/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project 2005. */ /* ==================================================================== * Copyright (c) 2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include <openssl/rsa.h> #include <assert.h> #include <limits.h> #include <string.h> #include <openssl/bn.h> #include <openssl/digest.h> #include <openssl/err.h> #include <openssl/mem.h> #include <openssl/rand.h> #include <openssl/sha.h> #include "internal.h" #include "../../internal.h" #define RSA_PKCS1_PADDING_SIZE 11 int RSA_padding_add_PKCS1_type_1(uint8_t *to, size_t to_len, const uint8_t *from, size_t from_len) { // See RFC 8017, section 9.2. if (to_len < RSA_PKCS1_PADDING_SIZE) { OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); return 0; } if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) { OPENSSL_PUT_ERROR(RSA, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY); return 0; } to[0] = 0; to[1] = 1; OPENSSL_memset(to + 2, 0xff, to_len - 3 - from_len); to[to_len - from_len - 1] = 0; OPENSSL_memcpy(to + to_len - from_len, from, from_len); return 1; } int RSA_padding_check_PKCS1_type_1(uint8_t *out, size_t *out_len, size_t max_out, const uint8_t *from, size_t from_len) { // See RFC 8017, section 9.2. This is part of signature verification and thus // does not need to run in constant-time. if (from_len < 2) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_SMALL); return 0; } // Check the header. if (from[0] != 0 || from[1] != 1) { OPENSSL_PUT_ERROR(RSA, RSA_R_BLOCK_TYPE_IS_NOT_01); return 0; } // Scan over padded data, looking for the 00. size_t pad; for (pad = 2 /* header */; pad < from_len; pad++) { if (from[pad] == 0x00) { break; } if (from[pad] != 0xff) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT); return 0; } } if (pad == from_len) { OPENSSL_PUT_ERROR(RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING); return 0; } if (pad < 2 /* header */ + 8) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_PAD_BYTE_COUNT); return 0; } // Skip over the 00. pad++; if (from_len - pad > max_out) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); return 0; } OPENSSL_memcpy(out, from + pad, from_len - pad); *out_len = from_len - pad; return 1; } static int rand_nonzero(uint8_t *out, size_t len) { if (!RAND_bytes(out, len)) { return 0; } for (size_t i = 0; i < len; i++) { while (out[i] == 0) { if (!RAND_bytes(out + i, 1)) { return 0; } } } return 1; } int RSA_padding_add_PKCS1_type_2(uint8_t *to, size_t to_len, const uint8_t *from, size_t from_len) { // See RFC 8017, section 7.2.1. if (to_len < RSA_PKCS1_PADDING_SIZE) { OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); return 0; } if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return 0; } to[0] = 0; to[1] = 2; size_t padding_len = to_len - 3 - from_len; if (!rand_nonzero(to + 2, padding_len)) { return 0; } to[2 + padding_len] = 0; OPENSSL_memcpy(to + to_len - from_len, from, from_len); return 1; } int RSA_padding_check_PKCS1_type_2(uint8_t *out, size_t *out_len, size_t max_out, const uint8_t *from, size_t from_len) { if (from_len == 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); return 0; } // PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography // Standard", section 7.2.2. if (from_len < RSA_PKCS1_PADDING_SIZE) { // |from| is zero-padded to the size of the RSA modulus, a public value, so // this can be rejected in non-constant time. OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); return 0; } crypto_word_t first_byte_is_zero = constant_time_eq_w(from[0], 0); crypto_word_t second_byte_is_two = constant_time_eq_w(from[1], 2); crypto_word_t zero_index = 0, looking_for_index = CONSTTIME_TRUE_W; for (size_t i = 2; i < from_len; i++) { crypto_word_t equals0 = constant_time_is_zero_w(from[i]); zero_index = constant_time_select_w(looking_for_index & equals0, i, zero_index); looking_for_index = constant_time_select_w(equals0, 0, looking_for_index); } // The input must begin with 00 02. crypto_word_t valid_index = first_byte_is_zero; valid_index &= second_byte_is_two; // We must have found the end of PS. valid_index &= ~looking_for_index; // PS must be at least 8 bytes long, and it starts two bytes into |from|. valid_index &= constant_time_ge_w(zero_index, 2 + 8); // Skip the zero byte. zero_index++; // NOTE: Although this logic attempts to be constant time, the API contracts // of this function and |RSA_decrypt| with |RSA_PKCS1_PADDING| make it // impossible to completely avoid Bleichenbacher's attack. Consumers should // use |RSA_PADDING_NONE| and perform the padding check in constant-time // combined with a swap to a random session key or other mitigation. CONSTTIME_DECLASSIFY(&valid_index, sizeof(valid_index)); CONSTTIME_DECLASSIFY(&zero_index, sizeof(zero_index)); if (!valid_index) { OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); return 0; } const size_t msg_len = from_len - zero_index; if (msg_len > max_out) { // This shouldn't happen because this function is always called with // |max_out| as the key size and |from_len| is bounded by the key size. OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); return 0; } OPENSSL_memcpy(out, &from[zero_index], msg_len); *out_len = msg_len; return 1; } int RSA_padding_add_none(uint8_t *to, size_t to_len, const uint8_t *from, size_t from_len) { if (from_len > to_len) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return 0; } if (from_len < to_len) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_SMALL); return 0; } OPENSSL_memcpy(to, from, from_len); return 1; } static int PKCS1_MGF1(uint8_t *out, size_t len, const uint8_t *seed, size_t seed_len, const EVP_MD *md) { int ret = 0; EVP_MD_CTX ctx; EVP_MD_CTX_init(&ctx); size_t md_len = EVP_MD_size(md); for (uint32_t i = 0; len > 0; i++) { uint8_t counter[4]; counter[0] = (uint8_t)(i >> 24); counter[1] = (uint8_t)(i >> 16); counter[2] = (uint8_t)(i >> 8); counter[3] = (uint8_t)i; if (!EVP_DigestInit_ex(&ctx, md, NULL) || !EVP_DigestUpdate(&ctx, seed, seed_len) || !EVP_DigestUpdate(&ctx, counter, sizeof(counter))) { goto err; } if (md_len <= len) { if (!EVP_DigestFinal_ex(&ctx, out, NULL)) { goto err; } out += md_len; len -= md_len; } else { uint8_t digest[EVP_MAX_MD_SIZE]; if (!EVP_DigestFinal_ex(&ctx, digest, NULL)) { goto err; } OPENSSL_memcpy(out, digest, len); len = 0; } } ret = 1; err: EVP_MD_CTX_cleanup(&ctx); return ret; } int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, size_t to_len, const uint8_t *from, size_t from_len, const uint8_t *param, size_t param_len, const EVP_MD *md, const EVP_MD *mgf1md) { if (md == NULL) { md = EVP_sha1(); } if (mgf1md == NULL) { mgf1md = md; } size_t mdlen = EVP_MD_size(md); if (to_len < 2 * mdlen + 2) { OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); return 0; } size_t emlen = to_len - 1; if (from_len > emlen - 2 * mdlen - 1) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return 0; } if (emlen < 2 * mdlen + 1) { OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); return 0; } to[0] = 0; uint8_t *seed = to + 1; uint8_t *db = to + mdlen + 1; if (!EVP_Digest(param, param_len, db, NULL, md, NULL)) { return 0; } OPENSSL_memset(db + mdlen, 0, emlen - from_len - 2 * mdlen - 1); db[emlen - from_len - mdlen - 1] = 0x01; OPENSSL_memcpy(db + emlen - from_len - mdlen, from, from_len); if (!RAND_bytes(seed, mdlen)) { return 0; } uint8_t *dbmask = OPENSSL_malloc(emlen - mdlen); if (dbmask == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); return 0; } int ret = 0; if (!PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md)) { goto out; } for (size_t i = 0; i < emlen - mdlen; i++) { db[i] ^= dbmask[i]; } uint8_t seedmask[EVP_MAX_MD_SIZE]; if (!PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md)) { goto out; } for (size_t i = 0; i < mdlen; i++) { seed[i] ^= seedmask[i]; } ret = 1; out: OPENSSL_free(dbmask); return ret; } int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *out, size_t *out_len, size_t max_out, const uint8_t *from, size_t from_len, const uint8_t *param, size_t param_len, const EVP_MD *md, const EVP_MD *mgf1md) { uint8_t *db = NULL; if (md == NULL) { md = EVP_sha1(); } if (mgf1md == NULL) { mgf1md = md; } size_t mdlen = EVP_MD_size(md); // The encoded message is one byte smaller than the modulus to ensure that it // doesn't end up greater than the modulus. Thus there's an extra "+1" here // compared to https://tools.ietf.org/html/rfc2437#section-9.1.1.2. if (from_len < 1 + 2*mdlen + 1) { // 'from_len' is the length of the modulus, i.e. does not depend on the // particular ciphertext. goto decoding_err; } size_t dblen = from_len - mdlen - 1; db = OPENSSL_malloc(dblen); if (db == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); goto err; } const uint8_t *maskedseed = from + 1; const uint8_t *maskeddb = from + 1 + mdlen; uint8_t seed[EVP_MAX_MD_SIZE]; if (!PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) { goto err; } for (size_t i = 0; i < mdlen; i++) { seed[i] ^= maskedseed[i]; } if (!PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) { goto err; } for (size_t i = 0; i < dblen; i++) { db[i] ^= maskeddb[i]; } uint8_t phash[EVP_MAX_MD_SIZE]; if (!EVP_Digest(param, param_len, phash, NULL, md, NULL)) { goto err; } crypto_word_t bad = ~constant_time_is_zero_w(CRYPTO_memcmp(db, phash, mdlen)); bad |= ~constant_time_is_zero_w(from[0]); crypto_word_t looking_for_one_byte = CONSTTIME_TRUE_W; size_t one_index = 0; for (size_t i = mdlen; i < dblen; i++) { crypto_word_t equals1 = constant_time_eq_w(db[i], 1); crypto_word_t equals0 = constant_time_eq_w(db[i], 0); one_index = constant_time_select_w(looking_for_one_byte & equals1, i, one_index); looking_for_one_byte = constant_time_select_w(equals1, 0, looking_for_one_byte); bad |= looking_for_one_byte & ~equals0; } bad |= looking_for_one_byte; if (bad) { goto decoding_err; } one_index++; size_t mlen = dblen - one_index; if (max_out < mlen) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); goto err; } OPENSSL_memcpy(out, db + one_index, mlen); *out_len = mlen; OPENSSL_free(db); return 1; decoding_err: // to avoid chosen ciphertext attacks, the error message should not reveal // which kind of decoding error happened OPENSSL_PUT_ERROR(RSA, RSA_R_OAEP_DECODING_ERROR); err: OPENSSL_free(db); return 0; } static const uint8_t kPSSZeroes[] = {0, 0, 0, 0, 0, 0, 0, 0}; int RSA_verify_PKCS1_PSS_mgf1(const RSA *rsa, const uint8_t *mHash, const EVP_MD *Hash, const EVP_MD *mgf1Hash, const uint8_t *EM, int sLen) { int i; int ret = 0; int maskedDBLen, MSBits, emLen; size_t hLen; const uint8_t *H; uint8_t *DB = NULL; EVP_MD_CTX ctx; uint8_t H_[EVP_MAX_MD_SIZE]; EVP_MD_CTX_init(&ctx); if (mgf1Hash == NULL) { mgf1Hash = Hash; } hLen = EVP_MD_size(Hash); // Negative sLen has special meanings: // -1 sLen == hLen // -2 salt length is autorecovered from signature // -N reserved if (sLen == -1) { sLen = hLen; } else if (sLen == -2) { sLen = -2; } else if (sLen < -2) { OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); goto err; } MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; emLen = RSA_size(rsa); if (EM[0] & (0xFF << MSBits)) { OPENSSL_PUT_ERROR(RSA, RSA_R_FIRST_OCTET_INVALID); goto err; } if (MSBits == 0) { EM++; emLen--; } if (emLen < (int)hLen + 2 || emLen < ((int)hLen + sLen + 2)) { // sLen can be small negative OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); goto err; } if (EM[emLen - 1] != 0xbc) { OPENSSL_PUT_ERROR(RSA, RSA_R_LAST_OCTET_INVALID); goto err; } maskedDBLen = emLen - hLen - 1; H = EM + maskedDBLen; DB = OPENSSL_malloc(maskedDBLen); if (!DB) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); goto err; } if (!PKCS1_MGF1(DB, maskedDBLen, H, hLen, mgf1Hash)) { goto err; } for (i = 0; i < maskedDBLen; i++) { DB[i] ^= EM[i]; } if (MSBits) { DB[0] &= 0xFF >> (8 - MSBits); } for (i = 0; DB[i] == 0 && i < (maskedDBLen - 1); i++) { ; } if (DB[i++] != 0x1) { OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_RECOVERY_FAILED); goto err; } if (sLen >= 0 && (maskedDBLen - i) != sLen) { OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); goto err; } if (!EVP_DigestInit_ex(&ctx, Hash, NULL) || !EVP_DigestUpdate(&ctx, kPSSZeroes, sizeof(kPSSZeroes)) || !EVP_DigestUpdate(&ctx, mHash, hLen) || !EVP_DigestUpdate(&ctx, DB + i, maskedDBLen - i) || !EVP_DigestFinal_ex(&ctx, H_, NULL)) { goto err; } if (OPENSSL_memcmp(H_, H, hLen)) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); ret = 0; } else { ret = 1; } err: OPENSSL_free(DB); EVP_MD_CTX_cleanup(&ctx); return ret; } int RSA_padding_add_PKCS1_PSS_mgf1(const RSA *rsa, unsigned char *EM, const unsigned char *mHash, const EVP_MD *Hash, const EVP_MD *mgf1Hash, int sLenRequested) { int ret = 0; size_t maskedDBLen, MSBits, emLen; size_t hLen; unsigned char *H, *salt = NULL, *p; if (mgf1Hash == NULL) { mgf1Hash = Hash; } hLen = EVP_MD_size(Hash); if (BN_is_zero(rsa->n)) { OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); goto err; } MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; emLen = RSA_size(rsa); if (MSBits == 0) { assert(emLen >= 1); *EM++ = 0; emLen--; } if (emLen < hLen + 2) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); goto err; } // Negative sLenRequested has special meanings: // -1 sLen == hLen // -2 salt length is maximized // -N reserved size_t sLen; if (sLenRequested == -1) { sLen = hLen; } else if (sLenRequested == -2) { sLen = emLen - hLen - 2; } else if (sLenRequested < 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); goto err; } else { sLen = (size_t)sLenRequested; } if (emLen - hLen - 2 < sLen) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); goto err; } if (sLen > 0) { salt = OPENSSL_malloc(sLen); if (!salt) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); goto err; } if (!RAND_bytes(salt, sLen)) { goto err; } } maskedDBLen = emLen - hLen - 1; H = EM + maskedDBLen; EVP_MD_CTX ctx; EVP_MD_CTX_init(&ctx); int digest_ok = EVP_DigestInit_ex(&ctx, Hash, NULL) && EVP_DigestUpdate(&ctx, kPSSZeroes, sizeof(kPSSZeroes)) && EVP_DigestUpdate(&ctx, mHash, hLen) && EVP_DigestUpdate(&ctx, salt, sLen) && EVP_DigestFinal_ex(&ctx, H, NULL); EVP_MD_CTX_cleanup(&ctx); if (!digest_ok) { goto err; } // Generate dbMask in place then perform XOR on it if (!PKCS1_MGF1(EM, maskedDBLen, H, hLen, mgf1Hash)) { goto err; } p = EM; // Initial PS XORs with all zeroes which is a NOP so just update // pointer. Note from a test above this value is guaranteed to // be non-negative. p += emLen - sLen - hLen - 2; *p++ ^= 0x1; if (sLen > 0) { for (size_t i = 0; i < sLen; i++) { *p++ ^= salt[i]; } } if (MSBits) { EM[0] &= 0xFF >> (8 - MSBits); } // H is already in place so just set final 0xbc EM[emLen - 1] = 0xbc; ret = 1; err: OPENSSL_free(salt); return ret; }