gzipped_source. std::string gzipped_source_path = from_testdata_base("gzipped_source"); std::string gzipped_source; ASSERT_TRUE(android::base::ReadFileToString(gzipped_source_path, &gzipped_source)); const std::string src = "abcdefg" + gzipped_source; TemporaryFile src_file; ASSERT_TRUE(android::base::WriteStringToFile(src, src_file.path)); // tgt: gzipped_target + "abcdefgxyz". std::string gzipped_target_path = from_testdata_base("gzipped_target"); std::string gzipped_target; ASSERT_TRUE(android::base::ReadFileToString(gzipped_target_path, &gzipped_target)); const std::string tgt = gzipped_target + "abcdefgxyz"; TemporaryFile tgt_file; ASSERT_TRUE(android::base::WriteStringToFile(tgt, tgt_file.path)); // Since a gzipped entry will become CHUNK_RAW (header) + CHUNK_DEFLATE (data) + // CHUNK_RAW (footer), they both should contain the same chunk types after merging. TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); // Expect three entries: CHUNK_RAW (header) + CHUNK_DEFLATE (data) + CHUNK_RAW (footer). size_t num_normal; size_t num_raw; size_t num_deflate; verify_patch_header(patch, &num_normal, &num_raw, &num_deflate); ASSERT_EQ(0U, num_normal); ASSERT_EQ(1U, num_deflate); ASSERT_EQ(2U, num_raw); verify_patched_image(src, patch, tgt); } TEST(ImgdiffTest, image_mode_spurious_magic) { // src: "abcdefgh" + '0x1f8b0b00' + some bytes. const std::vector<char> src_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', '\x1f', '\x8b', '\x08', '\x00', '\xc4', '\x1e', '\x53', '\x58', 't', 'e', 's', 't' }; const std::string src(src_data.cbegin(), src_data.cend()); TemporaryFile src_file; ASSERT_TRUE(android::base::WriteStringToFile(src, src_file.path)); // tgt: "abcdefgxyz". const std::vector<char> tgt_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'x', 'y', 'z' }; const std::string tgt(tgt_data.cbegin(), tgt_data.cend()); TemporaryFile tgt_file; ASSERT_TRUE(android::base::WriteStringToFile(tgt, tgt_file.path)); TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); // Expect one CHUNK_RAW (header) entry. size_t num_normal; size_t num_raw; size_t num_deflate; verify_patch_header(patch, &num_normal, &num_raw, &num_deflate); ASSERT_EQ(0U, num_normal); ASSERT_EQ(0U, num_deflate); ASSERT_EQ(1U, num_raw); verify_patched_image(src, patch, tgt); } TEST(ImgdiffTest, image_mode_short_input1) { // src: "abcdefgh" + '0x1f8b0b'. const std::vector<char> src_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', '\x1f', '\x8b', '\x08' }; const std::string src(src_data.cbegin(), src_data.cend()); TemporaryFile src_file; ASSERT_TRUE(android::base::WriteStringToFile(src, src_file.path)); // tgt: "abcdefgxyz". const std::vector<char> tgt_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'x', 'y', 'z' }; const std::string tgt(tgt_data.cbegin(), tgt_data.cend()); TemporaryFile tgt_file; ASSERT_TRUE(android::base::WriteStringToFile(tgt, tgt_file.path)); TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); // Expect one CHUNK_RAW (header) entry. size_t num_normal; size_t num_raw; size_t num_deflate; verify_patch_header(patch, &num_normal, &num_raw, &num_deflate); ASSERT_EQ(0U, num_normal); ASSERT_EQ(0U, num_deflate); ASSERT_EQ(1U, num_raw); verify_patched_image(src, patch, tgt); } TEST(ImgdiffTest, image_mode_short_input2) { // src: "abcdefgh" + '0x1f8b0b00'. const std::vector<char> src_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', '\x1f', '\x8b', '\x08', '\x00' }; const std::string src(src_data.cbegin(), src_data.cend()); TemporaryFile src_file; ASSERT_TRUE(android::base::WriteStringToFile(src, src_file.path)); // tgt: "abcdefgxyz". const std::vector<char> tgt_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'x', 'y', 'z' }; const std::string tgt(tgt_data.cbegin(), tgt_data.cend()); TemporaryFile tgt_file; ASSERT_TRUE(android::base::WriteStringToFile(tgt, tgt_file.path)); TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); // Expect one CHUNK_RAW (header) entry. size_t num_normal; size_t num_raw; size_t num_deflate; verify_patch_header(patch, &num_normal, &num_raw, &num_deflate); ASSERT_EQ(0U, num_normal); ASSERT_EQ(0U, num_deflate); ASSERT_EQ(1U, num_raw); verify_patched_image(src, patch, tgt); } TEST(ImgdiffTest, image_mode_single_entry_long) { // src: "abcdefgh" + '0x1f8b0b00' + some bytes. const std::vector<char> src_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', '\x1f', '\x8b', '\x08', '\x00', '\xc4', '\x1e', '\x53', '\x58', 't', 'e', 's', 't' }; const std::string src(src_data.cbegin(), src_data.cend()); TemporaryFile src_file; ASSERT_TRUE(android::base::WriteStringToFile(src, src_file.path)); // tgt: "abcdefgxyz" + 200 bytes. std::vector<char> tgt_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'x', 'y', 'z' }; tgt_data.resize(tgt_data.size() + 200); const std::string tgt(tgt_data.cbegin(), tgt_data.cend()); TemporaryFile tgt_file; ASSERT_TRUE(android::base::WriteStringToFile(tgt, tgt_file.path)); TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); // Expect one CHUNK_NORMAL entry, since it's exceeding the 160-byte limit for RAW. size_t num_normal; size_t num_raw; size_t num_deflate; verify_patch_header(patch, &num_normal, &num_raw, &num_deflate); ASSERT_EQ(1U, num_normal); ASSERT_EQ(0U, num_deflate); ASSERT_EQ(0U, num_raw); verify_patched_image(src, patch, tgt); } TEST(ImgpatchTest, image_mode_patch_corruption) { // src: "abcdefgh" + gzipped "xyz" (echo -n "xyz" | gzip -f | hd). const std::vector<char> src_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', '\x1f', '\x8b', '\x08', '\x00', '\xc4', '\x1e', '\x53', '\x58', '\x00', '\x03', '\xab', '\xa8', '\xac', '\x02', '\x00', '\x67', '\xba', '\x8e', '\xeb', '\x03', '\x00', '\x00', '\x00' }; const std::string src(src_data.cbegin(), src_data.cend()); TemporaryFile src_file; ASSERT_TRUE(android::base::WriteStringToFile(src, src_file.path)); // tgt: "abcdefgxyz" + gzipped "xxyyzz". const std::vector<char> tgt_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'x', 'y', 'z', '\x1f', '\x8b', '\x08', '\x00', '\x62', '\x1f', '\x53', '\x58', '\x00', '\x03', '\xab', '\xa8', '\xa8', '\xac', '\xac', '\xaa', '\x02', '\x00', '\x96', '\x30', '\x06', '\xb7', '\x06', '\x00', '\x00', '\x00' }; const std::string tgt(tgt_data.cbegin(), tgt_data.cend()); TemporaryFile tgt_file; ASSERT_TRUE(android::base::WriteStringToFile(tgt, tgt_file.path)); TemporaryFile patch_file; std::vector<const char*> args = { "imgdiff", src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); // Verify. std::string patch; ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch)); verify_patched_image(src, patch, tgt); // Corrupt the end of the patch and expect the ApplyImagePatch to fail. patch.insert(patch.end() - 10, 10, '0'); ASSERT_EQ(-1, ApplyImagePatch(reinterpret_cast<const unsigned char*>(src.data()), src.size(), reinterpret_cast<const unsigned char*>(patch.data()), patch.size(), [](const unsigned char* /*data*/, size_t len) { return len; })); } static void construct_store_entry(const std::vector<std::tuple<std::string, size_t, char>>& info, ZipWriter* writer) { for (auto& t : info) { // Create t(1) blocks of t(2), and write the data to t(0) ASSERT_EQ(0, writer->StartEntry(std::get<0>(t).c_str(), 0)); const std::string content(std::get<1>(t) * 4096, std::get<2>(t)); ASSERT_EQ(0, writer->WriteBytes(content.data(), content.size())); ASSERT_EQ(0, writer->FinishEntry()); } } static void construct_deflate_entry(const std::vector<std::tuple<std::string, size_t, size_t>>& info, ZipWriter* writer, const std::string& data) { for (auto& t : info) { // t(0): entry_name; t(1): block offset; t(2) length in blocks. ASSERT_EQ(0, writer->StartEntry(std::get<0>(t).c_str(), ZipWriter::kCompress)); ASSERT_EQ(0, writer->WriteBytes(data.data() + std::get<1>(t) * 4096, std::get<2>(t) * 4096)); ASSERT_EQ(0, writer->FinishEntry()); } } // Look for the source and patch pieces in debug_dir. Generate a target piece from each pair. // Concatenate all the target pieces and match against the orignal one. Used pieces in debug_dir // will be cleaned up. static void GenerateAndCheckSplitTarget(const std::string& debug_dir, size_t count, const std::string& tgt) { std::string patched; for (size_t i = 0; i < count; i++) { std::string split_src_path = android::base::StringPrintf("%s/src-%zu", debug_dir.c_str(), i); std::string split_src; ASSERT_TRUE(android::base::ReadFileToString(split_src_path, &split_src)); ASSERT_EQ(0, unlink(split_src_path.c_str())); std::string split_patch_path = android::base::StringPrintf("%s/patch-%zu", debug_dir.c_str(), i); std::string split_patch; ASSERT_TRUE(android::base::ReadFileToString(split_patch_path, &split_patch)); ASSERT_EQ(0, unlink(split_patch_path.c_str())); std::string split_tgt; GenerateTarget(split_src, split_patch, &split_tgt); patched += split_tgt; } // Verify we can get back the original target image. ASSERT_EQ(tgt, patched); } std::vector<ImageChunk> ConstructImageChunks( const std::vector<uint8_t>& content, const std::vector<std::tuple<std::string, size_t>>& info) { std::vector<ImageChunk> chunks; size_t start = 0; for (const auto& t : info) { size_t length = std::get<1>(t); chunks.emplace_back(CHUNK_NORMAL, start, &content, length, std::get<0>(t)); start += length; } return chunks; } TEST(ImgdiffTest, zip_mode_split_image_smoke) { std::vector<uint8_t> content; content.reserve(4096 * 50); uint8_t n = 0; generate_n(back_inserter(content), 4096 * 50, [&n]() { return n++ / 4096; }); ZipModeImage tgt_image(false, 4096 * 10); std::vector<ImageChunk> tgt_chunks = ConstructImageChunks(content, { { "a", 100 }, { "b", 4096 * 2 }, { "c", 4096 * 3 }, { "d", 300 }, { "e-0", 4096 * 10 }, { "e-1", 4096 * 5 }, { "CD", 200 } }); tgt_image.Initialize(std::move(tgt_chunks), std::vector<uint8_t>(content.begin(), content.begin() + 82520)); tgt_image.DumpChunks(); ZipModeImage src_image(true, 4096 * 10); std::vector<ImageChunk> src_chunks = ConstructImageChunks(content, { { "b", 4096 * 3 }, { "c-0", 4096 * 10 }, { "c-1", 4096 * 2 }, { "a", 4096 * 5 }, { "e-0", 4096 * 10 }, { "e-1", 10000 }, { "CD", 5000 } }); src_image.Initialize(std::move(src_chunks), std::vector<uint8_t>(content.begin(), content.begin() + 137880)); std::vector<ZipModeImage> split_tgt_images; std::vector<ZipModeImage> split_src_images; std::vector<SortedRangeSet> split_src_ranges; ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images, &split_src_images, &split_src_ranges); // src_piece 1: a 5 blocks, b 3 blocks // src_piece 2: c-0 10 blocks // src_piece 3: d 0 block, e-0 10 blocks // src_piece 4: e-1 2 blocks; CD 2 blocks ASSERT_EQ(split_tgt_images.size(), split_src_images.size()); ASSERT_EQ(static_cast<size_t>(4), split_tgt_images.size()); ASSERT_EQ(static_cast<size_t>(1), split_tgt_images[0].NumOfChunks()); ASSERT_EQ(static_cast<size_t>(12288), split_tgt_images[0][0].DataLengthForPatch()); ASSERT_EQ("4,0,3,15,20", split_src_ranges[0].ToString()); ASSERT_EQ(static_cast<size_t>(1), split_tgt_images[1].NumOfChunks()); ASSERT_EQ(static_cast<size_t>(12288), split_tgt_images[1][0].DataLengthForPatch()); ASSERT_EQ("2,3,13", split_src_ranges[1].ToString()); ASSERT_EQ(static_cast<size_t>(1), split_tgt_images[2].NumOfChunks()); ASSERT_EQ(static_cast<size_t>(40960), split_tgt_images[2][0].DataLengthForPatch()); ASSERT_EQ("2,20,30", split_src_ranges[2].ToString()); ASSERT_EQ(static_cast<size_t>(1), split_tgt_images[3].NumOfChunks()); ASSERT_EQ(static_cast<size_t>(16984), split_tgt_images[3][0].DataLengthForPatch()); ASSERT_EQ("2,30,34", split_src_ranges[3].ToString()); } TEST(ImgdiffTest, zip_mode_store_large_apk) { // Construct src and tgt zip files with limit = 10 blocks. // src tgt // 12 blocks 'd' 3 blocks 'a' // 8 blocks 'c' 3 blocks 'b' // 3 blocks 'b' 8 blocks 'c' (exceeds limit) // 3 blocks 'a' 12 blocks 'd' (exceeds limit) // 3 blocks 'e' TemporaryFile tgt_file; FILE* tgt_file_ptr = fdopen(tgt_file.release(), "wb"); ZipWriter tgt_writer(tgt_file_ptr); construct_store_entry( { { "a", 3, 'a' }, { "b", 3, 'b' }, { "c", 8, 'c' }, { "d", 12, 'd' }, { "e", 3, 'e' } }, &tgt_writer); ASSERT_EQ(0, tgt_writer.Finish()); ASSERT_EQ(0, fclose(tgt_file_ptr)); TemporaryFile src_file; FILE* src_file_ptr = fdopen(src_file.release(), "wb"); ZipWriter src_writer(src_file_ptr); construct_store_entry({ { "d", 12, 'd' }, { "c", 8, 'c' }, { "b", 3, 'b' }, { "a", 3, 'a' } }, &src_writer); ASSERT_EQ(0, src_writer.Finish()); ASSERT_EQ(0, fclose(src_file_ptr)); // Compute patch. TemporaryFile patch_file; TemporaryFile split_info_file; TemporaryDir debug_dir; std::string split_info_arg = android::base::StringPrintf("--split-info=%s", split_info_file.path); std::string debug_dir_arg = android::base::StringPrintf("--debug-dir=%s", debug_dir.path); std::vector<const char*> args = { "imgdiff", "-z", "--block-limit=10", split_info_arg.c_str(), debug_dir_arg.c_str(), src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); std::string tgt; ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt)); // Expect 4 pieces of patch. (Roughly 3'a',3'b'; 8'c'; 10'd'; 2'd'3'e') GenerateAndCheckSplitTarget(debug_dir.path, 4, tgt); } TEST(ImgdiffTest, zip_mode_deflate_large_apk) { // Src and tgt zip files are constructed as follows. // src tgt // 22 blocks, "d" 4 blocks, "a" // 5 blocks, "b" 4 blocks, "b" // 3 blocks, "a" 8 blocks, "c" (exceeds limit) // 1 block, "g" 20 blocks, "d" (exceeds limit) // 8 blocks, "c" 2 blocks, "e" // 1 block, "f" 1 block , "f" std::string tgt_path = from_testdata_base("deflate_tgt.zip"); std::string src_path = from_testdata_base("deflate_src.zip"); ZipModeImage src_image(true, 10 * 4096); ZipModeImage tgt_image(false, 10 * 4096); ASSERT_TRUE(src_image.Initialize(src_path)); ASSERT_TRUE(tgt_image.Initialize(tgt_path)); ASSERT_TRUE(ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)); src_image.DumpChunks(); tgt_image.DumpChunks(); std::vector<ZipModeImage> split_tgt_images; std::vector<ZipModeImage> split_src_images; std::vector<SortedRangeSet> split_src_ranges; ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images, &split_src_images, &split_src_ranges); // Expected split images with limit = 10 blocks. // src_piece 0: a 3 blocks, b 5 blocks // src_piece 1: c 8 blocks // src_piece 2: d-0 10 block // src_piece 3: d-1 10 blocks // src_piece 4: e 1 block, CD ASSERT_EQ(split_tgt_images.size(), split_src_images.size()); ASSERT_EQ(static_cast<size_t>(5), split_tgt_images.size()); ASSERT_EQ(static_cast<size_t>(2), split_src_images[0].NumOfChunks()); ASSERT_EQ("a", split_src_images[0][0].GetEntryName()); ASSERT_EQ("b", split_src_images[0][1].GetEntryName()); ASSERT_EQ(static_cast<size_t>(1), split_src_images[1].NumOfChunks()); ASSERT_EQ("c", split_src_images[1][0].GetEntryName()); ASSERT_EQ(static_cast<size_t>(0), split_src_images[2].NumOfChunks()); ASSERT_EQ(static_cast<size_t>(0), split_src_images[3].NumOfChunks()); ASSERT_EQ(static_cast<size_t>(0), split_src_images[4].NumOfChunks()); // Compute patch. TemporaryFile patch_file; TemporaryFile split_info_file; TemporaryDir debug_dir; ASSERT_TRUE(ZipModeImage::GeneratePatches(split_tgt_images, split_src_images, split_src_ranges, patch_file.path, split_info_file.path, debug_dir.path)); // Verify the content of split info. // Expect 5 pieces of patch. ["a","b"; "c"; "d-0"; "d-1"; "e"] std::string split_info_string; android::base::ReadFileToString(split_info_file.path, &split_info_string); std::vector<std::string> info_list = android::base::Split(android::base::Trim(split_info_string), "\n"); ASSERT_EQ(static_cast<size_t>(7), info_list.size()); ASSERT_EQ("2", android::base::Trim(info_list[0])); ASSERT_EQ("5", android::base::Trim(info_list[1])); std::string tgt; ASSERT_TRUE(android::base::ReadFileToString(tgt_path, &tgt)); ASSERT_EQ(static_cast<size_t>(160385), tgt.size()); std::vector<std::string> tgt_file_ranges = { "36864 2,22,31", "32768 2,31,40", "40960 2,0,11", "40960 2,11,21", "8833 4,21,22,40,41", }; for (size_t i = 0; i < 5; i++) { struct stat st; std::string path = android::base::StringPrintf("%s/patch-%zu", debug_dir.path, i); ASSERT_EQ(0, stat(path.c_str(), &st)); ASSERT_EQ(std::to_string(st.st_size) + " " + tgt_file_ranges[i], android::base::Trim(info_list[i + 2])); } GenerateAndCheckSplitTarget(debug_dir.path, 5, tgt); } TEST(ImgdiffTest, zip_mode_no_match_source) { // Generate 20 blocks of random data. std::string random_data; random_data.reserve(4096 * 20); generate_n(back_inserter(random_data), 4096 * 20, []() { return rand() % 256; }); TemporaryFile tgt_file; FILE* tgt_file_ptr = fdopen(tgt_file.release(), "wb"); ZipWriter tgt_writer(tgt_file_ptr); construct_deflate_entry({ { "a", 0, 4 }, { "b", 5, 5 }, { "c", 11, 5 } }, &tgt_writer, random_data); ASSERT_EQ(0, tgt_writer.Finish()); ASSERT_EQ(0, fclose(tgt_file_ptr)); // We don't have a matching source entry. TemporaryFile src_file; FILE* src_file_ptr = fdopen(src_file.release(), "wb"); ZipWriter src_writer(src_file_ptr); construct_store_entry({ { "d", 1, 'd' } }, &src_writer); ASSERT_EQ(0, src_writer.Finish()); ASSERT_EQ(0, fclose(src_file_ptr)); // Compute patch. TemporaryFile patch_file; TemporaryFile split_info_file; TemporaryDir debug_dir; std::string split_info_arg = android::base::StringPrintf("--split-info=%s", split_info_file.path); std::string debug_dir_arg = android::base::StringPrintf("--debug-dir=%s", debug_dir.path); std::vector<const char*> args = { "imgdiff", "-z", "--block-limit=10", debug_dir_arg.c_str(), split_info_arg.c_str(), src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); std::string tgt; ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt)); // Expect 1 pieces of patch due to no matching source entry. GenerateAndCheckSplitTarget(debug_dir.path, 1, tgt); } TEST(ImgdiffTest, zip_mode_large_enough_limit) { // Generate 20 blocks of random data. std::string random_data; random_data.reserve(4096 * 20); generate_n(back_inserter(random_data), 4096 * 20, []() { return rand() % 256; }); TemporaryFile tgt_file; FILE* tgt_file_ptr = fdopen(tgt_file.release(), "wb"); ZipWriter tgt_writer(tgt_file_ptr); construct_deflate_entry({ { "a", 0, 10 }, { "b", 10, 5 } }, &tgt_writer, random_data); ASSERT_EQ(0, tgt_writer.Finish()); ASSERT_EQ(0, fclose(tgt_file_ptr)); // Construct 10 blocks of source. TemporaryFile src_file; FILE* src_file_ptr = fdopen(src_file.release(), "wb"); ZipWriter src_writer(src_file_ptr); construct_deflate_entry({ { "a", 1, 10 } }, &src_writer, random_data); ASSERT_EQ(0, src_writer.Finish()); ASSERT_EQ(0, fclose(src_file_ptr)); // Compute patch with a limit of 20 blocks. TemporaryFile patch_file; TemporaryFile split_info_file; TemporaryDir debug_dir; std::string split_info_arg = android::base::StringPrintf("--split-info=%s", split_info_file.path); std::string debug_dir_arg = android::base::StringPrintf("--debug-dir=%s", debug_dir.path); std::vector<const char*> args = { "imgdiff", "-z", "--block-limit=20", split_info_arg.c_str(), debug_dir_arg.c_str(), src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); std::string tgt; ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt)); // Expect 1 piece of patch since limit is larger than the zip file size. GenerateAndCheckSplitTarget(debug_dir.path, 1, tgt); } TEST(ImgdiffTest, zip_mode_large_apk_small_target_chunk) { TemporaryFile tgt_file; FILE* tgt_file_ptr = fdopen(tgt_file.release(), "wb"); ZipWriter tgt_writer(tgt_file_ptr); // The first entry is less than 4096 bytes, followed immediately by an entry that has a very // large counterpart in the source file. Therefore the first entry will be patched separately. std::string small_chunk("a", 2000); ASSERT_EQ(0, tgt_writer.StartEntry("a", 0)); ASSERT_EQ(0, tgt_writer.WriteBytes(small_chunk.data(), small_chunk.size())); ASSERT_EQ(0, tgt_writer.FinishEntry()); construct_store_entry( { { "b", 12, 'b' }, { "c", 3, 'c' }, }, &tgt_writer); ASSERT_EQ(0, tgt_writer.Finish()); ASSERT_EQ(0, fclose(tgt_file_ptr)); TemporaryFile src_file; FILE* src_file_ptr = fdopen(src_file.release(), "wb"); ZipWriter src_writer(src_file_ptr); construct_store_entry({ { "a", 1, 'a' }, { "b", 13, 'b' }, { "c", 1, 'c' } }, &src_writer); ASSERT_EQ(0, src_writer.Finish()); ASSERT_EQ(0, fclose(src_file_ptr)); // Compute patch. TemporaryFile patch_file; TemporaryFile split_info_file; TemporaryDir debug_dir; std::string split_info_arg = android::base::StringPrintf("--split-info=%s", split_info_file.path); std::string debug_dir_arg = android::base::StringPrintf("--debug-dir=%s", debug_dir.path); std::vector<const char*> args = { "imgdiff", "-z", "--block-limit=10", split_info_arg.c_str(), debug_dir_arg.c_str(), src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); std::string tgt; ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt)); // Expect three split src images: // src_piece 0: a 1 blocks // src_piece 1: b-0 10 blocks // src_piece 2: b-1 3 blocks, c 1 blocks, CD GenerateAndCheckSplitTarget(debug_dir.path, 3, tgt); } TEST(ImgdiffTest, zip_mode_large_apk_skipped_small_target_chunk) { TemporaryFile tgt_file; FILE* tgt_file_ptr = fdopen(tgt_file.release(), "wb"); ZipWriter tgt_writer(tgt_file_ptr); construct_store_entry( { { "a", 11, 'a' }, }, &tgt_writer); // Construct a tiny target entry of 1 byte, which will be skipped due to the tail alignment of // the previous entry. std::string small_chunk("b", 1); ASSERT_EQ(0, tgt_writer.StartEntry("b", 0)); ASSERT_EQ(0, tgt_writer.WriteBytes(small_chunk.data(), small_chunk.size())); ASSERT_EQ(0, tgt_writer.FinishEntry()); ASSERT_EQ(0, tgt_writer.Finish()); ASSERT_EQ(0, fclose(tgt_file_ptr)); TemporaryFile src_file; FILE* src_file_ptr = fdopen(src_file.release(), "wb"); ZipWriter src_writer(src_file_ptr); construct_store_entry( { { "a", 11, 'a' }, { "b", 11, 'b' }, }, &src_writer); ASSERT_EQ(0, src_writer.Finish()); ASSERT_EQ(0, fclose(src_file_ptr)); // Compute patch. TemporaryFile patch_file; TemporaryFile split_info_file; TemporaryDir debug_dir; std::string split_info_arg = android::base::StringPrintf("--split-info=%s", split_info_file.path); std::string debug_dir_arg = android::base::StringPrintf("--debug-dir=%s", debug_dir.path); std::vector<const char*> args = { "imgdiff", "-z", "--block-limit=10", split_info_arg.c_str(), debug_dir_arg.c_str(), src_file.path, tgt_file.path, patch_file.path, }; ASSERT_EQ(0, imgdiff(args.size(), args.data())); std::string tgt; ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt)); // Expect two split src images: // src_piece 0: a-0 10 blocks // src_piece 1: a-0 1 block, CD GenerateAndCheckSplitTarget(debug_dir.path, 2, tgt); }