/* ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include <openssl/ecdsa.h> #include <vector> #include <gtest/gtest.h> #include <openssl/bn.h> #include <openssl/crypto.h> #include <openssl/ec.h> #include <openssl/err.h> #include <openssl/mem.h> #include <openssl/nid.h> #include <openssl/rand.h> #include "../ec/internal.h" #include "../../test/file_test.h" static bssl::UniquePtr<BIGNUM> HexToBIGNUM(const char *hex) { BIGNUM *bn = nullptr; BN_hex2bn(&bn, hex); return bssl::UniquePtr<BIGNUM>(bn); } // Though we do not support secp160r1, it is reachable from the deprecated // custom curve APIs and has some unique properties (n is larger than p with the // difference crossing a word boundary on 32-bit), so test it explicitly. static bssl::UniquePtr<EC_GROUP> NewSecp160r1Group() { static const char kP[] = "ffffffffffffffffffffffffffffffff7fffffff"; static const char kA[] = "ffffffffffffffffffffffffffffffff7ffffffc"; static const char kB[] = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45"; static const char kX[] = "4a96b5688ef573284664698968c38bb913cbfc82"; static const char kY[] = "23a628553168947d59dcc912042351377ac5fb32"; static const char kN[] = "0100000000000000000001f4c8f927aed3ca752257"; bssl::UniquePtr<BIGNUM> p = HexToBIGNUM(kP), a = HexToBIGNUM(kA), b = HexToBIGNUM(kB), x = HexToBIGNUM(kX), y = HexToBIGNUM(kY), n = HexToBIGNUM(kN); if (!p || !a || !b || !x || !y || !n) { return nullptr; } bssl::UniquePtr<EC_GROUP> group( EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), nullptr)); if (!group) { return nullptr; } bssl::UniquePtr<EC_POINT> g(EC_POINT_new(group.get())); if (!g || !EC_POINT_set_affine_coordinates_GFp(group.get(), g.get(), x.get(), y.get(), nullptr) || !EC_GROUP_set_generator(group.get(), g.get(), n.get(), BN_value_one())) { return nullptr; } return group; } enum API { kEncodedAPI, kRawAPI, }; // VerifyECDSASig checks that verifying |ecdsa_sig| gives |expected_result|. static void VerifyECDSASig(API api, const uint8_t *digest, size_t digest_len, const ECDSA_SIG *ecdsa_sig, EC_KEY *eckey, int expected_result) { switch (api) { case kEncodedAPI: { uint8_t *der; size_t der_len; ASSERT_TRUE(ECDSA_SIG_to_bytes(&der, &der_len, ecdsa_sig)); bssl::UniquePtr<uint8_t> delete_der(der); EXPECT_EQ(expected_result, ECDSA_verify(0, digest, digest_len, der, der_len, eckey)); break; } case kRawAPI: EXPECT_EQ(expected_result, ECDSA_do_verify(digest, digest_len, ecdsa_sig, eckey)); break; default: FAIL() << "Unknown API type."; } } // TestTamperedSig verifies that signature verification fails when a valid // signature is tampered with. |ecdsa_sig| must be a valid signature, which will // be modified. static void TestTamperedSig(API api, const uint8_t *digest, size_t digest_len, ECDSA_SIG *ecdsa_sig, EC_KEY *eckey, const BIGNUM *order) { SCOPED_TRACE(api); // Modify a single byte of the signature: to ensure we don't // garble the ASN1 structure, we read the raw signature and // modify a byte in one of the bignums directly. // Store the two BIGNUMs in raw_buf. size_t r_len = BN_num_bytes(ecdsa_sig->r); size_t s_len = BN_num_bytes(ecdsa_sig->s); size_t bn_len = BN_num_bytes(order); ASSERT_LE(r_len, bn_len); ASSERT_LE(s_len, bn_len); size_t buf_len = 2 * bn_len; std::vector<uint8_t> raw_buf(buf_len); // Pad the bignums with leading zeroes. ASSERT_TRUE(BN_bn2bin_padded(raw_buf.data(), bn_len, ecdsa_sig->r)); ASSERT_TRUE(BN_bn2bin_padded(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s)); // Modify a single byte in the buffer. size_t offset = raw_buf[10] % buf_len; uint8_t dirt = raw_buf[11] ? raw_buf[11] : 1; raw_buf[offset] ^= dirt; // Now read the BIGNUMs back in from raw_buf. ASSERT_TRUE(BN_bin2bn(raw_buf.data(), bn_len, ecdsa_sig->r)); ASSERT_TRUE(BN_bin2bn(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s)); VerifyECDSASig(api, digest, digest_len, ecdsa_sig, eckey, 0); // Sanity check: Undo the modification and verify signature. raw_buf[offset] ^= dirt; ASSERT_TRUE(BN_bin2bn(raw_buf.data(), bn_len, ecdsa_sig->r)); ASSERT_TRUE(BN_bin2bn(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s)); VerifyECDSASig(api, digest, digest_len, ecdsa_sig, eckey, 1); } TEST(ECDSATest, BuiltinCurves) { // Fill digest values with some random data. uint8_t digest[20], wrong_digest[20]; ASSERT_TRUE(RAND_bytes(digest, 20)); ASSERT_TRUE(RAND_bytes(wrong_digest, 20)); static const struct { int nid; const char *name; } kCurves[] = { { NID_secp224r1, "secp224r1" }, { NID_X9_62_prime256v1, "secp256r1" }, { NID_secp384r1, "secp384r1" }, { NID_secp521r1, "secp521r1" }, { NID_secp160r1, "secp160r1" }, }; for (const auto &curve : kCurves) { SCOPED_TRACE(curve.name); bssl::UniquePtr<EC_GROUP> group; if (curve.nid == NID_secp160r1) { group = NewSecp160r1Group(); } else { group.reset(EC_GROUP_new_by_curve_name(curve.nid)); } ASSERT_TRUE(group); const BIGNUM *order = EC_GROUP_get0_order(group.get()); // Create a new ECDSA key. bssl::UniquePtr<EC_KEY> eckey(EC_KEY_new()); ASSERT_TRUE(eckey); ASSERT_TRUE(EC_KEY_set_group(eckey.get(), group.get())); ASSERT_TRUE(EC_KEY_generate_key(eckey.get())); // Create a second key. bssl::UniquePtr<EC_KEY> wrong_eckey(EC_KEY_new()); ASSERT_TRUE(wrong_eckey); ASSERT_TRUE(EC_KEY_set_group(wrong_eckey.get(), group.get())); ASSERT_TRUE(EC_KEY_generate_key(wrong_eckey.get())); // Check the key. EXPECT_TRUE(EC_KEY_check_key(eckey.get())); // Test ASN.1-encoded signatures. // Create a signature. unsigned sig_len = ECDSA_size(eckey.get()); std::vector<uint8_t> signature(sig_len); ASSERT_TRUE( ECDSA_sign(0, digest, 20, signature.data(), &sig_len, eckey.get())); signature.resize(sig_len); // Verify the signature. EXPECT_TRUE(ECDSA_verify(0, digest, 20, signature.data(), signature.size(), eckey.get())); // Verify the signature with the wrong key. EXPECT_FALSE(ECDSA_verify(0, digest, 20, signature.data(), signature.size(), wrong_eckey.get())); ERR_clear_error(); // Verify the signature using the wrong digest. EXPECT_FALSE(ECDSA_verify(0, wrong_digest, 20, signature.data(), signature.size(), eckey.get())); ERR_clear_error(); // Verify a truncated signature. EXPECT_FALSE(ECDSA_verify(0, digest, 20, signature.data(), signature.size() - 1, eckey.get())); ERR_clear_error(); // Verify a tampered signature. bssl::UniquePtr<ECDSA_SIG> ecdsa_sig( ECDSA_SIG_from_bytes(signature.data(), signature.size())); ASSERT_TRUE(ecdsa_sig); TestTamperedSig(kEncodedAPI, digest, 20, ecdsa_sig.get(), eckey.get(), order); // Test ECDSA_SIG signing and verification. // Create a signature. ecdsa_sig.reset(ECDSA_do_sign(digest, 20, eckey.get())); ASSERT_TRUE(ecdsa_sig); // Verify the signature using the correct key. EXPECT_TRUE(ECDSA_do_verify(digest, 20, ecdsa_sig.get(), eckey.get())); // Verify the signature with the wrong key. EXPECT_FALSE( ECDSA_do_verify(digest, 20, ecdsa_sig.get(), wrong_eckey.get())); ERR_clear_error(); // Verify the signature using the wrong digest. EXPECT_FALSE( ECDSA_do_verify(wrong_digest, 20, ecdsa_sig.get(), eckey.get())); ERR_clear_error(); // Verify a tampered signature. TestTamperedSig(kRawAPI, digest, 20, ecdsa_sig.get(), eckey.get(), order); } } static size_t BitsToBytes(size_t bits) { return (bits / 8) + (7 + (bits % 8)) / 8; } TEST(ECDSATest, MaxSigLen) { static const size_t kBits[] = {224, 256, 384, 521, 10000}; for (size_t bits : kBits) { SCOPED_TRACE(bits); size_t order_len = BitsToBytes(bits); // Create the largest possible |ECDSA_SIG| of the given constraints. bssl::UniquePtr<ECDSA_SIG> sig(ECDSA_SIG_new()); ASSERT_TRUE(sig); std::vector<uint8_t> bytes(order_len, 0xff); ASSERT_TRUE(BN_bin2bn(bytes.data(), bytes.size(), sig->r)); ASSERT_TRUE(BN_bin2bn(bytes.data(), bytes.size(), sig->s)); // Serialize it. uint8_t *der; size_t der_len; ASSERT_TRUE(ECDSA_SIG_to_bytes(&der, &der_len, sig.get())); OPENSSL_free(der); EXPECT_EQ(der_len, ECDSA_SIG_max_len(order_len)); } } static bssl::UniquePtr<EC_GROUP> GetCurve(FileTest *t, const char *key) { std::string curve_name; if (!t->GetAttribute(&curve_name, key)) { return nullptr; } if (curve_name == "P-224") { return bssl::UniquePtr<EC_GROUP>(EC_GROUP_new_by_curve_name(NID_secp224r1)); } if (curve_name == "P-256") { return bssl::UniquePtr<EC_GROUP>( EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); } if (curve_name == "P-384") { return bssl::UniquePtr<EC_GROUP>(EC_GROUP_new_by_curve_name(NID_secp384r1)); } if (curve_name == "P-521") { return bssl::UniquePtr<EC_GROUP>(EC_GROUP_new_by_curve_name(NID_secp521r1)); } if (curve_name == "secp160r1") { return NewSecp160r1Group(); } ADD_FAILURE() << "Unknown curve: " << curve_name; return nullptr; } static bssl::UniquePtr<EC_GROUP> MakeCustomClone(const EC_GROUP *group) { bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); bssl::UniquePtr<BIGNUM> p(BN_new()), a(BN_new()), b(BN_new()), x(BN_new()), y(BN_new()); if (!ctx || !p || !a || !b || !x || !y || !EC_GROUP_get_curve_GFp(group, p.get(), a.get(), b.get(), ctx.get()) || !EC_POINT_get_affine_coordinates_GFp( group, EC_GROUP_get0_generator(group), x.get(), y.get(), ctx.get())) { return nullptr; } bssl::UniquePtr<EC_GROUP> ret( EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); if (!ret) { return nullptr; } bssl::UniquePtr<EC_POINT> g(EC_POINT_new(ret.get())); if (!g || !EC_POINT_set_affine_coordinates_GFp(ret.get(), g.get(), x.get(), y.get(), ctx.get()) || !EC_GROUP_set_generator(ret.get(), g.get(), EC_GROUP_get0_order(group), BN_value_one())) { return nullptr; } return ret; } static bssl::UniquePtr<BIGNUM> GetBIGNUM(FileTest *t, const char *key) { std::vector<uint8_t> bytes; if (!t->GetBytes(&bytes, key)) { return nullptr; } return bssl::UniquePtr<BIGNUM>(BN_bin2bn(bytes.data(), bytes.size(), nullptr)); } TEST(ECDSATest, VerifyTestVectors) { FileTestGTest("crypto/fipsmodule/ecdsa/ecdsa_verify_tests.txt", [](FileTest *t) { for (bool custom_group : {false, true}) { SCOPED_TRACE(custom_group); bssl::UniquePtr<EC_GROUP> group = GetCurve(t, "Curve"); ASSERT_TRUE(group); if (custom_group) { group = MakeCustomClone(group.get()); ASSERT_TRUE(group); } bssl::UniquePtr<BIGNUM> x = GetBIGNUM(t, "X"); ASSERT_TRUE(x); bssl::UniquePtr<BIGNUM> y = GetBIGNUM(t, "Y"); ASSERT_TRUE(y); bssl::UniquePtr<BIGNUM> r = GetBIGNUM(t, "R"); ASSERT_TRUE(r); bssl::UniquePtr<BIGNUM> s = GetBIGNUM(t, "S"); ASSERT_TRUE(s); std::vector<uint8_t> digest; ASSERT_TRUE(t->GetBytes(&digest, "Digest")); bssl::UniquePtr<EC_KEY> key(EC_KEY_new()); ASSERT_TRUE(key); bssl::UniquePtr<EC_POINT> pub_key(EC_POINT_new(group.get())); ASSERT_TRUE(pub_key); bssl::UniquePtr<ECDSA_SIG> sig(ECDSA_SIG_new()); ASSERT_TRUE(sig); ASSERT_TRUE(EC_KEY_set_group(key.get(), group.get())); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( group.get(), pub_key.get(), x.get(), y.get(), nullptr)); ASSERT_TRUE(EC_KEY_set_public_key(key.get(), pub_key.get())); ASSERT_TRUE(BN_copy(sig->r, r.get())); ASSERT_TRUE(BN_copy(sig->s, s.get())); EXPECT_EQ( t->HasAttribute("Invalid") ? 0 : 1, ECDSA_do_verify(digest.data(), digest.size(), sig.get(), key.get())); } }); } TEST(ECDSATest, SignTestVectors) { FileTestGTest("crypto/fipsmodule/ecdsa/ecdsa_sign_tests.txt", [](FileTest *t) { for (bool custom_group : {false, true}) { SCOPED_TRACE(custom_group); bssl::UniquePtr<EC_GROUP> group = GetCurve(t, "Curve"); ASSERT_TRUE(group); if (custom_group) { group = MakeCustomClone(group.get()); ASSERT_TRUE(group); } bssl::UniquePtr<BIGNUM> priv_key = GetBIGNUM(t, "Private"); ASSERT_TRUE(priv_key); bssl::UniquePtr<BIGNUM> x = GetBIGNUM(t, "X"); ASSERT_TRUE(x); bssl::UniquePtr<BIGNUM> y = GetBIGNUM(t, "Y"); ASSERT_TRUE(y); bssl::UniquePtr<BIGNUM> k = GetBIGNUM(t, "K"); ASSERT_TRUE(k); bssl::UniquePtr<BIGNUM> r = GetBIGNUM(t, "R"); ASSERT_TRUE(r); bssl::UniquePtr<BIGNUM> s = GetBIGNUM(t, "S"); ASSERT_TRUE(s); std::vector<uint8_t> digest; ASSERT_TRUE(t->GetBytes(&digest, "Digest")); bssl::UniquePtr<EC_KEY> key(EC_KEY_new()); ASSERT_TRUE(key); bssl::UniquePtr<EC_POINT> pub_key(EC_POINT_new(group.get())); ASSERT_TRUE(pub_key); ASSERT_TRUE(EC_KEY_set_group(key.get(), group.get())); ASSERT_TRUE(EC_KEY_set_private_key(key.get(), priv_key.get())); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( group.get(), pub_key.get(), x.get(), y.get(), nullptr)); ASSERT_TRUE(EC_KEY_set_public_key(key.get(), pub_key.get())); ASSERT_TRUE(EC_KEY_check_key(key.get())); // Set the fixed k for testing purposes. key->fixed_k = k.release(); bssl::UniquePtr<ECDSA_SIG> sig( ECDSA_do_sign(digest.data(), digest.size(), key.get())); ASSERT_TRUE(sig); EXPECT_EQ(0, BN_cmp(r.get(), sig->r)); EXPECT_EQ(0, BN_cmp(s.get(), sig->s)); } }); }