/* * Header for sinf, cosf and sincosf. * * Copyright (c) 2018, Arm Limited. * SPDX-License-Identifier: MIT */ #include <stdint.h> #include <math.h> #include "math_config.h" /* 2PI * 2^-64. */ static const double pi63 = 0x1.921FB54442D18p-62; /* PI / 4. */ static const double pio4 = 0x1.921FB54442D18p-1; /* The constants and polynomials for sine and cosine. */ typedef struct { double sign[4]; /* Sign of sine in quadrants 0..3. */ double hpi_inv; /* 2 / PI ( * 2^24 if !TOINT_INTRINSICS). */ double hpi; /* PI / 2. */ double c0, c1, c2, c3, c4; /* Cosine polynomial. */ double s1, s2, s3; /* Sine polynomial. */ } sincos_t; /* Polynomial data (the cosine polynomial is negated in the 2nd entry). */ extern const sincos_t __sincosf_table[2] HIDDEN; /* Table with 4/PI to 192 bit precision. */ extern const uint32_t __inv_pio4[] HIDDEN; /* Top 12 bits of the float representation with the sign bit cleared. */ static inline uint32_t abstop12 (float x) { return (asuint (x) >> 20) & 0x7ff; } /* Compute the sine and cosine of inputs X and X2 (X squared), using the polynomial P and store the results in SINP and COSP. N is the quadrant, if odd the cosine and sine polynomials are swapped. */ static inline void sincosf_poly (double x, double x2, const sincos_t *p, int n, float *sinp, float *cosp) { double x3, x4, x5, x6, s, c, c1, c2, s1; x4 = x2 * x2; x3 = x2 * x; c2 = p->c3 + x2 * p->c4; s1 = p->s2 + x2 * p->s3; /* Swap sin/cos result based on quadrant. */ float *tmp = (n & 1 ? cosp : sinp); cosp = (n & 1 ? sinp : cosp); sinp = tmp; c1 = p->c0 + x2 * p->c1; x5 = x3 * x2; x6 = x4 * x2; s = x + x3 * p->s1; c = c1 + x4 * p->c2; *sinp = s + x5 * s1; *cosp = c + x6 * c2; } /* Return the sine of inputs X and X2 (X squared) using the polynomial P. N is the quadrant, and if odd the cosine polynomial is used. */ static inline float sinf_poly (double x, double x2, const sincos_t *p, int n) { double x3, x4, x6, x7, s, c, c1, c2, s1; if ((n & 1) == 0) { x3 = x * x2; s1 = p->s2 + x2 * p->s3; x7 = x3 * x2; s = x + x3 * p->s1; return s + x7 * s1; } else { x4 = x2 * x2; c2 = p->c3 + x2 * p->c4; c1 = p->c0 + x2 * p->c1; x6 = x4 * x2; c = c1 + x4 * p->c2; return c + x6 * c2; } } /* Fast range reduction using single multiply-subtract. Return the modulo of X as a value between -PI/4 and PI/4 and store the quadrant in NP. The values for PI/2 and 2/PI are accessed via P. Since PI/2 as a double is accurate to 55 bits and the worst-case cancellation happens at 6 * PI/4, the result is accurate for |X| <= 120.0. */ static inline double reduce_fast (double x, const sincos_t *p, int *np) { double r; #if TOINT_INTRINSICS /* Use fast round and lround instructions when available. */ r = x * p->hpi_inv; *np = converttoint (r); return x - roundtoint (r) * p->hpi; #else /* Use scaled float to int conversion with explicit rounding. hpi_inv is prescaled by 2^24 so the quadrant ends up in bits 24..31. This avoids inaccuracies introduced by truncating negative values. */ r = x * p->hpi_inv; int n = ((int32_t)r + 0x800000) >> 24; *np = n; return x - n * p->hpi; #endif } /* Reduce the range of XI to a multiple of PI/2 using fast integer arithmetic. XI is a reinterpreted float and must be >= 2.0f (the sign bit is ignored). Return the modulo between -PI/4 and PI/4 and store the quadrant in NP. Reduction uses a table of 4/PI with 192 bits of precision. A 32x96->128 bit multiply computes the exact 2.62-bit fixed-point modulo. Since the result can have at most 29 leading zeros after the binary point, the double precision result is accurate to 33 bits. */ static inline double reduce_large (uint32_t xi, int *np) { const uint32_t *arr = &__inv_pio4[(xi >> 26) & 15]; int shift = (xi >> 23) & 7; uint64_t n, res0, res1, res2; xi = (xi & 0xffffff) | 0x800000; xi <<= shift; res0 = xi * arr[0]; res1 = (uint64_t)xi * arr[4]; res2 = (uint64_t)xi * arr[8]; res0 = (res2 >> 32) | (res0 << 32); res0 += res1; n = (res0 + (1ULL << 61)) >> 62; res0 -= n << 62; double x = (int64_t)res0; *np = n; return x * pi63; }