/* ==================================================================== * Copyright (c) 2008 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include <stdio.h> #include <string.h> #include <vector> #include <gtest/gtest.h> #include <openssl/aes.h> #include <openssl/cpu.h> #include "../../test/abi_test.h" #include "../../test/file_test.h" #include "../../test/test_util.h" #include "../aes/internal.h" #include "internal.h" TEST(GCMTest, TestVectors) { FileTestGTest("crypto/fipsmodule/modes/gcm_tests.txt", [](FileTest *t) { std::vector<uint8_t> key, plaintext, additional_data, nonce, ciphertext, tag; ASSERT_TRUE(t->GetBytes(&key, "Key")); ASSERT_TRUE(t->GetBytes(&plaintext, "Plaintext")); ASSERT_TRUE(t->GetBytes(&additional_data, "AdditionalData")); ASSERT_TRUE(t->GetBytes(&nonce, "Nonce")); ASSERT_TRUE(t->GetBytes(&ciphertext, "Ciphertext")); ASSERT_TRUE(t->GetBytes(&tag, "Tag")); ASSERT_EQ(plaintext.size(), ciphertext.size()); ASSERT_TRUE(key.size() == 16 || key.size() == 24 || key.size() == 32); ASSERT_EQ(16u, tag.size()); std::vector<uint8_t> out(plaintext.size()); AES_KEY aes_key; ASSERT_EQ(0, AES_set_encrypt_key(key.data(), key.size() * 8, &aes_key)); GCM128_CONTEXT ctx; OPENSSL_memset(&ctx, 0, sizeof(ctx)); CRYPTO_gcm128_init_key(&ctx.gcm_key, &aes_key, AES_encrypt, 0); CRYPTO_gcm128_setiv(&ctx, &aes_key, nonce.data(), nonce.size()); if (!additional_data.empty()) { CRYPTO_gcm128_aad(&ctx, additional_data.data(), additional_data.size()); } if (!plaintext.empty()) { CRYPTO_gcm128_encrypt(&ctx, &aes_key, plaintext.data(), out.data(), plaintext.size()); } std::vector<uint8_t> got_tag(tag.size()); CRYPTO_gcm128_tag(&ctx, got_tag.data(), got_tag.size()); EXPECT_EQ(Bytes(tag), Bytes(got_tag)); EXPECT_EQ(Bytes(ciphertext), Bytes(out)); CRYPTO_gcm128_setiv(&ctx, &aes_key, nonce.data(), nonce.size()); OPENSSL_memset(out.data(), 0, out.size()); if (!additional_data.empty()) { CRYPTO_gcm128_aad(&ctx, additional_data.data(), additional_data.size()); } if (!ciphertext.empty()) { CRYPTO_gcm128_decrypt(&ctx, &aes_key, ciphertext.data(), out.data(), ciphertext.size()); } ASSERT_TRUE(CRYPTO_gcm128_finish(&ctx, tag.data(), tag.size())); EXPECT_EQ(Bytes(plaintext), Bytes(out)); }); } TEST(GCMTest, ByteSwap) { EXPECT_EQ(0x04030201u, CRYPTO_bswap4(0x01020304u)); EXPECT_EQ(UINT64_C(0x0807060504030201), CRYPTO_bswap8(UINT64_C(0x0102030405060708))); } #if defined(SUPPORTS_ABI_TEST) && defined(GHASH_ASM) TEST(GCMTest, ABI) { static const uint64_t kH[2] = { UINT64_C(0x66e94bd4ef8a2c3b), UINT64_C(0x884cfa59ca342b2e), }; static const size_t kBlockCounts[] = {1, 2, 3, 4, 7, 8, 15, 16, 31, 32}; uint8_t buf[16 * 32]; OPENSSL_memset(buf, 42, sizeof(buf)); uint64_t X[2] = { UINT64_C(0x0388dace60b6a392), UINT64_C(0xf328c2b971b2fe78), }; alignas(16) u128 Htable[16]; CHECK_ABI(gcm_init_4bit, Htable, kH); #if defined(GHASH_ASM_X86) CHECK_ABI(gcm_gmult_4bit_mmx, X, Htable); for (size_t blocks : kBlockCounts) { CHECK_ABI(gcm_ghash_4bit_mmx, X, Htable, buf, 16 * blocks); } #else CHECK_ABI(gcm_gmult_4bit, X, Htable); for (size_t blocks : kBlockCounts) { CHECK_ABI(gcm_ghash_4bit, X, Htable, buf, 16 * blocks); } #endif // GHASH_ASM_X86 #if defined(GHASH_ASM_X86) || defined(GHASH_ASM_X86_64) if (gcm_ssse3_capable()) { CHECK_ABI_SEH(gcm_init_ssse3, Htable, kH); CHECK_ABI_SEH(gcm_gmult_ssse3, X, Htable); for (size_t blocks : kBlockCounts) { CHECK_ABI_SEH(gcm_ghash_ssse3, X, Htable, buf, 16 * blocks); } } if (crypto_gcm_clmul_enabled()) { CHECK_ABI_SEH(gcm_init_clmul, Htable, kH); CHECK_ABI_SEH(gcm_gmult_clmul, X, Htable); for (size_t blocks : kBlockCounts) { CHECK_ABI_SEH(gcm_ghash_clmul, X, Htable, buf, 16 * blocks); } #if defined(GHASH_ASM_X86_64) if (((OPENSSL_ia32cap_get()[1] >> 22) & 0x41) == 0x41) { // AVX+MOVBE CHECK_ABI_SEH(gcm_init_avx, Htable, kH); CHECK_ABI_SEH(gcm_gmult_avx, X, Htable); for (size_t blocks : kBlockCounts) { CHECK_ABI_SEH(gcm_ghash_avx, X, Htable, buf, 16 * blocks); } if (hwaes_capable()) { AES_KEY aes_key; static const uint8_t kKey[16] = {0}; // aesni_gcm_* makes assumptions about |GCM128_CONTEXT|'s layout. GCM128_CONTEXT gcm; memset(&gcm, 0, sizeof(gcm)); memcpy(&gcm.gcm_key.H, kH, sizeof(kH)); memcpy(&gcm.gcm_key.Htable, Htable, sizeof(Htable)); memcpy(&gcm.Xi, X, sizeof(X)); uint8_t iv[16] = {0}; aes_hw_set_encrypt_key(kKey, 128, &aes_key); for (size_t blocks : kBlockCounts) { CHECK_ABI(aesni_gcm_encrypt, buf, buf, blocks * 16, &aes_key, iv, gcm.Xi.u); CHECK_ABI(aesni_gcm_encrypt, buf, buf, blocks * 16 + 7, &aes_key, iv, gcm.Xi.u); } aes_hw_set_decrypt_key(kKey, 128, &aes_key); for (size_t blocks : kBlockCounts) { CHECK_ABI(aesni_gcm_decrypt, buf, buf, blocks * 16, &aes_key, iv, gcm.Xi.u); CHECK_ABI(aesni_gcm_decrypt, buf, buf, blocks * 16 + 7, &aes_key, iv, gcm.Xi.u); } } } #endif // GHASH_ASM_X86_64 } #endif // GHASH_ASM_X86 || GHASH_ASM_X86_64 #if defined(GHASH_ASM_ARM) if (gcm_neon_capable()) { CHECK_ABI(gcm_init_neon, Htable, kH); CHECK_ABI(gcm_gmult_neon, X, Htable); for (size_t blocks : kBlockCounts) { CHECK_ABI(gcm_ghash_neon, X, Htable, buf, 16 * blocks); } } if (gcm_pmull_capable()) { CHECK_ABI(gcm_init_v8, Htable, kH); CHECK_ABI(gcm_gmult_v8, X, Htable); for (size_t blocks : kBlockCounts) { CHECK_ABI(gcm_ghash_v8, X, Htable, buf, 16 * blocks); } } #endif // GHASH_ASM_ARM } #endif // SUPPORTS_ABI_TEST && GHASH_ASM