/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the Eric Young open source * license provided above. * * The binary polynomial arithmetic software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems * Laboratories. */ #include <assert.h> #include <errno.h> #include <limits.h> #include <stdio.h> #include <string.h> #include <utility> #include <gtest/gtest.h> #include <openssl/bio.h> #include <openssl/bn.h> #include <openssl/bytestring.h> #include <openssl/crypto.h> #include <openssl/err.h> #include <openssl/mem.h> #include <openssl/rand.h> #include "./internal.h" #include "./rsaz_exp.h" #include "../../internal.h" #include "../../test/abi_test.h" #include "../../test/file_test.h" #include "../../test/test_util.h" static int HexToBIGNUM(bssl::UniquePtr<BIGNUM> *out, const char *in) { BIGNUM *raw = NULL; int ret = BN_hex2bn(&raw, in); out->reset(raw); return ret; } // A BIGNUMFileTest wraps a FileTest to give |BIGNUM| values and also allows // injecting oversized |BIGNUM|s. class BIGNUMFileTest { public: BIGNUMFileTest(FileTest *t, unsigned large_mask) : t_(t), large_mask_(large_mask), num_bignums_(0) {} unsigned num_bignums() const { return num_bignums_; } bssl::UniquePtr<BIGNUM> GetBIGNUM(const char *attribute) { return GetBIGNUMImpl(attribute, true /* resize */); } bool GetInt(int *out, const char *attribute) { bssl::UniquePtr<BIGNUM> ret = GetBIGNUMImpl(attribute, false /* don't resize */); if (!ret) { return false; } BN_ULONG word = BN_get_word(ret.get()); if (word > INT_MAX) { return false; } *out = static_cast<int>(word); return true; } private: bssl::UniquePtr<BIGNUM> GetBIGNUMImpl(const char *attribute, bool resize) { std::string hex; if (!t_->GetAttribute(&hex, attribute)) { return nullptr; } bssl::UniquePtr<BIGNUM> ret; if (HexToBIGNUM(&ret, hex.c_str()) != static_cast<int>(hex.size())) { t_->PrintLine("Could not decode '%s'.", hex.c_str()); return nullptr; } if (resize) { // Test with an oversized |BIGNUM| if necessary. if ((large_mask_ & (1 << num_bignums_)) && !bn_resize_words(ret.get(), ret->width * 2 + 1)) { return nullptr; } num_bignums_++; } return ret; } FileTest *t_; unsigned large_mask_; unsigned num_bignums_; }; static testing::AssertionResult AssertBIGNUMSEqual( const char *operation_expr, const char *expected_expr, const char *actual_expr, const char *operation, const BIGNUM *expected, const BIGNUM *actual) { if (BN_cmp(expected, actual) == 0) { return testing::AssertionSuccess(); } bssl::UniquePtr<char> expected_str(BN_bn2hex(expected)); bssl::UniquePtr<char> actual_str(BN_bn2hex(actual)); if (!expected_str || !actual_str) { return testing::AssertionFailure() << "Error converting BIGNUMs to hex"; } return testing::AssertionFailure() << "Wrong value for " << operation << "\nActual: " << actual_str.get() << " (" << actual_expr << ")\nExpected: " << expected_str.get() << " (" << expected_expr << ")"; } #define EXPECT_BIGNUMS_EQUAL(op, a, b) \ EXPECT_PRED_FORMAT3(AssertBIGNUMSEqual, op, a, b) static void TestSum(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> b = t->GetBIGNUM("B"); bssl::UniquePtr<BIGNUM> sum = t->GetBIGNUM("Sum"); ASSERT_TRUE(a); ASSERT_TRUE(b); ASSERT_TRUE(sum); bssl::UniquePtr<BIGNUM> ret(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(BN_add(ret.get(), a.get(), b.get())); EXPECT_BIGNUMS_EQUAL("A + B", sum.get(), ret.get()); ASSERT_TRUE(BN_sub(ret.get(), sum.get(), a.get())); EXPECT_BIGNUMS_EQUAL("Sum - A", b.get(), ret.get()); ASSERT_TRUE(BN_sub(ret.get(), sum.get(), b.get())); EXPECT_BIGNUMS_EQUAL("Sum - B", a.get(), ret.get()); // Test that the functions work when |r| and |a| point to the same |BIGNUM|, // or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where // all of |r|, |a|, and |b| point to the same |BIGNUM|. ASSERT_TRUE(BN_copy(ret.get(), a.get())); ASSERT_TRUE(BN_add(ret.get(), ret.get(), b.get())); EXPECT_BIGNUMS_EQUAL("A + B (r is a)", sum.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), b.get())); ASSERT_TRUE(BN_add(ret.get(), a.get(), ret.get())); EXPECT_BIGNUMS_EQUAL("A + B (r is b)", sum.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), sum.get())); ASSERT_TRUE(BN_sub(ret.get(), ret.get(), a.get())); EXPECT_BIGNUMS_EQUAL("Sum - A (r is a)", b.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), a.get())); ASSERT_TRUE(BN_sub(ret.get(), sum.get(), ret.get())); EXPECT_BIGNUMS_EQUAL("Sum - A (r is b)", b.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), sum.get())); ASSERT_TRUE(BN_sub(ret.get(), ret.get(), b.get())); EXPECT_BIGNUMS_EQUAL("Sum - B (r is a)", a.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), b.get())); ASSERT_TRUE(BN_sub(ret.get(), sum.get(), ret.get())); EXPECT_BIGNUMS_EQUAL("Sum - B (r is b)", a.get(), ret.get()); // Test |BN_uadd| and |BN_usub| with the prerequisites they are documented as // having. Note that these functions are frequently used when the // prerequisites don't hold. In those cases, they are supposed to work as if // the prerequisite hold, but we don't test that yet. TODO: test that. if (!BN_is_negative(a.get()) && !BN_is_negative(b.get())) { ASSERT_TRUE(BN_uadd(ret.get(), a.get(), b.get())); EXPECT_BIGNUMS_EQUAL("A +u B", sum.get(), ret.get()); ASSERT_TRUE(BN_usub(ret.get(), sum.get(), a.get())); EXPECT_BIGNUMS_EQUAL("Sum -u A", b.get(), ret.get()); ASSERT_TRUE(BN_usub(ret.get(), sum.get(), b.get())); EXPECT_BIGNUMS_EQUAL("Sum -u B", a.get(), ret.get()); // Test that the functions work when |r| and |a| point to the same |BIGNUM|, // or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where // all of |r|, |a|, and |b| point to the same |BIGNUM|. ASSERT_TRUE(BN_copy(ret.get(), a.get())); ASSERT_TRUE(BN_uadd(ret.get(), ret.get(), b.get())); EXPECT_BIGNUMS_EQUAL("A +u B (r is a)", sum.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), b.get())); ASSERT_TRUE(BN_uadd(ret.get(), a.get(), ret.get())); EXPECT_BIGNUMS_EQUAL("A +u B (r is b)", sum.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), sum.get())); ASSERT_TRUE(BN_usub(ret.get(), ret.get(), a.get())); EXPECT_BIGNUMS_EQUAL("Sum -u A (r is a)", b.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), a.get())); ASSERT_TRUE(BN_usub(ret.get(), sum.get(), ret.get())); EXPECT_BIGNUMS_EQUAL("Sum -u A (r is b)", b.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), sum.get())); ASSERT_TRUE(BN_usub(ret.get(), ret.get(), b.get())); EXPECT_BIGNUMS_EQUAL("Sum -u B (r is a)", a.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), b.get())); ASSERT_TRUE(BN_usub(ret.get(), sum.get(), ret.get())); EXPECT_BIGNUMS_EQUAL("Sum -u B (r is b)", a.get(), ret.get()); ASSERT_TRUE(bn_abs_sub_consttime(ret.get(), sum.get(), a.get(), ctx)); EXPECT_BIGNUMS_EQUAL("|Sum - A|", b.get(), ret.get()); ASSERT_TRUE(bn_abs_sub_consttime(ret.get(), a.get(), sum.get(), ctx)); EXPECT_BIGNUMS_EQUAL("|A - Sum|", b.get(), ret.get()); ASSERT_TRUE(bn_abs_sub_consttime(ret.get(), sum.get(), b.get(), ctx)); EXPECT_BIGNUMS_EQUAL("|Sum - B|", a.get(), ret.get()); ASSERT_TRUE(bn_abs_sub_consttime(ret.get(), b.get(), sum.get(), ctx)); EXPECT_BIGNUMS_EQUAL("|B - Sum|", a.get(), ret.get()); } // Test with |BN_add_word| and |BN_sub_word| if |b| is small enough. BN_ULONG b_word = BN_get_word(b.get()); if (!BN_is_negative(b.get()) && b_word != (BN_ULONG)-1) { ASSERT_TRUE(BN_copy(ret.get(), a.get())); ASSERT_TRUE(BN_add_word(ret.get(), b_word)); EXPECT_BIGNUMS_EQUAL("A + B (word)", sum.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), sum.get())); ASSERT_TRUE(BN_sub_word(ret.get(), b_word)); EXPECT_BIGNUMS_EQUAL("Sum - B (word)", a.get(), ret.get()); } } static void TestLShift1(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> lshift1 = t->GetBIGNUM("LShift1"); bssl::UniquePtr<BIGNUM> zero(BN_new()); ASSERT_TRUE(a); ASSERT_TRUE(lshift1); ASSERT_TRUE(zero); BN_zero(zero.get()); bssl::UniquePtr<BIGNUM> ret(BN_new()), two(BN_new()), remainder(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(two); ASSERT_TRUE(remainder); ASSERT_TRUE(BN_set_word(two.get(), 2)); ASSERT_TRUE(BN_add(ret.get(), a.get(), a.get())); EXPECT_BIGNUMS_EQUAL("A + A", lshift1.get(), ret.get()); ASSERT_TRUE(BN_mul(ret.get(), a.get(), two.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A * 2", lshift1.get(), ret.get()); ASSERT_TRUE( BN_div(ret.get(), remainder.get(), lshift1.get(), two.get(), ctx)); EXPECT_BIGNUMS_EQUAL("LShift1 / 2", a.get(), ret.get()); EXPECT_BIGNUMS_EQUAL("LShift1 % 2", zero.get(), remainder.get()); ASSERT_TRUE(BN_lshift1(ret.get(), a.get())); EXPECT_BIGNUMS_EQUAL("A << 1", lshift1.get(), ret.get()); ASSERT_TRUE(BN_lshift(ret.get(), a.get(), 1)); EXPECT_BIGNUMS_EQUAL("A << 1 (variable shift)", lshift1.get(), ret.get()); ASSERT_TRUE(BN_rshift1(ret.get(), lshift1.get())); EXPECT_BIGNUMS_EQUAL("LShift >> 1", a.get(), ret.get()); ASSERT_TRUE(BN_rshift(ret.get(), lshift1.get(), 1)); EXPECT_BIGNUMS_EQUAL("LShift >> 1 (variable shift)", a.get(), ret.get()); ASSERT_TRUE(bn_rshift_secret_shift(ret.get(), lshift1.get(), 1, ctx)); EXPECT_BIGNUMS_EQUAL("LShift >> 1 (secret shift)", a.get(), ret.get()); // Set the LSB to 1 and test rshift1 again. ASSERT_TRUE(BN_set_bit(lshift1.get(), 0)); ASSERT_TRUE( BN_div(ret.get(), nullptr /* rem */, lshift1.get(), two.get(), ctx)); EXPECT_BIGNUMS_EQUAL("(LShift1 | 1) / 2", a.get(), ret.get()); ASSERT_TRUE(BN_rshift1(ret.get(), lshift1.get())); EXPECT_BIGNUMS_EQUAL("(LShift | 1) >> 1", a.get(), ret.get()); ASSERT_TRUE(BN_rshift(ret.get(), lshift1.get(), 1)); EXPECT_BIGNUMS_EQUAL("(LShift | 1) >> 1 (variable shift)", a.get(), ret.get()); ASSERT_TRUE(bn_rshift_secret_shift(ret.get(), lshift1.get(), 1, ctx)); EXPECT_BIGNUMS_EQUAL("(LShift | 1) >> 1 (secret shift)", a.get(), ret.get()); } static void TestLShift(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> lshift = t->GetBIGNUM("LShift"); ASSERT_TRUE(a); ASSERT_TRUE(lshift); int n = 0; ASSERT_TRUE(t->GetInt(&n, "N")); bssl::UniquePtr<BIGNUM> ret(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(BN_lshift(ret.get(), a.get(), n)); EXPECT_BIGNUMS_EQUAL("A << N", lshift.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), a.get())); ASSERT_TRUE(BN_lshift(ret.get(), ret.get(), n)); EXPECT_BIGNUMS_EQUAL("A << N (in-place)", lshift.get(), ret.get()); ASSERT_TRUE(BN_rshift(ret.get(), lshift.get(), n)); EXPECT_BIGNUMS_EQUAL("A >> N", a.get(), ret.get()); ASSERT_TRUE(bn_rshift_secret_shift(ret.get(), lshift.get(), n, ctx)); EXPECT_BIGNUMS_EQUAL("A >> N (secret shift)", a.get(), ret.get()); } static void TestRShift(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> rshift = t->GetBIGNUM("RShift"); ASSERT_TRUE(a); ASSERT_TRUE(rshift); int n = 0; ASSERT_TRUE(t->GetInt(&n, "N")); bssl::UniquePtr<BIGNUM> ret(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(BN_rshift(ret.get(), a.get(), n)); EXPECT_BIGNUMS_EQUAL("A >> N", rshift.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), a.get())); ASSERT_TRUE(BN_rshift(ret.get(), ret.get(), n)); EXPECT_BIGNUMS_EQUAL("A >> N (in-place)", rshift.get(), ret.get()); ASSERT_TRUE(bn_rshift_secret_shift(ret.get(), a.get(), n, ctx)); EXPECT_BIGNUMS_EQUAL("A >> N (secret shift)", rshift.get(), ret.get()); ASSERT_TRUE(BN_copy(ret.get(), a.get())); ASSERT_TRUE(bn_rshift_secret_shift(ret.get(), ret.get(), n, ctx)); EXPECT_BIGNUMS_EQUAL("A >> N (in-place secret shift)", rshift.get(), ret.get()); } static void TestSquare(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> square = t->GetBIGNUM("Square"); bssl::UniquePtr<BIGNUM> zero(BN_new()); ASSERT_TRUE(a); ASSERT_TRUE(square); ASSERT_TRUE(zero); BN_zero(zero.get()); bssl::UniquePtr<BIGNUM> ret(BN_new()), remainder(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(remainder); ASSERT_TRUE(BN_sqr(ret.get(), a.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A^2", square.get(), ret.get()); ASSERT_TRUE(BN_mul(ret.get(), a.get(), a.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A * A", square.get(), ret.get()); if (!BN_is_zero(a.get())) { ASSERT_TRUE(BN_div(ret.get(), remainder.get(), square.get(), a.get(), ctx)); EXPECT_BIGNUMS_EQUAL("Square / A", a.get(), ret.get()); EXPECT_BIGNUMS_EQUAL("Square % A", zero.get(), remainder.get()); } BN_set_negative(a.get(), 0); ASSERT_TRUE(BN_sqrt(ret.get(), square.get(), ctx)); EXPECT_BIGNUMS_EQUAL("sqrt(Square)", a.get(), ret.get()); // BN_sqrt should fail on non-squares and negative numbers. if (!BN_is_zero(square.get())) { bssl::UniquePtr<BIGNUM> tmp(BN_new()); ASSERT_TRUE(tmp); ASSERT_TRUE(BN_copy(tmp.get(), square.get())); BN_set_negative(tmp.get(), 1); EXPECT_FALSE(BN_sqrt(ret.get(), tmp.get(), ctx)) << "BN_sqrt succeeded on a negative number"; ERR_clear_error(); BN_set_negative(tmp.get(), 0); ASSERT_TRUE(BN_add(tmp.get(), tmp.get(), BN_value_one())); EXPECT_FALSE(BN_sqrt(ret.get(), tmp.get(), ctx)) << "BN_sqrt succeeded on a non-square"; ERR_clear_error(); } #if !defined(BORINGSSL_SHARED_LIBRARY) int a_width = bn_minimal_width(a.get()); if (a_width <= BN_SMALL_MAX_WORDS) { for (size_t num_a = a_width; num_a <= BN_SMALL_MAX_WORDS; num_a++) { SCOPED_TRACE(num_a); size_t num_r = 2 * num_a; // Use newly-allocated buffers so ASan will catch out-of-bounds writes. std::unique_ptr<BN_ULONG[]> a_words(new BN_ULONG[num_a]), r_words(new BN_ULONG[num_r]); ASSERT_TRUE(bn_copy_words(a_words.get(), num_a, a.get())); bn_mul_small(r_words.get(), num_r, a_words.get(), num_a, a_words.get(), num_a); ASSERT_TRUE(bn_set_words(ret.get(), r_words.get(), num_r)); EXPECT_BIGNUMS_EQUAL("A * A (words)", square.get(), ret.get()); OPENSSL_memset(r_words.get(), 'A', num_r * sizeof(BN_ULONG)); bn_sqr_small(r_words.get(), num_r, a_words.get(), num_a); ASSERT_TRUE(bn_set_words(ret.get(), r_words.get(), num_r)); EXPECT_BIGNUMS_EQUAL("A^2 (words)", square.get(), ret.get()); } } #endif } static void TestProduct(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> b = t->GetBIGNUM("B"); bssl::UniquePtr<BIGNUM> product = t->GetBIGNUM("Product"); bssl::UniquePtr<BIGNUM> zero(BN_new()); ASSERT_TRUE(a); ASSERT_TRUE(b); ASSERT_TRUE(product); ASSERT_TRUE(zero); BN_zero(zero.get()); bssl::UniquePtr<BIGNUM> ret(BN_new()), remainder(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(remainder); ASSERT_TRUE(BN_mul(ret.get(), a.get(), b.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A * B", product.get(), ret.get()); if (!BN_is_zero(a.get())) { ASSERT_TRUE( BN_div(ret.get(), remainder.get(), product.get(), a.get(), ctx)); EXPECT_BIGNUMS_EQUAL("Product / A", b.get(), ret.get()); EXPECT_BIGNUMS_EQUAL("Product % A", zero.get(), remainder.get()); } if (!BN_is_zero(b.get())) { ASSERT_TRUE( BN_div(ret.get(), remainder.get(), product.get(), b.get(), ctx)); EXPECT_BIGNUMS_EQUAL("Product / B", a.get(), ret.get()); EXPECT_BIGNUMS_EQUAL("Product % B", zero.get(), remainder.get()); } #if !defined(BORINGSSL_SHARED_LIBRARY) BN_set_negative(a.get(), 0); BN_set_negative(b.get(), 0); BN_set_negative(product.get(), 0); int a_width = bn_minimal_width(a.get()); int b_width = bn_minimal_width(b.get()); if (a_width <= BN_SMALL_MAX_WORDS && b_width <= BN_SMALL_MAX_WORDS) { for (size_t num_a = static_cast<size_t>(a_width); num_a <= BN_SMALL_MAX_WORDS; num_a++) { SCOPED_TRACE(num_a); for (size_t num_b = static_cast<size_t>(b_width); num_b <= BN_SMALL_MAX_WORDS; num_b++) { SCOPED_TRACE(num_b); size_t num_r = num_a + num_b; // Use newly-allocated buffers so ASan will catch out-of-bounds writes. std::unique_ptr<BN_ULONG[]> a_words(new BN_ULONG[num_a]), b_words(new BN_ULONG[num_b]), r_words(new BN_ULONG[num_r]); ASSERT_TRUE(bn_copy_words(a_words.get(), num_a, a.get())); ASSERT_TRUE(bn_copy_words(b_words.get(), num_b, b.get())); bn_mul_small(r_words.get(), num_r, a_words.get(), num_a, b_words.get(), num_b); ASSERT_TRUE(bn_set_words(ret.get(), r_words.get(), num_r)); EXPECT_BIGNUMS_EQUAL("A * B (words)", product.get(), ret.get()); } } } #endif } static void TestQuotient(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> b = t->GetBIGNUM("B"); bssl::UniquePtr<BIGNUM> quotient = t->GetBIGNUM("Quotient"); bssl::UniquePtr<BIGNUM> remainder = t->GetBIGNUM("Remainder"); ASSERT_TRUE(a); ASSERT_TRUE(b); ASSERT_TRUE(quotient); ASSERT_TRUE(remainder); bssl::UniquePtr<BIGNUM> ret(BN_new()), ret2(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(ret2); ASSERT_TRUE(BN_div(ret.get(), ret2.get(), a.get(), b.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A / B", quotient.get(), ret.get()); EXPECT_BIGNUMS_EQUAL("A % B", remainder.get(), ret2.get()); ASSERT_TRUE(BN_mul(ret.get(), quotient.get(), b.get(), ctx)); ASSERT_TRUE(BN_add(ret.get(), ret.get(), remainder.get())); EXPECT_BIGNUMS_EQUAL("Quotient * B + Remainder", a.get(), ret.get()); // The remaining division variants only handle a positive quotient. if (BN_is_negative(b.get())) { BN_set_negative(b.get(), 0); BN_set_negative(quotient.get(), !BN_is_negative(quotient.get())); } bssl::UniquePtr<BIGNUM> nnmod(BN_new()); ASSERT_TRUE(nnmod); ASSERT_TRUE(BN_copy(nnmod.get(), remainder.get())); if (BN_is_negative(nnmod.get())) { ASSERT_TRUE(BN_add(nnmod.get(), nnmod.get(), b.get())); } ASSERT_TRUE(BN_nnmod(ret.get(), a.get(), b.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A % B (non-negative)", nnmod.get(), ret.get()); // The remaining division variants only handle a positive numerator. if (BN_is_negative(a.get())) { BN_set_negative(a.get(), 0); BN_set_negative(quotient.get(), 0); BN_set_negative(remainder.get(), 0); } // Test with |BN_mod_word| and |BN_div_word| if the divisor is small enough. BN_ULONG b_word = BN_get_word(b.get()); if (b_word != (BN_ULONG)-1) { BN_ULONG remainder_word = BN_get_word(remainder.get()); ASSERT_NE(remainder_word, (BN_ULONG)-1); ASSERT_TRUE(BN_copy(ret.get(), a.get())); BN_ULONG ret_word = BN_div_word(ret.get(), b_word); EXPECT_EQ(remainder_word, ret_word); EXPECT_BIGNUMS_EQUAL("A / B (word)", quotient.get(), ret.get()); ret_word = BN_mod_word(a.get(), b_word); EXPECT_EQ(remainder_word, ret_word); if (b_word <= 0xffff) { EXPECT_EQ(remainder_word, bn_mod_u16_consttime(a.get(), b_word)); } } ASSERT_TRUE(bn_div_consttime(ret.get(), ret2.get(), a.get(), b.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A / B (constant-time)", quotient.get(), ret.get()); EXPECT_BIGNUMS_EQUAL("A % B (constant-time)", remainder.get(), ret2.get()); } static void TestModMul(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> b = t->GetBIGNUM("B"); bssl::UniquePtr<BIGNUM> m = t->GetBIGNUM("M"); bssl::UniquePtr<BIGNUM> mod_mul = t->GetBIGNUM("ModMul"); ASSERT_TRUE(a); ASSERT_TRUE(b); ASSERT_TRUE(m); ASSERT_TRUE(mod_mul); bssl::UniquePtr<BIGNUM> ret(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(BN_mod_mul(ret.get(), a.get(), b.get(), m.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A * B (mod M)", mod_mul.get(), ret.get()); if (BN_is_odd(m.get())) { // Reduce |a| and |b| and test the Montgomery version. bssl::UniquePtr<BN_MONT_CTX> mont( BN_MONT_CTX_new_for_modulus(m.get(), ctx)); ASSERT_TRUE(mont); // Sanity-check that the constant-time version computes the same n0 and RR. bssl::UniquePtr<BN_MONT_CTX> mont2( BN_MONT_CTX_new_consttime(m.get(), ctx)); ASSERT_TRUE(mont2); EXPECT_BIGNUMS_EQUAL("RR (mod M) (constant-time)", &mont->RR, &mont2->RR); EXPECT_EQ(mont->n0[0], mont2->n0[0]); EXPECT_EQ(mont->n0[1], mont2->n0[1]); bssl::UniquePtr<BIGNUM> a_tmp(BN_new()), b_tmp(BN_new()); ASSERT_TRUE(a_tmp); ASSERT_TRUE(b_tmp); ASSERT_TRUE(BN_nnmod(a.get(), a.get(), m.get(), ctx)); ASSERT_TRUE(BN_nnmod(b.get(), b.get(), m.get(), ctx)); ASSERT_TRUE(BN_to_montgomery(a_tmp.get(), a.get(), mont.get(), ctx)); ASSERT_TRUE(BN_to_montgomery(b_tmp.get(), b.get(), mont.get(), ctx)); ASSERT_TRUE(BN_mod_mul_montgomery(ret.get(), a_tmp.get(), b_tmp.get(), mont.get(), ctx)); ASSERT_TRUE(BN_from_montgomery(ret.get(), ret.get(), mont.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A * B (mod M) (Montgomery)", mod_mul.get(), ret.get()); #if !defined(BORINGSSL_SHARED_LIBRARY) size_t m_width = static_cast<size_t>(bn_minimal_width(m.get())); if (m_width <= BN_SMALL_MAX_WORDS) { std::unique_ptr<BN_ULONG[]> a_words(new BN_ULONG[m_width]), b_words(new BN_ULONG[m_width]), r_words(new BN_ULONG[m_width]); ASSERT_TRUE(bn_copy_words(a_words.get(), m_width, a.get())); ASSERT_TRUE(bn_copy_words(b_words.get(), m_width, b.get())); bn_to_montgomery_small(a_words.get(), a_words.get(), m_width, mont.get()); bn_to_montgomery_small(b_words.get(), b_words.get(), m_width, mont.get()); bn_mod_mul_montgomery_small(r_words.get(), a_words.get(), b_words.get(), m_width, mont.get()); // Use the second half of |tmp| so ASan will catch out-of-bounds writes. bn_from_montgomery_small(r_words.get(), r_words.get(), m_width, mont.get()); ASSERT_TRUE(bn_set_words(ret.get(), r_words.get(), m_width)); EXPECT_BIGNUMS_EQUAL("A * B (mod M) (Montgomery, words)", mod_mul.get(), ret.get()); } #endif } } static void TestModSquare(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> m = t->GetBIGNUM("M"); bssl::UniquePtr<BIGNUM> mod_square = t->GetBIGNUM("ModSquare"); ASSERT_TRUE(a); ASSERT_TRUE(m); ASSERT_TRUE(mod_square); bssl::UniquePtr<BIGNUM> a_copy(BN_new()); bssl::UniquePtr<BIGNUM> ret(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(a_copy); ASSERT_TRUE(BN_mod_mul(ret.get(), a.get(), a.get(), m.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A * A (mod M)", mod_square.get(), ret.get()); // Repeat the operation with |a_copy|. ASSERT_TRUE(BN_copy(a_copy.get(), a.get())); ASSERT_TRUE(BN_mod_mul(ret.get(), a.get(), a_copy.get(), m.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A * A_copy (mod M)", mod_square.get(), ret.get()); if (BN_is_odd(m.get())) { // Reduce |a| and test the Montgomery version. bssl::UniquePtr<BN_MONT_CTX> mont( BN_MONT_CTX_new_for_modulus(m.get(), ctx)); bssl::UniquePtr<BIGNUM> a_tmp(BN_new()); ASSERT_TRUE(mont); ASSERT_TRUE(a_tmp); ASSERT_TRUE(BN_nnmod(a.get(), a.get(), m.get(), ctx)); ASSERT_TRUE(BN_to_montgomery(a_tmp.get(), a.get(), mont.get(), ctx)); ASSERT_TRUE(BN_mod_mul_montgomery(ret.get(), a_tmp.get(), a_tmp.get(), mont.get(), ctx)); ASSERT_TRUE(BN_from_montgomery(ret.get(), ret.get(), mont.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A * A (mod M) (Montgomery)", mod_square.get(), ret.get()); // Repeat the operation with |a_copy|. ASSERT_TRUE(BN_copy(a_copy.get(), a_tmp.get())); ASSERT_TRUE(BN_mod_mul_montgomery(ret.get(), a_tmp.get(), a_copy.get(), mont.get(), ctx)); ASSERT_TRUE(BN_from_montgomery(ret.get(), ret.get(), mont.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A * A_copy (mod M) (Montgomery)", mod_square.get(), ret.get()); #if !defined(BORINGSSL_SHARED_LIBRARY) size_t m_width = static_cast<size_t>(bn_minimal_width(m.get())); if (m_width <= BN_SMALL_MAX_WORDS) { std::unique_ptr<BN_ULONG[]> a_words(new BN_ULONG[m_width]), a_copy_words(new BN_ULONG[m_width]), r_words(new BN_ULONG[m_width]); ASSERT_TRUE(bn_copy_words(a_words.get(), m_width, a.get())); bn_to_montgomery_small(a_words.get(), a_words.get(), m_width, mont.get()); bn_mod_mul_montgomery_small(r_words.get(), a_words.get(), a_words.get(), m_width, mont.get()); bn_from_montgomery_small(r_words.get(), r_words.get(), m_width, mont.get()); ASSERT_TRUE(bn_set_words(ret.get(), r_words.get(), m_width)); EXPECT_BIGNUMS_EQUAL("A * A (mod M) (Montgomery, words)", mod_square.get(), ret.get()); // Repeat the operation with |a_copy_words|. OPENSSL_memcpy(a_copy_words.get(), a_words.get(), m_width * sizeof(BN_ULONG)); bn_mod_mul_montgomery_small(r_words.get(), a_words.get(), a_copy_words.get(), m_width, mont.get()); // Use the second half of |tmp| so ASan will catch out-of-bounds writes. bn_from_montgomery_small(r_words.get(), r_words.get(), m_width, mont.get()); ASSERT_TRUE(bn_set_words(ret.get(), r_words.get(), m_width)); EXPECT_BIGNUMS_EQUAL("A * A_copy (mod M) (Montgomery, words)", mod_square.get(), ret.get()); } #endif } } static void TestModExp(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> e = t->GetBIGNUM("E"); bssl::UniquePtr<BIGNUM> m = t->GetBIGNUM("M"); bssl::UniquePtr<BIGNUM> mod_exp = t->GetBIGNUM("ModExp"); ASSERT_TRUE(a); ASSERT_TRUE(e); ASSERT_TRUE(m); ASSERT_TRUE(mod_exp); bssl::UniquePtr<BIGNUM> ret(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(BN_mod_exp(ret.get(), a.get(), e.get(), m.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A ^ E (mod M)", mod_exp.get(), ret.get()); // The other implementations require reduced inputs. ASSERT_TRUE(BN_nnmod(a.get(), a.get(), m.get(), ctx)); if (BN_is_odd(m.get())) { ASSERT_TRUE( BN_mod_exp_mont(ret.get(), a.get(), e.get(), m.get(), ctx, NULL)); EXPECT_BIGNUMS_EQUAL("A ^ E (mod M) (Montgomery)", mod_exp.get(), ret.get()); ASSERT_TRUE(BN_mod_exp_mont_consttime(ret.get(), a.get(), e.get(), m.get(), ctx, NULL)); EXPECT_BIGNUMS_EQUAL("A ^ E (mod M) (constant-time)", mod_exp.get(), ret.get()); #if !defined(BORINGSSL_SHARED_LIBRARY) size_t m_width = static_cast<size_t>(bn_minimal_width(m.get())); if (m_width <= BN_SMALL_MAX_WORDS) { bssl::UniquePtr<BN_MONT_CTX> mont( BN_MONT_CTX_new_for_modulus(m.get(), ctx)); ASSERT_TRUE(mont.get()); std::unique_ptr<BN_ULONG[]> r_words(new BN_ULONG[m_width]), a_words(new BN_ULONG[m_width]); ASSERT_TRUE(bn_copy_words(a_words.get(), m_width, a.get())); bn_to_montgomery_small(a_words.get(), a_words.get(), m_width, mont.get()); bn_mod_exp_mont_small(r_words.get(), a_words.get(), m_width, e->d, e->width, mont.get()); bn_from_montgomery_small(r_words.get(), r_words.get(), m_width, mont.get()); ASSERT_TRUE(bn_set_words(ret.get(), r_words.get(), m_width)); EXPECT_BIGNUMS_EQUAL("A ^ E (mod M) (Montgomery, words)", mod_exp.get(), ret.get()); } #endif } } static void TestExp(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> e = t->GetBIGNUM("E"); bssl::UniquePtr<BIGNUM> exp = t->GetBIGNUM("Exp"); ASSERT_TRUE(a); ASSERT_TRUE(e); ASSERT_TRUE(exp); bssl::UniquePtr<BIGNUM> ret(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(BN_exp(ret.get(), a.get(), e.get(), ctx)); EXPECT_BIGNUMS_EQUAL("A ^ E", exp.get(), ret.get()); } static void TestModSqrt(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> p = t->GetBIGNUM("P"); bssl::UniquePtr<BIGNUM> mod_sqrt = t->GetBIGNUM("ModSqrt"); bssl::UniquePtr<BIGNUM> mod_sqrt2(BN_new()); ASSERT_TRUE(a); ASSERT_TRUE(p); ASSERT_TRUE(mod_sqrt); ASSERT_TRUE(mod_sqrt2); // There are two possible answers. ASSERT_TRUE(BN_sub(mod_sqrt2.get(), p.get(), mod_sqrt.get())); // -0 is 0, not P. if (BN_is_zero(mod_sqrt.get())) { BN_zero(mod_sqrt2.get()); } bssl::UniquePtr<BIGNUM> ret(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(BN_mod_sqrt(ret.get(), a.get(), p.get(), ctx)); if (BN_cmp(ret.get(), mod_sqrt2.get()) != 0) { EXPECT_BIGNUMS_EQUAL("sqrt(A) (mod P)", mod_sqrt.get(), ret.get()); } } static void TestNotModSquare(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> not_mod_square = t->GetBIGNUM("NotModSquare"); bssl::UniquePtr<BIGNUM> p = t->GetBIGNUM("P"); bssl::UniquePtr<BIGNUM> ret(BN_new()); ASSERT_TRUE(not_mod_square); ASSERT_TRUE(p); ASSERT_TRUE(ret); EXPECT_FALSE(BN_mod_sqrt(ret.get(), not_mod_square.get(), p.get(), ctx)) << "BN_mod_sqrt unexpectedly succeeded."; uint32_t err = ERR_peek_error(); EXPECT_EQ(ERR_LIB_BN, ERR_GET_LIB(err)); EXPECT_EQ(BN_R_NOT_A_SQUARE, ERR_GET_REASON(err)); ERR_clear_error(); } static void TestModInv(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> m = t->GetBIGNUM("M"); bssl::UniquePtr<BIGNUM> mod_inv = t->GetBIGNUM("ModInv"); ASSERT_TRUE(a); ASSERT_TRUE(m); ASSERT_TRUE(mod_inv); bssl::UniquePtr<BIGNUM> ret(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(BN_mod_inverse(ret.get(), a.get(), m.get(), ctx)); EXPECT_BIGNUMS_EQUAL("inv(A) (mod M)", mod_inv.get(), ret.get()); ASSERT_TRUE(BN_gcd(ret.get(), a.get(), m.get(), ctx)); EXPECT_BIGNUMS_EQUAL("GCD(A, M)", BN_value_one(), ret.get()); ASSERT_TRUE(BN_nnmod(a.get(), a.get(), m.get(), ctx)); int no_inverse; ASSERT_TRUE( bn_mod_inverse_consttime(ret.get(), &no_inverse, a.get(), m.get(), ctx)); EXPECT_BIGNUMS_EQUAL("inv(A) (mod M) (constant-time)", mod_inv.get(), ret.get()); } static void TestGCD(BIGNUMFileTest *t, BN_CTX *ctx) { bssl::UniquePtr<BIGNUM> a = t->GetBIGNUM("A"); bssl::UniquePtr<BIGNUM> b = t->GetBIGNUM("B"); bssl::UniquePtr<BIGNUM> gcd = t->GetBIGNUM("GCD"); bssl::UniquePtr<BIGNUM> lcm = t->GetBIGNUM("LCM"); ASSERT_TRUE(a); ASSERT_TRUE(b); ASSERT_TRUE(gcd); ASSERT_TRUE(lcm); bssl::UniquePtr<BIGNUM> ret(BN_new()); ASSERT_TRUE(ret); ASSERT_TRUE(BN_gcd(ret.get(), a.get(), b.get(), ctx)); EXPECT_BIGNUMS_EQUAL("GCD(A, B)", gcd.get(), ret.get()); if (!BN_is_one(gcd.get())) { EXPECT_FALSE(BN_mod_inverse(ret.get(), a.get(), b.get(), ctx)) << "A^-1 (mod B) computed, but it does not exist"; EXPECT_FALSE(BN_mod_inverse(ret.get(), b.get(), a.get(), ctx)) << "B^-1 (mod A) computed, but it does not exist"; if (!BN_is_zero(b.get())) { bssl::UniquePtr<BIGNUM> a_reduced(BN_new()); ASSERT_TRUE(a_reduced); ASSERT_TRUE(BN_nnmod(a_reduced.get(), a.get(), b.get(), ctx)); int no_inverse; EXPECT_FALSE(bn_mod_inverse_consttime(ret.get(), &no_inverse, a_reduced.get(), b.get(), ctx)) << "A^-1 (mod B) computed, but it does not exist"; EXPECT_TRUE(no_inverse); } if (!BN_is_zero(a.get())) { bssl::UniquePtr<BIGNUM> b_reduced(BN_new()); ASSERT_TRUE(b_reduced); ASSERT_TRUE(BN_nnmod(b_reduced.get(), b.get(), a.get(), ctx)); int no_inverse; EXPECT_FALSE(bn_mod_inverse_consttime(ret.get(), &no_inverse, b_reduced.get(), a.get(), ctx)) << "B^-1 (mod A) computed, but it does not exist"; EXPECT_TRUE(no_inverse); } } int is_relative_prime; ASSERT_TRUE( bn_is_relatively_prime(&is_relative_prime, a.get(), b.get(), ctx)); EXPECT_EQ(is_relative_prime, BN_is_one(gcd.get())); if (!BN_is_zero(gcd.get())) { ASSERT_TRUE(bn_lcm_consttime(ret.get(), a.get(), b.get(), ctx)); EXPECT_BIGNUMS_EQUAL("LCM(A, B)", lcm.get(), ret.get()); } } class BNTest : public testing::Test { protected: void SetUp() override { ctx_.reset(BN_CTX_new()); ASSERT_TRUE(ctx_); } BN_CTX *ctx() { return ctx_.get(); } private: bssl::UniquePtr<BN_CTX> ctx_; }; TEST_F(BNTest, TestVectors) { static const struct { const char *name; void (*func)(BIGNUMFileTest *t, BN_CTX *ctx); } kTests[] = { {"Sum", TestSum}, {"LShift1", TestLShift1}, {"LShift", TestLShift}, {"RShift", TestRShift}, {"Square", TestSquare}, {"Product", TestProduct}, {"Quotient", TestQuotient}, {"ModMul", TestModMul}, {"ModSquare", TestModSquare}, {"ModExp", TestModExp}, {"Exp", TestExp}, {"ModSqrt", TestModSqrt}, {"NotModSquare", TestNotModSquare}, {"ModInv", TestModInv}, {"GCD", TestGCD}, }; FileTestGTest("crypto/fipsmodule/bn/bn_tests.txt", [&](FileTest *t) { void (*func)(BIGNUMFileTest *t, BN_CTX *ctx) = nullptr; for (const auto &test : kTests) { if (t->GetType() == test.name) { func = test.func; break; } } if (!func) { FAIL() << "Unknown test type: " << t->GetType(); return; } // Run the test with normalize-sized |BIGNUM|s. BIGNUMFileTest bn_test(t, 0); BN_CTX_start(ctx()); func(&bn_test, ctx()); BN_CTX_end(ctx()); unsigned num_bignums = bn_test.num_bignums(); // Repeat the test with all combinations of large and small |BIGNUM|s. for (unsigned large_mask = 1; large_mask < (1u << num_bignums); large_mask++) { SCOPED_TRACE(large_mask); BIGNUMFileTest bn_test2(t, large_mask); BN_CTX_start(ctx()); func(&bn_test2, ctx()); BN_CTX_end(ctx()); } }); } TEST_F(BNTest, BN2BinPadded) { uint8_t zeros[256], out[256], reference[128]; OPENSSL_memset(zeros, 0, sizeof(zeros)); // Test edge case at 0. bssl::UniquePtr<BIGNUM> n(BN_new()); ASSERT_TRUE(n); ASSERT_TRUE(BN_bn2bin_padded(NULL, 0, n.get())); OPENSSL_memset(out, -1, sizeof(out)); ASSERT_TRUE(BN_bn2bin_padded(out, sizeof(out), n.get())); EXPECT_EQ(Bytes(zeros), Bytes(out)); // Test a random numbers at various byte lengths. for (size_t bytes = 128 - 7; bytes <= 128; bytes++) { ASSERT_TRUE( BN_rand(n.get(), bytes * 8, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)); ASSERT_EQ(bytes, BN_num_bytes(n.get())); ASSERT_EQ(bytes, BN_bn2bin(n.get(), reference)); // Empty buffer should fail. EXPECT_FALSE(BN_bn2bin_padded(NULL, 0, n.get())); // One byte short should fail. EXPECT_FALSE(BN_bn2bin_padded(out, bytes - 1, n.get())); // Exactly right size should encode. ASSERT_TRUE(BN_bn2bin_padded(out, bytes, n.get())); EXPECT_EQ(Bytes(reference, bytes), Bytes(out, bytes)); // Pad up one byte extra. ASSERT_TRUE(BN_bn2bin_padded(out, bytes + 1, n.get())); EXPECT_EQ(0u, out[0]); EXPECT_EQ(Bytes(reference, bytes), Bytes(out + 1, bytes)); // Pad up to 256. ASSERT_TRUE(BN_bn2bin_padded(out, sizeof(out), n.get())); EXPECT_EQ(Bytes(zeros, sizeof(out) - bytes), Bytes(out, sizeof(out) - bytes)); EXPECT_EQ(Bytes(reference, bytes), Bytes(out + sizeof(out) - bytes, bytes)); // Repeat some tests with a non-minimal |BIGNUM|. EXPECT_TRUE(bn_resize_words(n.get(), 32)); EXPECT_FALSE(BN_bn2bin_padded(out, bytes - 1, n.get())); ASSERT_TRUE(BN_bn2bin_padded(out, bytes + 1, n.get())); EXPECT_EQ(0u, out[0]); EXPECT_EQ(Bytes(reference, bytes), Bytes(out + 1, bytes)); } } TEST_F(BNTest, LittleEndian) { bssl::UniquePtr<BIGNUM> x(BN_new()); bssl::UniquePtr<BIGNUM> y(BN_new()); ASSERT_TRUE(x); ASSERT_TRUE(y); // Test edge case at 0. Fill |out| with garbage to ensure |BN_bn2le_padded| // wrote the result. uint8_t out[256], zeros[256]; OPENSSL_memset(out, -1, sizeof(out)); OPENSSL_memset(zeros, 0, sizeof(zeros)); ASSERT_TRUE(BN_bn2le_padded(out, sizeof(out), x.get())); EXPECT_EQ(Bytes(zeros), Bytes(out)); ASSERT_TRUE(BN_le2bn(out, sizeof(out), y.get())); EXPECT_BIGNUMS_EQUAL("BN_le2bn round-trip", x.get(), y.get()); // Test random numbers at various byte lengths. for (size_t bytes = 128 - 7; bytes <= 128; bytes++) { ASSERT_TRUE( BN_rand(x.get(), bytes * 8, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)); // Fill |out| with garbage to ensure |BN_bn2le_padded| wrote the result. OPENSSL_memset(out, -1, sizeof(out)); ASSERT_TRUE(BN_bn2le_padded(out, sizeof(out), x.get())); // Compute the expected value by reversing the big-endian output. uint8_t expected[sizeof(out)]; ASSERT_TRUE(BN_bn2bin_padded(expected, sizeof(expected), x.get())); for (size_t i = 0; i < sizeof(expected) / 2; i++) { uint8_t tmp = expected[i]; expected[i] = expected[sizeof(expected) - 1 - i]; expected[sizeof(expected) - 1 - i] = tmp; } EXPECT_EQ(Bytes(out), Bytes(expected)); // Make sure the decoding produces the same BIGNUM. ASSERT_TRUE(BN_le2bn(out, bytes, y.get())); EXPECT_BIGNUMS_EQUAL("BN_le2bn round-trip", x.get(), y.get()); } } static int DecimalToBIGNUM(bssl::UniquePtr<BIGNUM> *out, const char *in) { BIGNUM *raw = NULL; int ret = BN_dec2bn(&raw, in); out->reset(raw); return ret; } TEST_F(BNTest, Dec2BN) { bssl::UniquePtr<BIGNUM> bn; int ret = DecimalToBIGNUM(&bn, "0"); ASSERT_EQ(1, ret); EXPECT_TRUE(BN_is_zero(bn.get())); EXPECT_FALSE(BN_is_negative(bn.get())); ret = DecimalToBIGNUM(&bn, "256"); ASSERT_EQ(3, ret); EXPECT_TRUE(BN_is_word(bn.get(), 256)); EXPECT_FALSE(BN_is_negative(bn.get())); ret = DecimalToBIGNUM(&bn, "-42"); ASSERT_EQ(3, ret); EXPECT_TRUE(BN_abs_is_word(bn.get(), 42)); EXPECT_TRUE(BN_is_negative(bn.get())); ret = DecimalToBIGNUM(&bn, "-0"); ASSERT_EQ(2, ret); EXPECT_TRUE(BN_is_zero(bn.get())); EXPECT_FALSE(BN_is_negative(bn.get())); ret = DecimalToBIGNUM(&bn, "42trailing garbage is ignored"); ASSERT_EQ(2, ret); EXPECT_TRUE(BN_abs_is_word(bn.get(), 42)); EXPECT_FALSE(BN_is_negative(bn.get())); } TEST_F(BNTest, Hex2BN) { bssl::UniquePtr<BIGNUM> bn; int ret = HexToBIGNUM(&bn, "0"); ASSERT_EQ(1, ret); EXPECT_TRUE(BN_is_zero(bn.get())); EXPECT_FALSE(BN_is_negative(bn.get())); ret = HexToBIGNUM(&bn, "256"); ASSERT_EQ(3, ret); EXPECT_TRUE(BN_is_word(bn.get(), 0x256)); EXPECT_FALSE(BN_is_negative(bn.get())); ret = HexToBIGNUM(&bn, "-42"); ASSERT_EQ(3, ret); EXPECT_TRUE(BN_abs_is_word(bn.get(), 0x42)); EXPECT_TRUE(BN_is_negative(bn.get())); ret = HexToBIGNUM(&bn, "-0"); ASSERT_EQ(2, ret); EXPECT_TRUE(BN_is_zero(bn.get())); EXPECT_FALSE(BN_is_negative(bn.get())); ret = HexToBIGNUM(&bn, "abctrailing garbage is ignored"); ASSERT_EQ(3, ret); EXPECT_TRUE(BN_is_word(bn.get(), 0xabc)); EXPECT_FALSE(BN_is_negative(bn.get())); } static bssl::UniquePtr<BIGNUM> ASCIIToBIGNUM(const char *in) { BIGNUM *raw = NULL; if (!BN_asc2bn(&raw, in)) { return nullptr; } return bssl::UniquePtr<BIGNUM>(raw); } TEST_F(BNTest, ASC2BN) { bssl::UniquePtr<BIGNUM> bn = ASCIIToBIGNUM("0"); ASSERT_TRUE(bn); EXPECT_TRUE(BN_is_zero(bn.get())); EXPECT_FALSE(BN_is_negative(bn.get())); bn = ASCIIToBIGNUM("256"); ASSERT_TRUE(bn); EXPECT_TRUE(BN_is_word(bn.get(), 256)); EXPECT_FALSE(BN_is_negative(bn.get())); bn = ASCIIToBIGNUM("-42"); ASSERT_TRUE(bn); EXPECT_TRUE(BN_abs_is_word(bn.get(), 42)); EXPECT_TRUE(BN_is_negative(bn.get())); bn = ASCIIToBIGNUM("0x1234"); ASSERT_TRUE(bn); EXPECT_TRUE(BN_is_word(bn.get(), 0x1234)); EXPECT_FALSE(BN_is_negative(bn.get())); bn = ASCIIToBIGNUM("0X1234"); ASSERT_TRUE(bn); EXPECT_TRUE(BN_is_word(bn.get(), 0x1234)); EXPECT_FALSE(BN_is_negative(bn.get())); bn = ASCIIToBIGNUM("-0xabcd"); ASSERT_TRUE(bn); EXPECT_TRUE(BN_abs_is_word(bn.get(), 0xabcd)); EXPECT_FALSE(!BN_is_negative(bn.get())); bn = ASCIIToBIGNUM("-0"); ASSERT_TRUE(bn); EXPECT_TRUE(BN_is_zero(bn.get())); EXPECT_FALSE(BN_is_negative(bn.get())); bn = ASCIIToBIGNUM("123trailing garbage is ignored"); ASSERT_TRUE(bn); EXPECT_TRUE(BN_is_word(bn.get(), 123)); EXPECT_FALSE(BN_is_negative(bn.get())); } struct MPITest { const char *base10; const char *mpi; size_t mpi_len; }; static const MPITest kMPITests[] = { { "0", "\x00\x00\x00\x00", 4 }, { "1", "\x00\x00\x00\x01\x01", 5 }, { "-1", "\x00\x00\x00\x01\x81", 5 }, { "128", "\x00\x00\x00\x02\x00\x80", 6 }, { "256", "\x00\x00\x00\x02\x01\x00", 6 }, { "-256", "\x00\x00\x00\x02\x81\x00", 6 }, }; TEST_F(BNTest, MPI) { uint8_t scratch[8]; for (const auto &test : kMPITests) { SCOPED_TRACE(test.base10); bssl::UniquePtr<BIGNUM> bn(ASCIIToBIGNUM(test.base10)); ASSERT_TRUE(bn); const size_t mpi_len = BN_bn2mpi(bn.get(), NULL); ASSERT_LE(mpi_len, sizeof(scratch)) << "MPI size is too large to test"; const size_t mpi_len2 = BN_bn2mpi(bn.get(), scratch); EXPECT_EQ(mpi_len, mpi_len2); EXPECT_EQ(Bytes(test.mpi, test.mpi_len), Bytes(scratch, mpi_len)); bssl::UniquePtr<BIGNUM> bn2(BN_mpi2bn(scratch, mpi_len, NULL)); ASSERT_TRUE(bn2) << "failed to parse"; EXPECT_BIGNUMS_EQUAL("BN_mpi2bn", bn.get(), bn2.get()); } } TEST_F(BNTest, Rand) { bssl::UniquePtr<BIGNUM> bn(BN_new()); ASSERT_TRUE(bn); static const int kTop[] = {BN_RAND_TOP_ANY, BN_RAND_TOP_ONE, BN_RAND_TOP_TWO}; static const int kBottom[] = {BN_RAND_BOTTOM_ANY, BN_RAND_BOTTOM_ODD}; for (unsigned bits = 0; bits < 256; bits++) { SCOPED_TRACE(bits); for (int top : kTop) { SCOPED_TRACE(top); for (int bottom : kBottom) { SCOPED_TRACE(bottom); // Generate 100 numbers and ensure that they have the expected bit // patterns. The probability of any one bit not covering both its values // is 2^-100. bool seen_n_1_clear = false, seen_n_1_set = false; bool seen_n_2_clear = false, seen_n_2_set = false; bool seen_0_clear = false, seen_0_set = false; for (int i = 0; i < 100; i++) { ASSERT_TRUE(BN_rand(bn.get(), bits, top, bottom)); EXPECT_LE(BN_num_bits(bn.get()), bits); if (BN_is_bit_set(bn.get(), bits - 1)) { seen_n_1_set = true; } else { seen_n_1_clear = true; } if (BN_is_bit_set(bn.get(), bits - 2)) { seen_n_2_set = true; } else { seen_n_2_clear = true; } if (BN_is_bit_set(bn.get(), 0)) { seen_0_set = true; } else { seen_0_clear = true; } } if (bits > 0) { EXPECT_TRUE(seen_0_set); EXPECT_TRUE(seen_n_1_set); if (bits > 1) { EXPECT_TRUE(seen_n_2_set); } } if (bits == 0) { // Nothing additional to check. The |BN_num_bits| check ensures we // always got zero. } else if (bits == 1) { // Bit zero is bit n-1. EXPECT_EQ(bottom == BN_RAND_BOTTOM_ANY && top == BN_RAND_TOP_ANY, seen_0_clear); } else if (bits == 2) { // Bit zero is bit n-2. EXPECT_EQ(bottom == BN_RAND_BOTTOM_ANY && top != BN_RAND_TOP_TWO, seen_0_clear); EXPECT_EQ(top == BN_RAND_TOP_ANY, seen_n_1_clear); } else { EXPECT_EQ(bottom == BN_RAND_BOTTOM_ANY, seen_0_clear); EXPECT_EQ(top != BN_RAND_TOP_TWO, seen_n_2_clear); EXPECT_EQ(top == BN_RAND_TOP_ANY, seen_n_1_clear); } } } } } TEST_F(BNTest, RandRange) { bssl::UniquePtr<BIGNUM> bn(BN_new()), six(BN_new()); ASSERT_TRUE(bn); ASSERT_TRUE(six); ASSERT_TRUE(BN_set_word(six.get(), 6)); // Generate 1,000 random numbers and ensure they all stay in range. This check // may flakily pass when it should have failed but will not flakily fail. bool seen[6] = {false, false, false, false, false}; for (unsigned i = 0; i < 1000; i++) { SCOPED_TRACE(i); ASSERT_TRUE(BN_rand_range_ex(bn.get(), 1, six.get())); BN_ULONG word = BN_get_word(bn.get()); if (BN_is_negative(bn.get()) || word < 1 || word >= 6) { FAIL() << "BN_rand_range_ex generated invalid value: " << word; } seen[word] = true; } // Test that all numbers were accounted for. Note this test is probabilistic // and may flakily fail when it should have passed. As an upper-bound on the // failure probability, we'll never see any one number with probability // (4/5)^1000, so the probability of failure is at most 5*(4/5)^1000. This is // around 1 in 2^320. for (unsigned i = 1; i < 6; i++) { EXPECT_TRUE(seen[i]) << "BN_rand_range failed to generated " << i; } } struct ASN1Test { const char *value_ascii; const char *der; size_t der_len; }; static const ASN1Test kASN1Tests[] = { {"0", "\x02\x01\x00", 3}, {"1", "\x02\x01\x01", 3}, {"127", "\x02\x01\x7f", 3}, {"128", "\x02\x02\x00\x80", 4}, {"0xdeadbeef", "\x02\x05\x00\xde\xad\xbe\xef", 7}, {"0x0102030405060708", "\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10}, {"0xffffffffffffffff", "\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11}, }; struct ASN1InvalidTest { const char *der; size_t der_len; }; static const ASN1InvalidTest kASN1InvalidTests[] = { // Bad tag. {"\x03\x01\x00", 3}, // Empty contents. {"\x02\x00", 2}, // Negative numbers. {"\x02\x01\x80", 3}, {"\x02\x01\xff", 3}, // Unnecessary leading zeros. {"\x02\x02\x00\x01", 4}, }; TEST_F(BNTest, ASN1) { for (const ASN1Test &test : kASN1Tests) { SCOPED_TRACE(test.value_ascii); bssl::UniquePtr<BIGNUM> bn = ASCIIToBIGNUM(test.value_ascii); ASSERT_TRUE(bn); // Test that the input is correctly parsed. bssl::UniquePtr<BIGNUM> bn2(BN_new()); ASSERT_TRUE(bn2); CBS cbs; CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len); ASSERT_TRUE(BN_parse_asn1_unsigned(&cbs, bn2.get())); EXPECT_EQ(0u, CBS_len(&cbs)); EXPECT_BIGNUMS_EQUAL("decode ASN.1", bn.get(), bn2.get()); // Test the value serializes correctly. bssl::ScopedCBB cbb; uint8_t *der; size_t der_len; ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(BN_marshal_asn1(cbb.get(), bn.get())); ASSERT_TRUE(CBB_finish(cbb.get(), &der, &der_len)); bssl::UniquePtr<uint8_t> delete_der(der); EXPECT_EQ(Bytes(test.der, test.der_len), Bytes(der, der_len)); } for (const ASN1InvalidTest &test : kASN1InvalidTests) { SCOPED_TRACE(Bytes(test.der, test.der_len));; bssl::UniquePtr<BIGNUM> bn(BN_new()); ASSERT_TRUE(bn); CBS cbs; CBS_init(&cbs, reinterpret_cast<const uint8_t *>(test.der), test.der_len); EXPECT_FALSE(BN_parse_asn1_unsigned(&cbs, bn.get())) << "Parsed invalid input."; ERR_clear_error(); } // Serializing negative numbers is not supported. bssl::UniquePtr<BIGNUM> bn = ASCIIToBIGNUM("-1"); ASSERT_TRUE(bn); bssl::ScopedCBB cbb; ASSERT_TRUE(CBB_init(cbb.get(), 0)); EXPECT_FALSE(BN_marshal_asn1(cbb.get(), bn.get())) << "Serialized negative number."; ERR_clear_error(); } TEST_F(BNTest, NegativeZero) { bssl::UniquePtr<BIGNUM> a(BN_new()); bssl::UniquePtr<BIGNUM> b(BN_new()); bssl::UniquePtr<BIGNUM> c(BN_new()); ASSERT_TRUE(a); ASSERT_TRUE(b); ASSERT_TRUE(c); // Test that BN_mul never gives negative zero. ASSERT_TRUE(BN_set_word(a.get(), 1)); BN_set_negative(a.get(), 1); BN_zero(b.get()); ASSERT_TRUE(BN_mul(c.get(), a.get(), b.get(), ctx())); EXPECT_TRUE(BN_is_zero(c.get())); EXPECT_FALSE(BN_is_negative(c.get())); bssl::UniquePtr<BIGNUM> numerator(BN_new()), denominator(BN_new()); ASSERT_TRUE(numerator); ASSERT_TRUE(denominator); // Test that BN_div never gives negative zero in the quotient. ASSERT_TRUE(BN_set_word(numerator.get(), 1)); ASSERT_TRUE(BN_set_word(denominator.get(), 2)); BN_set_negative(numerator.get(), 1); ASSERT_TRUE( BN_div(a.get(), b.get(), numerator.get(), denominator.get(), ctx())); EXPECT_TRUE(BN_is_zero(a.get())); EXPECT_FALSE(BN_is_negative(a.get())); // Test that BN_div never gives negative zero in the remainder. ASSERT_TRUE(BN_set_word(denominator.get(), 1)); ASSERT_TRUE( BN_div(a.get(), b.get(), numerator.get(), denominator.get(), ctx())); EXPECT_TRUE(BN_is_zero(b.get())); EXPECT_FALSE(BN_is_negative(b.get())); // Test that BN_set_negative will not produce a negative zero. BN_zero(a.get()); BN_set_negative(a.get(), 1); EXPECT_FALSE(BN_is_negative(a.get())); // Test that forcibly creating a negative zero does not break |BN_bn2hex| or // |BN_bn2dec|. a->neg = 1; bssl::UniquePtr<char> dec(BN_bn2dec(a.get())); bssl::UniquePtr<char> hex(BN_bn2hex(a.get())); ASSERT_TRUE(dec); ASSERT_TRUE(hex); EXPECT_STREQ("-0", dec.get()); EXPECT_STREQ("-0", hex.get()); // Test that |BN_rshift| and |BN_rshift1| will not produce a negative zero. ASSERT_TRUE(BN_set_word(a.get(), 1)); BN_set_negative(a.get(), 1); ASSERT_TRUE(BN_rshift(b.get(), a.get(), 1)); EXPECT_TRUE(BN_is_zero(b.get())); EXPECT_FALSE(BN_is_negative(b.get())); ASSERT_TRUE(BN_rshift1(c.get(), a.get())); EXPECT_TRUE(BN_is_zero(c.get())); EXPECT_FALSE(BN_is_negative(c.get())); // Test that |BN_div_word| will not produce a negative zero. ASSERT_NE((BN_ULONG)-1, BN_div_word(a.get(), 2)); EXPECT_TRUE(BN_is_zero(a.get())); EXPECT_FALSE(BN_is_negative(a.get())); } TEST_F(BNTest, BadModulus) { bssl::UniquePtr<BIGNUM> a(BN_new()); bssl::UniquePtr<BIGNUM> b(BN_new()); bssl::UniquePtr<BIGNUM> zero(BN_new()); ASSERT_TRUE(a); ASSERT_TRUE(b); ASSERT_TRUE(zero); BN_zero(zero.get()); EXPECT_FALSE(BN_div(a.get(), b.get(), BN_value_one(), zero.get(), ctx())); ERR_clear_error(); EXPECT_FALSE( BN_mod_mul(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx())); ERR_clear_error(); EXPECT_FALSE( BN_mod_exp(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx())); ERR_clear_error(); EXPECT_FALSE(BN_mod_exp_mont(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx(), NULL)); ERR_clear_error(); EXPECT_FALSE(BN_mod_exp_mont_consttime( a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx(), nullptr)); ERR_clear_error(); bssl::UniquePtr<BN_MONT_CTX> mont( BN_MONT_CTX_new_for_modulus(zero.get(), ctx())); EXPECT_FALSE(mont); ERR_clear_error(); mont.reset(BN_MONT_CTX_new_consttime(b.get(), ctx())); EXPECT_FALSE(mont); ERR_clear_error(); // Some operations also may not be used with an even modulus. ASSERT_TRUE(BN_set_word(b.get(), 16)); mont.reset(BN_MONT_CTX_new_for_modulus(b.get(), ctx())); EXPECT_FALSE(mont); ERR_clear_error(); mont.reset(BN_MONT_CTX_new_consttime(b.get(), ctx())); EXPECT_FALSE(mont); ERR_clear_error(); EXPECT_FALSE(BN_mod_exp_mont(a.get(), BN_value_one(), BN_value_one(), b.get(), ctx(), NULL)); ERR_clear_error(); EXPECT_FALSE(BN_mod_exp_mont_consttime( a.get(), BN_value_one(), BN_value_one(), b.get(), ctx(), nullptr)); ERR_clear_error(); } // Test that a**0 mod 1 == 0. TEST_F(BNTest, ExpZeroModOne) { bssl::UniquePtr<BIGNUM> zero(BN_new()), a(BN_new()), r(BN_new()), minus_one(BN_new()); ASSERT_TRUE(zero); ASSERT_TRUE(a); ASSERT_TRUE(r); ASSERT_TRUE(minus_one); ASSERT_TRUE(BN_set_word(minus_one.get(), 1)); BN_set_negative(minus_one.get(), 1); ASSERT_TRUE(BN_rand(a.get(), 1024, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)); BN_zero(zero.get()); ASSERT_TRUE(BN_mod_exp(r.get(), a.get(), zero.get(), BN_value_one(), ctx())); EXPECT_TRUE(BN_is_zero(r.get())); ASSERT_TRUE( BN_mod_exp(r.get(), zero.get(), zero.get(), BN_value_one(), ctx())); EXPECT_TRUE(BN_is_zero(r.get())); ASSERT_TRUE(BN_mod_exp_mont_word(r.get(), 42, zero.get(), BN_value_one(), ctx(), nullptr)); EXPECT_TRUE(BN_is_zero(r.get())); ASSERT_TRUE(BN_mod_exp_mont_word(r.get(), 0, zero.get(), BN_value_one(), ctx(), nullptr)); EXPECT_TRUE(BN_is_zero(r.get())); // |BN_mod_exp_mont| and |BN_mod_exp_mont_consttime| require fully-reduced // inputs, so a**0 mod 1 is not a valid call. 0**0 mod 1 is valid, however. ASSERT_TRUE(BN_mod_exp_mont(r.get(), zero.get(), zero.get(), BN_value_one(), ctx(), nullptr)); EXPECT_TRUE(BN_is_zero(r.get())); ASSERT_TRUE(BN_mod_exp_mont_consttime(r.get(), zero.get(), zero.get(), BN_value_one(), ctx(), nullptr)); EXPECT_TRUE(BN_is_zero(r.get())); } TEST_F(BNTest, SmallPrime) { static const unsigned kBits = 10; bssl::UniquePtr<BIGNUM> r(BN_new()); ASSERT_TRUE(r); ASSERT_TRUE(BN_generate_prime_ex(r.get(), static_cast<int>(kBits), 0, NULL, NULL, NULL)); EXPECT_EQ(kBits, BN_num_bits(r.get())); } TEST_F(BNTest, CmpWord) { static const BN_ULONG kMaxWord = (BN_ULONG)-1; bssl::UniquePtr<BIGNUM> r(BN_new()); ASSERT_TRUE(r); ASSERT_TRUE(BN_set_word(r.get(), 0)); EXPECT_EQ(BN_cmp_word(r.get(), 0), 0); EXPECT_LT(BN_cmp_word(r.get(), 1), 0); EXPECT_LT(BN_cmp_word(r.get(), kMaxWord), 0); ASSERT_TRUE(BN_set_word(r.get(), 100)); EXPECT_GT(BN_cmp_word(r.get(), 0), 0); EXPECT_GT(BN_cmp_word(r.get(), 99), 0); EXPECT_EQ(BN_cmp_word(r.get(), 100), 0); EXPECT_LT(BN_cmp_word(r.get(), 101), 0); EXPECT_LT(BN_cmp_word(r.get(), kMaxWord), 0); BN_set_negative(r.get(), 1); EXPECT_LT(BN_cmp_word(r.get(), 0), 0); EXPECT_LT(BN_cmp_word(r.get(), 100), 0); EXPECT_LT(BN_cmp_word(r.get(), kMaxWord), 0); ASSERT_TRUE(BN_set_word(r.get(), kMaxWord)); EXPECT_GT(BN_cmp_word(r.get(), 0), 0); EXPECT_GT(BN_cmp_word(r.get(), kMaxWord - 1), 0); EXPECT_EQ(BN_cmp_word(r.get(), kMaxWord), 0); ASSERT_TRUE(BN_add(r.get(), r.get(), BN_value_one())); EXPECT_GT(BN_cmp_word(r.get(), 0), 0); EXPECT_GT(BN_cmp_word(r.get(), kMaxWord), 0); BN_set_negative(r.get(), 1); EXPECT_LT(BN_cmp_word(r.get(), 0), 0); EXPECT_LT(BN_cmp_word(r.get(), kMaxWord), 0); } TEST_F(BNTest, BN2Dec) { static const char *kBN2DecTests[] = { "0", "1", "-1", "100", "-100", "123456789012345678901234567890", "-123456789012345678901234567890", "123456789012345678901234567890123456789012345678901234567890", "-123456789012345678901234567890123456789012345678901234567890", }; for (const char *test : kBN2DecTests) { SCOPED_TRACE(test); bssl::UniquePtr<BIGNUM> bn; int ret = DecimalToBIGNUM(&bn, test); ASSERT_NE(0, ret); bssl::UniquePtr<char> dec(BN_bn2dec(bn.get())); ASSERT_TRUE(dec); EXPECT_STREQ(test, dec.get()); } } TEST_F(BNTest, SetGetU64) { static const struct { const char *hex; uint64_t value; } kU64Tests[] = { {"0", UINT64_C(0x0)}, {"1", UINT64_C(0x1)}, {"ffffffff", UINT64_C(0xffffffff)}, {"100000000", UINT64_C(0x100000000)}, {"ffffffffffffffff", UINT64_C(0xffffffffffffffff)}, }; for (const auto& test : kU64Tests) { SCOPED_TRACE(test.hex); bssl::UniquePtr<BIGNUM> bn(BN_new()), expected; ASSERT_TRUE(bn); ASSERT_TRUE(BN_set_u64(bn.get(), test.value)); ASSERT_TRUE(HexToBIGNUM(&expected, test.hex)); EXPECT_BIGNUMS_EQUAL("BN_set_u64", expected.get(), bn.get()); uint64_t tmp; ASSERT_TRUE(BN_get_u64(bn.get(), &tmp)); EXPECT_EQ(test.value, tmp); // BN_get_u64 ignores the sign bit. BN_set_negative(bn.get(), 1); ASSERT_TRUE(BN_get_u64(bn.get(), &tmp)); EXPECT_EQ(test.value, tmp); } // Test that BN_get_u64 fails on large numbers. bssl::UniquePtr<BIGNUM> bn(BN_new()); ASSERT_TRUE(bn); ASSERT_TRUE(BN_lshift(bn.get(), BN_value_one(), 64)); uint64_t tmp; EXPECT_FALSE(BN_get_u64(bn.get(), &tmp)); BN_set_negative(bn.get(), 1); EXPECT_FALSE(BN_get_u64(bn.get(), &tmp)); } TEST_F(BNTest, Pow2) { bssl::UniquePtr<BIGNUM> power_of_two(BN_new()), random(BN_new()), expected(BN_new()), actual(BN_new()); ASSERT_TRUE(power_of_two); ASSERT_TRUE(random); ASSERT_TRUE(expected); ASSERT_TRUE(actual); // Choose an exponent. for (size_t e = 3; e < 512; e += 11) { SCOPED_TRACE(e); // Choose a bit length for our randoms. for (int len = 3; len < 512; len += 23) { SCOPED_TRACE(len); // Set power_of_two = 2^e. ASSERT_TRUE(BN_lshift(power_of_two.get(), BN_value_one(), (int)e)); // Test BN_is_pow2 on power_of_two. EXPECT_TRUE(BN_is_pow2(power_of_two.get())); // Pick a large random value, ensuring it isn't a power of two. ASSERT_TRUE( BN_rand(random.get(), len, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY)); // Test BN_is_pow2 on |r|. EXPECT_FALSE(BN_is_pow2(random.get())); // Test BN_mod_pow2 on |r|. ASSERT_TRUE( BN_mod(expected.get(), random.get(), power_of_two.get(), ctx())); ASSERT_TRUE(BN_mod_pow2(actual.get(), random.get(), e)); EXPECT_BIGNUMS_EQUAL("random (mod power_of_two)", expected.get(), actual.get()); // Test BN_nnmod_pow2 on |r|. ASSERT_TRUE( BN_nnmod(expected.get(), random.get(), power_of_two.get(), ctx())); ASSERT_TRUE(BN_nnmod_pow2(actual.get(), random.get(), e)); EXPECT_BIGNUMS_EQUAL("random (mod power_of_two), non-negative", expected.get(), actual.get()); // Test BN_nnmod_pow2 on -|r|. BN_set_negative(random.get(), 1); ASSERT_TRUE( BN_nnmod(expected.get(), random.get(), power_of_two.get(), ctx())); ASSERT_TRUE(BN_nnmod_pow2(actual.get(), random.get(), e)); EXPECT_BIGNUMS_EQUAL("-random (mod power_of_two), non-negative", expected.get(), actual.get()); } } } static const int kPrimes[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243, 10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, 10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631, 10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, 10753, 10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, 11027, 11047, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261, 11273, 11279, 11287, 11299, 11311, 11317, 11321, 11329, 11351, 11353, 11369, 11383, 11393, 11399, 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491, 11497, 11503, 11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, 11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, 11821, 11827, 11831, 11833, 11839, 11863, 11867, 11887, 11897, 11903, 11909, 11923, 11927, 11933, 11939, 11941, 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, 12037, 12041, 12043, 12049, 12071, 12073, 12097, 12101, 12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, 12163, 12197, 12203, 12211, 12227, 12239, 12241, 12251, 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, 12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413, 12421, 12433, 12437, 12451, 12457, 12473, 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527, 12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611, 12613, 12619, 12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713, 12721, 12739, 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823, 12829, 12841, 12853, 12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923, 12941, 12953, 12959, 12967, 12973, 12979, 12983, 13001, 13003, 13007, 13009, 13033, 13037, 13043, 13049, 13063, 13093, 13099, 13103, 13109, 13121, 13127, 13147, 13151, 13159, 13163, 13171, 13177, 13183, 13187, 13217, 13219, 13229, 13241, 13249, 13259, 13267, 13291, 13297, 13309, 13313, 13327, 13331, 13337, 13339, 13367, 13381, 13397, 13399, 13411, 13417, 13421, 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499, 13513, 13523, 13537, 13553, 13567, 13577, 13591, 13597, 13613, 13619, 13627, 13633, 13649, 13669, 13679, 13681, 13687, 13691, 13693, 13697, 13709, 13711, 13721, 13723, 13729, 13751, 13757, 13759, 13763, 13781, 13789, 13799, 13807, 13829, 13831, 13841, 13859, 13873, 13877, 13879, 13883, 13901, 13903, 13907, 13913, 13921, 13931, 13933, 13963, 13967, 13997, 13999, 14009, 14011, 14029, 14033, 14051, 14057, 14071, 14081, 14083, 14087, 14107, 14143, 14149, 14153, 14159, 14173, 14177, 14197, 14207, 14221, 14243, 14249, 14251, 14281, 14293, 14303, 14321, 14323, 14327, 14341, 14347, 14369, 14387, 14389, 14401, 14407, 14411, 14419, 14423, 14431, 14437, 14447, 14449, 14461, 14479, 14489, 14503, 14519, 14533, 14537, 14543, 14549, 14551, 14557, 14561, 14563, 14591, 14593, 14621, 14627, 14629, 14633, 14639, 14653, 14657, 14669, 14683, 14699, 14713, 14717, 14723, 14731, 14737, 14741, 14747, 14753, 14759, 14767, 14771, 14779, 14783, 14797, 14813, 14821, 14827, 14831, 14843, 14851, 14867, 14869, 14879, 14887, 14891, 14897, 14923, 14929, 14939, 14947, 14951, 14957, 14969, 14983, 15013, 15017, 15031, 15053, 15061, 15073, 15077, 15083, 15091, 15101, 15107, 15121, 15131, 15137, 15139, 15149, 15161, 15173, 15187, 15193, 15199, 15217, 15227, 15233, 15241, 15259, 15263, 15269, 15271, 15277, 15287, 15289, 15299, 15307, 15313, 15319, 15329, 15331, 15349, 15359, 15361, 15373, 15377, 15383, 15391, 15401, 15413, 15427, 15439, 15443, 15451, 15461, 15467, 15473, 15493, 15497, 15511, 15527, 15541, 15551, 15559, 15569, 15581, 15583, 15601, 15607, 15619, 15629, 15641, 15643, 15647, 15649, 15661, 15667, 15671, 15679, 15683, 15727, 15731, 15733, 15737, 15739, 15749, 15761, 15767, 15773, 15787, 15791, 15797, 15803, 15809, 15817, 15823, 15859, 15877, 15881, 15887, 15889, 15901, 15907, 15913, 15919, 15923, 15937, 15959, 15971, 15973, 15991, 16001, 16007, 16033, 16057, 16061, 16063, 16067, 16069, 16073, 16087, 16091, 16097, 16103, 16111, 16127, 16139, 16141, 16183, 16187, 16189, 16193, 16217, 16223, 16229, 16231, 16249, 16253, 16267, 16273, 16301, 16319, 16333, 16339, 16349, 16361, 16363, 16369, 16381, 16411, 16417, 16421, 16427, 16433, 16447, 16451, 16453, 16477, 16481, 16487, 16493, 16519, 16529, 16547, 16553, 16561, 16567, 16573, 16603, 16607, 16619, 16631, 16633, 16649, 16651, 16657, 16661, 16673, 16691, 16693, 16699, 16703, 16729, 16741, 16747, 16759, 16763, 16787, 16811, 16823, 16829, 16831, 16843, 16871, 16879, 16883, 16889, 16901, 16903, 16921, 16927, 16931, 16937, 16943, 16963, 16979, 16981, 16987, 16993, 17011, 17021, 17027, 17029, 17033, 17041, 17047, 17053, 17077, 17093, 17099, 17107, 17117, 17123, 17137, 17159, 17167, 17183, 17189, 17191, 17203, 17207, 17209, 17231, 17239, 17257, 17291, 17293, 17299, 17317, 17321, 17327, 17333, 17341, 17351, 17359, 17377, 17383, 17387, 17389, 17393, 17401, 17417, 17419, 17431, 17443, 17449, 17467, 17471, 17477, 17483, 17489, 17491, 17497, 17509, 17519, 17539, 17551, 17569, 17573, 17579, 17581, 17597, 17599, 17609, 17623, 17627, 17657, 17659, 17669, 17681, 17683, 17707, 17713, 17729, 17737, 17747, 17749, 17761, 17783, 17789, 17791, 17807, 17827, 17837, 17839, 17851, 17863, 17881, 17891, 17903, 17909, 17911, 17921, 17923, 17929, 17939, 17957, 17959, 17971, 17977, 17981, 17987, 17989, 18013, 18041, 18043, 18047, 18049, 18059, 18061, 18077, 18089, 18097, 18119, 18121, 18127, 18131, 18133, 18143, 18149, 18169, 18181, 18191, 18199, 18211, 18217, 18223, 18229, 18233, 18251, 18253, 18257, 18269, 18287, 18289, 18301, 18307, 18311, 18313, 18329, 18341, 18353, 18367, 18371, 18379, 18397, 18401, 18413, 18427, 18433, 18439, 18443, 18451, 18457, 18461, 18481, 18493, 18503, 18517, 18521, 18523, 18539, 18541, 18553, 18583, 18587, 18593, 18617, 18637, 18661, 18671, 18679, 18691, 18701, 18713, 18719, 18731, 18743, 18749, 18757, 18773, 18787, 18793, 18797, 18803, 18839, 18859, 18869, 18899, 18911, 18913, 18917, 18919, 18947, 18959, 18973, 18979, 19001, 19009, 19013, 19031, 19037, 19051, 19069, 19073, 19079, 19081, 19087, 19121, 19139, 19141, 19157, 19163, 19181, 19183, 19207, 19211, 19213, 19219, 19231, 19237, 19249, 19259, 19267, 19273, 19289, 19301, 19309, 19319, 19333, 19373, 19379, 19381, 19387, 19391, 19403, 19417, 19421, 19423, 19427, 19429, 19433, 19441, 19447, 19457, 19463, 19469, 19471, 19477, 19483, 19489, 19501, 19507, 19531, 19541, 19543, 19553, 19559, 19571, 19577, 19583, 19597, 19603, 19609, 19661, 19681, 19687, 19697, 19699, 19709, 19717, 19727, 19739, 19751, 19753, 19759, 19763, 19777, 19793, 19801, 19813, 19819, 19841, 19843, 19853, 19861, 19867, 19889, 19891, 19913, 19919, 19927, 19937, 19949, 19961, 19963, 19973, 19979, 19991, 19993, 19997, }; TEST_F(BNTest, PrimeChecking) { bssl::UniquePtr<BIGNUM> p(BN_new()); ASSERT_TRUE(p); int is_probably_prime_1 = 0, is_probably_prime_2 = 0; enum bn_primality_result_t result_3; const int max_prime = kPrimes[OPENSSL_ARRAY_SIZE(kPrimes)-1]; size_t next_prime_index = 0; for (int i = 0; i <= max_prime; i++) { SCOPED_TRACE(i); bool is_prime = false; if (i == kPrimes[next_prime_index]) { is_prime = true; next_prime_index++; } ASSERT_TRUE(BN_set_word(p.get(), i)); ASSERT_TRUE(BN_primality_test( &is_probably_prime_1, p.get(), BN_prime_checks, ctx(), false /* do_trial_division */, nullptr /* callback */)); EXPECT_EQ(is_prime ? 1 : 0, is_probably_prime_1); ASSERT_TRUE(BN_primality_test( &is_probably_prime_2, p.get(), BN_prime_checks, ctx(), true /* do_trial_division */, nullptr /* callback */)); EXPECT_EQ(is_prime ? 1 : 0, is_probably_prime_2); if (i > 3 && i % 2 == 1) { ASSERT_TRUE(BN_enhanced_miller_rabin_primality_test( &result_3, p.get(), BN_prime_checks, ctx(), nullptr /* callback */)); EXPECT_EQ(is_prime, result_3 == bn_probably_prime); } } // Negative numbers are not prime. ASSERT_TRUE(BN_set_word(p.get(), 7)); BN_set_negative(p.get(), 1); ASSERT_TRUE(BN_primality_test(&is_probably_prime_1, p.get(), BN_prime_checks, ctx(), false /* do_trial_division */, nullptr /* callback */)); EXPECT_EQ(0, is_probably_prime_1); ASSERT_TRUE(BN_primality_test(&is_probably_prime_2, p.get(), BN_prime_checks, ctx(), true /* do_trial_division */, nullptr /* callback */)); EXPECT_EQ(0, is_probably_prime_2); // The following composite numbers come from http://oeis.org/A014233 and are // such that the first several primes are not a Rabin-Miller composite // witness. static const char *kA014233[] = { "2047", "1373653", "25326001", "3215031751", "2152302898747", "3474749660383", "341550071728321", "3825123056546413051", "318665857834031151167461", "3317044064679887385961981", }; for (const char *str : kA014233) { SCOPED_TRACE(str); EXPECT_NE(0, DecimalToBIGNUM(&p, str)); ASSERT_TRUE(BN_primality_test( &is_probably_prime_1, p.get(), BN_prime_checks, ctx(), false /* do_trial_division */, nullptr /* callback */)); EXPECT_EQ(0, is_probably_prime_1); ASSERT_TRUE(BN_primality_test( &is_probably_prime_2, p.get(), BN_prime_checks, ctx(), true /* do_trial_division */, nullptr /* callback */)); EXPECT_EQ(0, is_probably_prime_2); ASSERT_TRUE(BN_enhanced_miller_rabin_primality_test( &result_3, p.get(), BN_prime_checks, ctx(), nullptr /* callback */)); EXPECT_EQ(bn_composite, result_3); } // BN_primality_test works with null |BN_CTX|. ASSERT_TRUE(BN_set_word(p.get(), 5)); ASSERT_TRUE(BN_primality_test( &is_probably_prime_1, p.get(), BN_prime_checks, nullptr /* ctx */, false /* do_trial_division */, nullptr /* callback */)); EXPECT_EQ(1, is_probably_prime_1); } TEST_F(BNTest, NumBitsWord) { constexpr BN_ULONG kOne = 1; // 2^(N-1) takes N bits. for (unsigned i = 1; i < BN_BITS2; i++) { EXPECT_EQ(i, BN_num_bits_word(kOne << (i - 1))) << i; } // 2^N - 1 takes N bits. for (unsigned i = 0; i < BN_BITS2; i++) { EXPECT_EQ(i, BN_num_bits_word((kOne << i) - 1)) << i; } for (unsigned i = 1; i < 100; i++) { // Generate a random value of a random length. uint8_t buf[1 + sizeof(BN_ULONG)]; RAND_bytes(buf, sizeof(buf)); BN_ULONG w; memcpy(&w, &buf[1], sizeof(w)); const unsigned num_bits = buf[0] % (BN_BITS2 + 1); if (num_bits == BN_BITS2) { w |= kOne << (BN_BITS2 - 1); } else if (num_bits == 0) { w = 0; } else { w &= (kOne << num_bits) - 1; w |= kOne << (num_bits - 1); } EXPECT_EQ(num_bits, BN_num_bits_word(w)) << w; } } #if !defined(BORINGSSL_SHARED_LIBRARY) TEST_F(BNTest, LessThanWords) { // kTestVectors is an array of 256-bit values in sorted order. static const BN_ULONG kTestVectors[][256 / BN_BITS2] = { {TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000)}, {TOBN(0x00000000, 0x00000001), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000)}, {TOBN(0x00000000, 0x00000002), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000)}, {TOBN(0x00000000, 0x0000ffff), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000)}, {TOBN(0x00000000, 0x83339914), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000)}, {TOBN(0x00000000, 0xfffffffe), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000)}, {TOBN(0x00000000, 0xffffffff), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000)}, {TOBN(0xed17ac85, 0x83339914), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000)}, {TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000)}, {TOBN(0x00000000, 0x83339914), TOBN(0x00000000, 0x00000001), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000)}, {TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000)}, {TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0x00000000)}, {TOBN(0x00000000, 0x00000000), TOBN(0x1d6f60ba, 0x893ba84c), TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484)}, {TOBN(0x00000000, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c), TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484)}, {TOBN(0xed17ac85, 0x00000000), TOBN(0x1d6f60ba, 0x893ba84c), TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484)}, {TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c), TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484)}, {TOBN(0xed17ac85, 0xffffffff), TOBN(0x1d6f60ba, 0x893ba84c), TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484)}, {TOBN(0xffffffff, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c), TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484)}, {TOBN(0xffffffff, 0xffffffff), TOBN(0x1d6f60ba, 0x893ba84c), TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484)}, {TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0xffffffff, 0xffffffff)}, {TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff)}, {TOBN(0x00000000, 0x00000001), TOBN(0x00000000, 0x00000000), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff)}, {TOBN(0x00000000, 0x00000000), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff)}, {TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff)}, }; // Determine where the single-word values stop. size_t one_word; for (one_word = 0; one_word < OPENSSL_ARRAY_SIZE(kTestVectors); one_word++) { int is_word = 1; for (size_t i = 1; i < OPENSSL_ARRAY_SIZE(kTestVectors[one_word]); i++) { if (kTestVectors[one_word][i] != 0) { is_word = 0; break; } } if (!is_word) { break; } } for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kTestVectors); i++) { SCOPED_TRACE(i); for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(kTestVectors); j++) { SCOPED_TRACE(j); EXPECT_EQ(i < j ? 1 : 0, bn_less_than_words(kTestVectors[i], kTestVectors[j], OPENSSL_ARRAY_SIZE(kTestVectors[i]))); for (size_t k = 0; k < one_word; k++) { SCOPED_TRACE(k); EXPECT_EQ(k <= i && i < j ? 1 : 0, bn_in_range_words(kTestVectors[i], kTestVectors[k][0], kTestVectors[j], OPENSSL_ARRAY_SIZE(kTestVectors[i]))); } } } EXPECT_EQ(0, bn_less_than_words(NULL, NULL, 0)); EXPECT_EQ(0, bn_in_range_words(NULL, 0, NULL, 0)); } #endif // !BORINGSSL_SHARED_LIBRARY TEST_F(BNTest, NonMinimal) { bssl::UniquePtr<BIGNUM> ten(BN_new()); ASSERT_TRUE(ten); ASSERT_TRUE(BN_set_word(ten.get(), 10)); bssl::UniquePtr<BIGNUM> ten_copy(BN_dup(ten.get())); ASSERT_TRUE(ten_copy); bssl::UniquePtr<BIGNUM> eight(BN_new()); ASSERT_TRUE(eight); ASSERT_TRUE(BN_set_word(eight.get(), 8)); bssl::UniquePtr<BIGNUM> forty_two(BN_new()); ASSERT_TRUE(forty_two); ASSERT_TRUE(BN_set_word(forty_two.get(), 42)); bssl::UniquePtr<BIGNUM> two_exp_256(BN_new()); ASSERT_TRUE(two_exp_256); ASSERT_TRUE(BN_lshift(two_exp_256.get(), BN_value_one(), 256)); bssl::UniquePtr<BIGNUM> zero(BN_new()); ASSERT_TRUE(zero); BN_zero(zero.get()); for (size_t width = 1; width < 10; width++) { SCOPED_TRACE(width); // Make |ten| and |zero| wider. EXPECT_TRUE(bn_resize_words(ten.get(), width)); EXPECT_EQ(static_cast<int>(width), ten->width); EXPECT_TRUE(bn_resize_words(zero.get(), width)); EXPECT_EQ(static_cast<int>(width), zero->width); EXPECT_TRUE(BN_abs_is_word(ten.get(), 10)); EXPECT_TRUE(BN_is_word(ten.get(), 10)); EXPECT_EQ(10u, BN_get_word(ten.get())); uint64_t v; ASSERT_TRUE(BN_get_u64(ten.get(), &v)); EXPECT_EQ(10u, v); EXPECT_TRUE(BN_equal_consttime(ten.get(), ten_copy.get())); EXPECT_TRUE(BN_equal_consttime(ten_copy.get(), ten.get())); EXPECT_EQ(BN_cmp(ten.get(), ten_copy.get()), 0); EXPECT_EQ(BN_cmp(ten_copy.get(), ten.get()), 0); EXPECT_FALSE(BN_equal_consttime(ten.get(), eight.get())); EXPECT_LT(BN_cmp(eight.get(), ten.get()), 0); EXPECT_GT(BN_cmp(ten.get(), eight.get()), 0); EXPECT_FALSE(BN_equal_consttime(ten.get(), forty_two.get())); EXPECT_GT(BN_cmp(forty_two.get(), ten.get()), 0); EXPECT_LT(BN_cmp(ten.get(), forty_two.get()), 0); EXPECT_FALSE(BN_equal_consttime(ten.get(), two_exp_256.get())); EXPECT_GT(BN_cmp(two_exp_256.get(), ten.get()), 0); EXPECT_LT(BN_cmp(ten.get(), two_exp_256.get()), 0); EXPECT_EQ(4u, BN_num_bits(ten.get())); EXPECT_EQ(1u, BN_num_bytes(ten.get())); EXPECT_FALSE(BN_is_pow2(ten.get())); bssl::UniquePtr<char> hex(BN_bn2hex(ten.get())); EXPECT_STREQ("0a", hex.get()); hex.reset(BN_bn2hex(zero.get())); EXPECT_STREQ("0", hex.get()); bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); ASSERT_TRUE(bio); ASSERT_TRUE(BN_print(bio.get(), ten.get())); const uint8_t *ptr; size_t len; ASSERT_TRUE(BIO_mem_contents(bio.get(), &ptr, &len)); // TODO(davidben): |BN_print| removes leading zeros within a byte, while // |BN_bn2hex| rounds up to a byte, except for zero which it prints as // "0". Fix this discrepancy? EXPECT_EQ(Bytes("a"), Bytes(ptr, len)); bio.reset(BIO_new(BIO_s_mem())); ASSERT_TRUE(bio); ASSERT_TRUE(BN_print(bio.get(), zero.get())); ASSERT_TRUE(BIO_mem_contents(bio.get(), &ptr, &len)); EXPECT_EQ(Bytes("0"), Bytes(ptr, len)); } // |ten| may be resized back down to one word. EXPECT_TRUE(bn_resize_words(ten.get(), 1)); EXPECT_EQ(1, ten->width); // But not to zero words, which it does not fit. EXPECT_FALSE(bn_resize_words(ten.get(), 0)); EXPECT_TRUE(BN_is_pow2(eight.get())); EXPECT_TRUE(bn_resize_words(eight.get(), 4)); EXPECT_EQ(4, eight->width); EXPECT_TRUE(BN_is_pow2(eight.get())); // |BN_MONT_CTX| is always stored minimally and uses the same R independent of // input width. Additionally, mont->RR is always the same width as mont->N, // even if it fits in a smaller value. static const uint8_t kP[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, }; bssl::UniquePtr<BIGNUM> p(BN_bin2bn(kP, sizeof(kP), nullptr)); ASSERT_TRUE(p); // Test both the constant-time and variable-time functions at both minimal and // non-minimal |p|. bssl::UniquePtr<BN_MONT_CTX> mont( BN_MONT_CTX_new_for_modulus(p.get(), ctx())); ASSERT_TRUE(mont); bssl::UniquePtr<BN_MONT_CTX> mont2( BN_MONT_CTX_new_consttime(p.get(), ctx())); ASSERT_TRUE(mont2); ASSERT_TRUE(bn_resize_words(p.get(), 32)); bssl::UniquePtr<BN_MONT_CTX> mont3( BN_MONT_CTX_new_for_modulus(p.get(), ctx())); ASSERT_TRUE(mont3); bssl::UniquePtr<BN_MONT_CTX> mont4( BN_MONT_CTX_new_consttime(p.get(), ctx())); ASSERT_TRUE(mont4); EXPECT_EQ(mont->N.width, mont2->N.width); EXPECT_EQ(mont->N.width, mont3->N.width); EXPECT_EQ(mont->N.width, mont4->N.width); EXPECT_EQ(0, BN_cmp(&mont->RR, &mont2->RR)); EXPECT_EQ(0, BN_cmp(&mont->RR, &mont3->RR)); EXPECT_EQ(0, BN_cmp(&mont->RR, &mont4->RR)); EXPECT_EQ(mont->N.width, mont->RR.width); EXPECT_EQ(mont->N.width, mont2->RR.width); EXPECT_EQ(mont->N.width, mont3->RR.width); EXPECT_EQ(mont->N.width, mont4->RR.width); } TEST_F(BNTest, CountLowZeroBits) { bssl::UniquePtr<BIGNUM> bn(BN_new()); ASSERT_TRUE(bn); for (int i = 0; i < BN_BITS2; i++) { SCOPED_TRACE(i); for (int set_high_bits = 0; set_high_bits < 2; set_high_bits++) { BN_ULONG word = ((BN_ULONG)1) << i; if (set_high_bits) { BN_ULONG junk; RAND_bytes(reinterpret_cast<uint8_t *>(&junk), sizeof(junk)); word |= junk & ~(word - 1); } SCOPED_TRACE(word); ASSERT_TRUE(BN_set_word(bn.get(), word)); EXPECT_EQ(i, BN_count_low_zero_bits(bn.get())); ASSERT_TRUE(bn_resize_words(bn.get(), 16)); EXPECT_EQ(i, BN_count_low_zero_bits(bn.get())); ASSERT_TRUE(BN_set_word(bn.get(), word)); ASSERT_TRUE(BN_lshift(bn.get(), bn.get(), BN_BITS2 * 5)); EXPECT_EQ(i + BN_BITS2 * 5, BN_count_low_zero_bits(bn.get())); ASSERT_TRUE(bn_resize_words(bn.get(), 16)); EXPECT_EQ(i + BN_BITS2 * 5, BN_count_low_zero_bits(bn.get())); ASSERT_TRUE(BN_set_word(bn.get(), word)); ASSERT_TRUE(BN_set_bit(bn.get(), BN_BITS2 * 5)); EXPECT_EQ(i, BN_count_low_zero_bits(bn.get())); ASSERT_TRUE(bn_resize_words(bn.get(), 16)); EXPECT_EQ(i, BN_count_low_zero_bits(bn.get())); } } BN_zero(bn.get()); EXPECT_EQ(0, BN_count_low_zero_bits(bn.get())); ASSERT_TRUE(bn_resize_words(bn.get(), 16)); EXPECT_EQ(0, BN_count_low_zero_bits(bn.get())); } TEST_F(BNTest, WriteIntoNegative) { bssl::UniquePtr<BIGNUM> r(BN_new()); ASSERT_TRUE(r); bssl::UniquePtr<BIGNUM> two(BN_new()); ASSERT_TRUE(two); ASSERT_TRUE(BN_set_word(two.get(), 2)); bssl::UniquePtr<BIGNUM> three(BN_new()); ASSERT_TRUE(three); ASSERT_TRUE(BN_set_word(three.get(), 3)); bssl::UniquePtr<BIGNUM> seven(BN_new()); ASSERT_TRUE(seven); ASSERT_TRUE(BN_set_word(seven.get(), 7)); ASSERT_TRUE(BN_set_word(r.get(), 1)); BN_set_negative(r.get(), 1); ASSERT_TRUE(BN_mod_add_quick(r.get(), two.get(), three.get(), seven.get())); EXPECT_TRUE(BN_is_word(r.get(), 5)); EXPECT_FALSE(BN_is_negative(r.get())); BN_set_negative(r.get(), 1); ASSERT_TRUE(BN_mod_sub_quick(r.get(), two.get(), three.get(), seven.get())); EXPECT_TRUE(BN_is_word(r.get(), 6)); EXPECT_FALSE(BN_is_negative(r.get())); } #if defined(OPENSSL_BN_ASM_MONT) && defined(SUPPORTS_ABI_TEST) TEST_F(BNTest, BNMulMontABI) { for (size_t words : {4, 5, 6, 7, 8, 16, 32}) { SCOPED_TRACE(words); bssl::UniquePtr<BIGNUM> m(BN_new()); ASSERT_TRUE(m); ASSERT_TRUE(BN_set_bit(m.get(), 0)); ASSERT_TRUE(BN_set_bit(m.get(), words * BN_BITS2 - 1)); bssl::UniquePtr<BN_MONT_CTX> mont( BN_MONT_CTX_new_for_modulus(m.get(), ctx())); ASSERT_TRUE(mont); std::vector<BN_ULONG> r(words), a(words), b(words); a[0] = 1; b[0] = 42; CHECK_ABI(bn_mul_mont, r.data(), a.data(), b.data(), mont->N.d, mont->n0, words); CHECK_ABI(bn_mul_mont, r.data(), a.data(), a.data(), mont->N.d, mont->n0, words); } } #endif // OPENSSL_BN_ASM_MONT && SUPPORTS_ABI_TEST #if defined(OPENSSL_BN_ASM_MONT5) && defined(SUPPORTS_ABI_TEST) TEST_F(BNTest, BNMulMont5ABI) { for (size_t words : {4, 5, 6, 7, 8, 16, 32}) { SCOPED_TRACE(words); bssl::UniquePtr<BIGNUM> m(BN_new()); ASSERT_TRUE(m); ASSERT_TRUE(BN_set_bit(m.get(), 0)); ASSERT_TRUE(BN_set_bit(m.get(), words * BN_BITS2 - 1)); bssl::UniquePtr<BN_MONT_CTX> mont( BN_MONT_CTX_new_for_modulus(m.get(), ctx())); ASSERT_TRUE(mont); std::vector<BN_ULONG> r(words), a(words), b(words), table(words * 32); a[0] = 1; b[0] = 42; bn_mul_mont(r.data(), a.data(), b.data(), mont->N.d, mont->n0, words); CHECK_ABI(bn_scatter5, r.data(), words, table.data(), 13); for (size_t i = 0; i < 32; i++) { bn_mul_mont(r.data(), a.data(), b.data(), mont->N.d, mont->n0, words); bn_scatter5(r.data(), words, table.data(), i); } CHECK_ABI(bn_gather5, r.data(), words, table.data(), 13); CHECK_ABI(bn_mul_mont_gather5, r.data(), r.data(), table.data(), m->d, mont->n0, words, 13); CHECK_ABI(bn_mul_mont_gather5, r.data(), a.data(), table.data(), m->d, mont->n0, words, 13); if (words % 8 == 0) { CHECK_ABI(bn_power5, r.data(), r.data(), table.data(), m->d, mont->n0, words, 13); CHECK_ABI(bn_power5, r.data(), a.data(), table.data(), m->d, mont->n0, words, 13); EXPECT_EQ(1, CHECK_ABI(bn_from_montgomery, r.data(), r.data(), nullptr, m->d, mont->n0, words)); EXPECT_EQ(1, CHECK_ABI(bn_from_montgomery, r.data(), a.data(), nullptr, m->d, mont->n0, words)); } else { EXPECT_EQ(0, CHECK_ABI(bn_from_montgomery, r.data(), r.data(), nullptr, m->d, mont->n0, words)); EXPECT_EQ(0, CHECK_ABI(bn_from_montgomery, r.data(), a.data(), nullptr, m->d, mont->n0, words)); } } } #endif // OPENSSL_BN_ASM_MONT5 && SUPPORTS_ABI_TEST #if defined(RSAZ_ENABLED) && defined(SUPPORTS_ABI_TEST) TEST_F(BNTest, RSAZABI) { if (!rsaz_avx2_capable()) { return; } alignas(64) BN_ULONG table[32 * 18] = {0}; alignas(64) BN_ULONG rsaz1[40], rsaz2[40], rsaz3[40], n_rsaz[40]; BN_ULONG norm[16], n_norm[16]; OPENSSL_memset(norm, 0x42, sizeof(norm)); OPENSSL_memset(n_norm, 0x99, sizeof(n_norm)); bssl::UniquePtr<BIGNUM> n(BN_new()); ASSERT_TRUE(n); ASSERT_TRUE(bn_set_words(n.get(), n_norm, 16)); bssl::UniquePtr<BN_MONT_CTX> mont( BN_MONT_CTX_new_for_modulus(n.get(), nullptr)); ASSERT_TRUE(mont); const BN_ULONG k = mont->n0[0]; CHECK_ABI(rsaz_1024_norm2red_avx2, rsaz1, norm); CHECK_ABI(rsaz_1024_norm2red_avx2, n_rsaz, n_norm); CHECK_ABI(rsaz_1024_sqr_avx2, rsaz2, rsaz1, n_rsaz, k, 1); CHECK_ABI(rsaz_1024_sqr_avx2, rsaz3, rsaz2, n_rsaz, k, 4); CHECK_ABI(rsaz_1024_mul_avx2, rsaz3, rsaz1, rsaz2, n_rsaz, k); CHECK_ABI(rsaz_1024_scatter5_avx2, table, rsaz3, 7); CHECK_ABI(rsaz_1024_gather5_avx2, rsaz1, table, 7); CHECK_ABI(rsaz_1024_red2norm_avx2, norm, rsaz1); } #endif // RSAZ_ENABLED && SUPPORTS_ABI_TEST