/* Copyright (c) 2018, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <openssl/rand.h> #include <stdio.h> #include <gtest/gtest.h> #include <openssl/cpu.h> #include <openssl/span.h> #include "../fipsmodule/rand/internal.h" #include "../test/abi_test.h" #include "../test/test_util.h" #if defined(OPENSSL_THREADS) #include <array> #include <thread> #include <vector> #endif #if !defined(OPENSSL_WINDOWS) #include <errno.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #endif // These tests are, strictly speaking, flaky, but we use large enough buffers // that the probability of failing when we should pass is negligible. TEST(RandTest, NotObviouslyBroken) { static const uint8_t kZeros[256] = {0}; uint8_t buf1[256], buf2[256]; RAND_bytes(buf1, sizeof(buf1)); RAND_bytes(buf2, sizeof(buf2)); EXPECT_NE(Bytes(buf1), Bytes(buf2)); EXPECT_NE(Bytes(buf1), Bytes(kZeros)); EXPECT_NE(Bytes(buf2), Bytes(kZeros)); } #if !defined(OPENSSL_WINDOWS) && !defined(OPENSSL_IOS) && \ !defined(OPENSSL_FUCHSIA) && !defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) static bool ForkAndRand(bssl::Span<uint8_t> out) { int pipefds[2]; if (pipe(pipefds) < 0) { perror("pipe"); return false; } // This is a multi-threaded process, but GTest does not run tests concurrently // and there currently are no threads, so this should be safe. pid_t child = fork(); if (child < 0) { perror("fork"); close(pipefds[0]); close(pipefds[1]); return false; } if (child == 0) { // This is the child. Generate entropy and write it to the parent. close(pipefds[0]); RAND_bytes(out.data(), out.size()); while (!out.empty()) { ssize_t ret = write(pipefds[1], out.data(), out.size()); if (ret < 0) { if (errno == EINTR) { continue; } perror("write"); _exit(1); } out = out.subspan(static_cast<size_t>(ret)); } _exit(0); } // This is the parent. Read the entropy from the child. close(pipefds[1]); while (!out.empty()) { ssize_t ret = read(pipefds[0], out.data(), out.size()); if (ret <= 0) { if (ret == 0) { fprintf(stderr, "Unexpected EOF from child.\n"); } else { if (errno == EINTR) { continue; } perror("read"); } close(pipefds[0]); return false; } out = out.subspan(static_cast<size_t>(ret)); } close(pipefds[0]); // Wait for the child to exit. int status; if (waitpid(child, &status, 0) < 0) { perror("waitpid"); return false; } if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { fprintf(stderr, "Child did not exit cleanly.\n"); return false; } return true; } TEST(RandTest, Fork) { static const uint8_t kZeros[16] = {0}; // Draw a little entropy to initialize any internal PRNG buffering. uint8_t byte; RAND_bytes(&byte, 1); // Draw entropy in two child processes and the parent process. This test // intentionally uses smaller buffers than the others, to minimize the chance // of sneaking by with a large enough buffer that we've since reseeded from // the OS. uint8_t buf1[16], buf2[16], buf3[16]; ASSERT_TRUE(ForkAndRand(buf1)); ASSERT_TRUE(ForkAndRand(buf2)); RAND_bytes(buf3, sizeof(buf3)); // All should be different. EXPECT_NE(Bytes(buf1), Bytes(buf2)); EXPECT_NE(Bytes(buf2), Bytes(buf3)); EXPECT_NE(Bytes(buf1), Bytes(buf3)); EXPECT_NE(Bytes(buf1), Bytes(kZeros)); EXPECT_NE(Bytes(buf2), Bytes(kZeros)); EXPECT_NE(Bytes(buf3), Bytes(kZeros)); } #endif // !OPENSSL_WINDOWS && !OPENSSL_IOS && // !OPENSSL_FUCHSIA && !BORINGSSL_UNSAFE_DETERMINISTIC_MODE #if defined(OPENSSL_THREADS) static void RunConcurrentRands(size_t num_threads) { static const uint8_t kZeros[256] = {0}; std::vector<std::array<uint8_t, 256>> bufs(num_threads); std::vector<std::thread> threads(num_threads); for (size_t i = 0; i < num_threads; i++) { threads[i] = std::thread([i, &bufs] { RAND_bytes(bufs[i].data(), bufs[i].size()); }); } for (size_t i = 0; i < num_threads; i++) { threads[i].join(); } for (size_t i = 0; i < num_threads; i++) { EXPECT_NE(Bytes(bufs[i]), Bytes(kZeros)); for (size_t j = i + 1; j < num_threads; j++) { EXPECT_NE(Bytes(bufs[i]), Bytes(bufs[j])); } } } // Test that threads may concurrently draw entropy without tripping TSan. TEST(RandTest, Threads) { constexpr size_t kFewerThreads = 10; constexpr size_t kMoreThreads = 20; // Draw entropy in parallel. RunConcurrentRands(kFewerThreads); // Draw entropy in parallel with higher concurrency than the previous maximum. RunConcurrentRands(kMoreThreads); // Draw entropy in parallel with lower concurrency than the previous maximum. RunConcurrentRands(kFewerThreads); } #endif // OPENSSL_THREADS #if defined(OPENSSL_X86_64) && defined(SUPPORTS_ABI_TEST) TEST(RandTest, RdrandABI) { if (!have_rdrand()) { fprintf(stderr, "rdrand not supported. Skipping.\n"); return; } uint8_t buf[32]; CHECK_ABI_SEH(CRYPTO_rdrand, buf); CHECK_ABI_SEH(CRYPTO_rdrand_multiple8_buf, nullptr, 0); CHECK_ABI_SEH(CRYPTO_rdrand_multiple8_buf, buf, 8); CHECK_ABI_SEH(CRYPTO_rdrand_multiple8_buf, buf, 16); CHECK_ABI_SEH(CRYPTO_rdrand_multiple8_buf, buf, 24); CHECK_ABI_SEH(CRYPTO_rdrand_multiple8_buf, buf, 32); } #endif // OPENSSL_X86_64 && SUPPORTS_ABI_TEST