/* * e_expf.c - single-precision exp function * * Copyright (c) 2009-2018, Arm Limited. * SPDX-License-Identifier: MIT */ /* * Algorithm was once taken from Cody & Waite, but has been munged * out of all recognition by SGT. */ #include <math.h> #include <errno.h> #include "math_private.h" float expf(float X) { int N; float XN, g, Rg, Result; unsigned ix = fai(X), edgecaseflag = 0; /* * Handle infinities, NaNs and big numbers. */ if (__builtin_expect((ix << 1) - 0x67000000 > 0x85500000 - 0x67000000, 0)) { if (!(0x7f800000 & ~ix)) { if (ix == 0xff800000) return 0.0f; else return FLOAT_INFNAN(X);/* do the right thing with both kinds of NaN and with +inf */ } else if ((ix << 1) < 0x67000000) { return 1.0f; /* magnitude so small the answer can't be distinguished from 1 */ } else if ((ix << 1) > 0x85a00000) { __set_errno(ERANGE); if (ix & 0x80000000) { return FLOAT_UNDERFLOW; } else { return FLOAT_OVERFLOW; } } else { edgecaseflag = 1; } } /* * Split the input into an integer multiple of log(2)/4, and a * fractional part. */ XN = X * (4.0f*1.4426950408889634074f); #ifdef __TARGET_FPU_SOFTVFP XN = _frnd(XN); N = (int)XN; #else N = (int)(XN + (ix & 0x80000000 ? -0.5f : 0.5f)); XN = N; #endif g = (X - XN * 0x1.62ep-3F) - XN * 0x1.0bfbe8p-17F; /* prec-and-a-half representation of log(2)/4 */ /* * Now we compute exp(X) in, conceptually, three parts: * - a pure power of two which we get from N>>2 * - exp(g) for g in [-log(2)/8,+log(2)/8], which we compute * using a Remez-generated polynomial approximation * - exp(k*log(2)/4) (aka 2^(k/4)) for k in [0..3], which we * get from a lookup table in precision-and-a-half and * multiply by g. * * We gain a bit of extra precision by the fact that actually * our polynomial approximation gives us exp(g)-1, and we add * the 1 back on by tweaking the prec-and-a-half multiplication * step. * * Coefficients generated by the command ./auxiliary/remez.jl --variable=g --suffix=f -- '-log(BigFloat(2))/8' '+log(BigFloat(2))/8' 3 0 '(expm1(x))/x' */ Rg = g * ( 9.999999412829185331953781321128516523408059996430919985217971370689774264850229e-01f+g*(4.999999608551332693833317084753864837160947932961832943901913087652889900683833e-01f+g*(1.667292360203016574303631953046104769969440903672618034272397630620346717392378e-01f+g*(4.168230895653321517750133783431970715648192153539929404872173693978116154823859e-02f))) ); /* * Do the table lookup and combine it with Rg, to get our final * answer apart from the exponent. */ { static const float twotokover4top[4] = { 0x1p+0F, 0x1.306p+0F, 0x1.6ap+0F, 0x1.ae8p+0F }; static const float twotokover4bot[4] = { 0x0p+0F, 0x1.fc1464p-13F, 0x1.3cccfep-13F, 0x1.3f32b6p-13F }; static const float twotokover4all[4] = { 0x1p+0F, 0x1.306fep+0F, 0x1.6a09e6p+0F, 0x1.ae89fap+0F }; int index = (N & 3); Rg = twotokover4top[index] + (twotokover4bot[index] + twotokover4all[index]*Rg); N >>= 2; } /* * Combine the output exponent and mantissa, and return. */ if (__builtin_expect(edgecaseflag, 0)) { Result = fhex(((N/2) << 23) + 0x3f800000); Result *= Rg; Result *= fhex(((N-N/2) << 23) + 0x3f800000); /* * Step not mentioned in C&W: set errno reliably. */ if (fai(Result) == 0) return MATHERR_EXPF_UFL(Result); if (fai(Result) == 0x7f800000) return MATHERR_EXPF_OFL(Result); return FLOAT_CHECKDENORM(Result); } else { Result = fhex(N * 8388608.0f + (float)0x3f800000); Result *= Rg; } return Result; }