/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project 1999-2004. */ /* ==================================================================== * Copyright (c) 1999 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include <openssl/pkcs8.h> #include <limits.h> #include <string.h> #include <openssl/bytestring.h> #include <openssl/cipher.h> #include <openssl/err.h> #include <openssl/mem.h> #include <openssl/nid.h> #include <openssl/rand.h> #include "internal.h" #include "../internal.h" // 1.2.840.113549.1.5.12 static const uint8_t kPBKDF2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0c}; // 1.2.840.113549.1.5.13 static const uint8_t kPBES2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0d}; // 1.2.840.113549.2.7 static const uint8_t kHMACWithSHA1[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x07}; static const struct { uint8_t oid[9]; uint8_t oid_len; int nid; const EVP_CIPHER *(*cipher_func)(void); } kCipherOIDs[] = { // 1.2.840.113549.3.2 {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02}, 8, NID_rc2_cbc, &EVP_rc2_cbc}, // 1.2.840.113549.3.7 {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07}, 8, NID_des_ede3_cbc, &EVP_des_ede3_cbc}, // 2.16.840.1.101.3.4.1.2 {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x02}, 9, NID_aes_128_cbc, &EVP_aes_128_cbc}, // 2.16.840.1.101.3.4.1.22 {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x16}, 9, NID_aes_192_cbc, &EVP_aes_192_cbc}, // 2.16.840.1.101.3.4.1.42 {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x2a}, 9, NID_aes_256_cbc, &EVP_aes_256_cbc}, }; static const EVP_CIPHER *cbs_to_cipher(const CBS *cbs) { for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) { if (CBS_mem_equal(cbs, kCipherOIDs[i].oid, kCipherOIDs[i].oid_len)) { return kCipherOIDs[i].cipher_func(); } } return NULL; } static int add_cipher_oid(CBB *out, int nid) { for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) { if (kCipherOIDs[i].nid == nid) { CBB child; return CBB_add_asn1(out, &child, CBS_ASN1_OBJECT) && CBB_add_bytes(&child, kCipherOIDs[i].oid, kCipherOIDs[i].oid_len) && CBB_flush(out); } } OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER); return 0; } static int pkcs5_pbe2_cipher_init(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, unsigned iterations, const char *pass, size_t pass_len, const uint8_t *salt, size_t salt_len, const uint8_t *iv, size_t iv_len, int enc) { if (iv_len != EVP_CIPHER_iv_length(cipher)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS); return 0; } uint8_t key[EVP_MAX_KEY_LENGTH]; int ret = PKCS5_PBKDF2_HMAC_SHA1(pass, pass_len, salt, salt_len, iterations, EVP_CIPHER_key_length(cipher), key) && EVP_CipherInit_ex(ctx, cipher, NULL /* engine */, key, iv, enc); OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); return ret; } int PKCS5_pbe2_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, unsigned iterations, const char *pass, size_t pass_len, const uint8_t *salt, size_t salt_len) { int cipher_nid = EVP_CIPHER_nid(cipher); if (cipher_nid == NID_undef) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER); return 0; } // Generate a random IV. uint8_t iv[EVP_MAX_IV_LENGTH]; if (!RAND_bytes(iv, EVP_CIPHER_iv_length(cipher))) { return 0; } // See RFC 2898, appendix A. CBB algorithm, oid, param, kdf, kdf_oid, kdf_param, salt_cbb, cipher_cbb, iv_cbb; if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) || !CBB_add_bytes(&oid, kPBES2, sizeof(kPBES2)) || !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(¶m, &kdf, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&kdf, &kdf_oid, CBS_ASN1_OBJECT) || !CBB_add_bytes(&kdf_oid, kPBKDF2, sizeof(kPBKDF2)) || !CBB_add_asn1(&kdf, &kdf_param, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&kdf_param, &salt_cbb, CBS_ASN1_OCTETSTRING) || !CBB_add_bytes(&salt_cbb, salt, salt_len) || !CBB_add_asn1_uint64(&kdf_param, iterations) || // Specify a key length for RC2. (cipher_nid == NID_rc2_cbc && !CBB_add_asn1_uint64(&kdf_param, EVP_CIPHER_key_length(cipher))) || // Omit the PRF. We use the default hmacWithSHA1. !CBB_add_asn1(¶m, &cipher_cbb, CBS_ASN1_SEQUENCE) || !add_cipher_oid(&cipher_cbb, cipher_nid) || // RFC 2898 says RC2-CBC and RC5-CBC-Pad use a SEQUENCE with version and // IV, but OpenSSL always uses an OCTET STRING IV, so we do the same. !CBB_add_asn1(&cipher_cbb, &iv_cbb, CBS_ASN1_OCTETSTRING) || !CBB_add_bytes(&iv_cbb, iv, EVP_CIPHER_iv_length(cipher)) || !CBB_flush(out)) { return 0; } return pkcs5_pbe2_cipher_init(ctx, cipher, iterations, pass, pass_len, salt, salt_len, iv, EVP_CIPHER_iv_length(cipher), 1 /* encrypt */); } int PKCS5_pbe2_decrypt_init(const struct pbe_suite *suite, EVP_CIPHER_CTX *ctx, const char *pass, size_t pass_len, CBS *param) { CBS pbe_param, kdf, kdf_obj, enc_scheme, enc_obj; if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || CBS_len(param) != 0 || !CBS_get_asn1(&pbe_param, &kdf, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&pbe_param, &enc_scheme, CBS_ASN1_SEQUENCE) || CBS_len(&pbe_param) != 0 || !CBS_get_asn1(&kdf, &kdf_obj, CBS_ASN1_OBJECT) || !CBS_get_asn1(&enc_scheme, &enc_obj, CBS_ASN1_OBJECT)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); return 0; } // Only PBKDF2 is supported. if (!CBS_mem_equal(&kdf_obj, kPBKDF2, sizeof(kPBKDF2))) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION); return 0; } // See if we recognise the encryption algorithm. const EVP_CIPHER *cipher = cbs_to_cipher(&enc_obj); if (cipher == NULL) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER); return 0; } // Parse the KDF parameters. See RFC 8018, appendix A.2. CBS pbkdf2_params, salt; uint64_t iterations; if (!CBS_get_asn1(&kdf, &pbkdf2_params, CBS_ASN1_SEQUENCE) || CBS_len(&kdf) != 0 || !CBS_get_asn1(&pbkdf2_params, &salt, CBS_ASN1_OCTETSTRING) || !CBS_get_asn1_uint64(&pbkdf2_params, &iterations)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); return 0; } if (!pkcs12_iterations_acceptable(iterations)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); return 0; } // The optional keyLength parameter, if present, must match the key length of // the cipher. if (CBS_peek_asn1_tag(&pbkdf2_params, CBS_ASN1_INTEGER)) { uint64_t key_len; if (!CBS_get_asn1_uint64(&pbkdf2_params, &key_len)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); return 0; } if (key_len != EVP_CIPHER_key_length(cipher)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEYLENGTH); return 0; } } if (CBS_len(&pbkdf2_params) != 0) { CBS alg_id, prf; if (!CBS_get_asn1(&pbkdf2_params, &alg_id, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&alg_id, &prf, CBS_ASN1_OBJECT) || CBS_len(&pbkdf2_params) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); return 0; } // We only support hmacWithSHA1. It is the DEFAULT, so DER requires it be // omitted, but we match OpenSSL in tolerating it being present. if (!CBS_mem_equal(&prf, kHMACWithSHA1, sizeof(kHMACWithSHA1))) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF); return 0; } // hmacWithSHA1 has a NULL parameter. CBS null; if (!CBS_get_asn1(&alg_id, &null, CBS_ASN1_NULL) || CBS_len(&null) != 0 || CBS_len(&alg_id) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); return 0; } } // Parse the encryption scheme parameters. Note OpenSSL does not match the // specification. Per RFC 2898, this should depend on the encryption scheme. // In particular, RC2-CBC uses a SEQUENCE with version and IV. We align with // OpenSSL. CBS iv; if (!CBS_get_asn1(&enc_scheme, &iv, CBS_ASN1_OCTETSTRING) || CBS_len(&enc_scheme) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF); return 0; } return pkcs5_pbe2_cipher_init(ctx, cipher, (unsigned)iterations, pass, pass_len, CBS_data(&salt), CBS_len(&salt), CBS_data(&iv), CBS_len(&iv), 0 /* decrypt */); }