/* crypto/asn1/x_x509.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include <assert.h> #include <limits.h> #include <stdio.h> #include <openssl/asn1t.h> #include <openssl/evp.h> #include <openssl/mem.h> #include <openssl/obj.h> #include <openssl/pool.h> #include <openssl/thread.h> #include <openssl/x509.h> #include <openssl/x509v3.h> #include "../internal.h" static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT; ASN1_SEQUENCE_enc(X509_CINF, enc, 0) = { ASN1_EXP_OPT(X509_CINF, version, ASN1_INTEGER, 0), ASN1_SIMPLE(X509_CINF, serialNumber, ASN1_INTEGER), ASN1_SIMPLE(X509_CINF, signature, X509_ALGOR), ASN1_SIMPLE(X509_CINF, issuer, X509_NAME), ASN1_SIMPLE(X509_CINF, validity, X509_VAL), ASN1_SIMPLE(X509_CINF, subject, X509_NAME), ASN1_SIMPLE(X509_CINF, key, X509_PUBKEY), ASN1_IMP_OPT(X509_CINF, issuerUID, ASN1_BIT_STRING, 1), ASN1_IMP_OPT(X509_CINF, subjectUID, ASN1_BIT_STRING, 2), ASN1_EXP_SEQUENCE_OF_OPT(X509_CINF, extensions, X509_EXTENSION, 3) } ASN1_SEQUENCE_END_enc(X509_CINF, X509_CINF) IMPLEMENT_ASN1_FUNCTIONS(X509_CINF) /* X509 top level structure needs a bit of customisation */ extern void policy_cache_free(X509_POLICY_CACHE *cache); static int x509_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509 *ret = (X509 *)*pval; switch (operation) { case ASN1_OP_NEW_POST: ret->name = NULL; ret->ex_flags = 0; ret->ex_pathlen = -1; ret->skid = NULL; ret->akid = NULL; ret->aux = NULL; ret->crldp = NULL; ret->buf = NULL; CRYPTO_new_ex_data(&ret->ex_data); CRYPTO_MUTEX_init(&ret->lock); break; case ASN1_OP_D2I_PRE: CRYPTO_BUFFER_free(ret->buf); ret->buf = NULL; break; case ASN1_OP_D2I_POST: if (ret->name != NULL) OPENSSL_free(ret->name); ret->name = X509_NAME_oneline(ret->cert_info->subject, NULL, 0); break; case ASN1_OP_FREE_POST: CRYPTO_MUTEX_cleanup(&ret->lock); CRYPTO_free_ex_data(&g_ex_data_class, ret, &ret->ex_data); X509_CERT_AUX_free(ret->aux); ASN1_OCTET_STRING_free(ret->skid); AUTHORITY_KEYID_free(ret->akid); CRL_DIST_POINTS_free(ret->crldp); policy_cache_free(ret->policy_cache); GENERAL_NAMES_free(ret->altname); NAME_CONSTRAINTS_free(ret->nc); CRYPTO_BUFFER_free(ret->buf); OPENSSL_free(ret->name); break; } return 1; } ASN1_SEQUENCE_ref(X509, x509_cb) = { ASN1_SIMPLE(X509, cert_info, X509_CINF), ASN1_SIMPLE(X509, sig_alg, X509_ALGOR), ASN1_SIMPLE(X509, signature, ASN1_BIT_STRING) } ASN1_SEQUENCE_END_ref(X509, X509) IMPLEMENT_ASN1_FUNCTIONS(X509) IMPLEMENT_ASN1_DUP_FUNCTION(X509) X509 *X509_parse_from_buffer(CRYPTO_BUFFER *buf) { if (CRYPTO_BUFFER_len(buf) > LONG_MAX) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return 0; } X509 *x509 = X509_new(); if (x509 == NULL) { return NULL; } x509->cert_info->enc.alias_only_on_next_parse = 1; const uint8_t *inp = CRYPTO_BUFFER_data(buf); X509 *x509p = x509; X509 *ret = d2i_X509(&x509p, &inp, CRYPTO_BUFFER_len(buf)); if (ret == NULL || inp - CRYPTO_BUFFER_data(buf) != (ptrdiff_t)CRYPTO_BUFFER_len(buf)) { X509_free(x509p); return NULL; } assert(x509p == x509); assert(ret == x509); CRYPTO_BUFFER_up_ref(buf); ret->buf = buf; return ret; } int X509_up_ref(X509 *x) { CRYPTO_refcount_inc(&x->references); return 1; } int X509_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused * unused, CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { int index; if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, free_func)) { return -1; } return index; } int X509_set_ex_data(X509 *r, int idx, void *arg) { return (CRYPTO_set_ex_data(&r->ex_data, idx, arg)); } void *X509_get_ex_data(X509 *r, int idx) { return (CRYPTO_get_ex_data(&r->ex_data, idx)); } /* * X509_AUX ASN1 routines. X509_AUX is the name given to a certificate with * extra info tagged on the end. Since these functions set how a certificate * is trusted they should only be used when the certificate comes from a * reliable source such as local storage. */ X509 *d2i_X509_AUX(X509 **a, const unsigned char **pp, long length) { const unsigned char *q = *pp; X509 *ret; int freeret = 0; if (!a || *a == NULL) freeret = 1; ret = d2i_X509(a, &q, length); /* If certificate unreadable then forget it */ if (!ret) return NULL; /* update length */ length -= q - *pp; /* Parse auxiliary information if there is any. */ if (length > 0 && !d2i_X509_CERT_AUX(&ret->aux, &q, length)) goto err; *pp = q; return ret; err: if (freeret) { X509_free(ret); if (a) *a = NULL; } return NULL; } /* * Serialize trusted certificate to *pp or just return the required buffer * length if pp == NULL. We ultimately want to avoid modifying *pp in the * error path, but that depends on similar hygiene in lower-level functions. * Here we avoid compounding the problem. */ static int i2d_x509_aux_internal(X509 *a, unsigned char **pp) { int length, tmplen; unsigned char *start = pp != NULL ? *pp : NULL; assert(pp == NULL || *pp != NULL); /* * This might perturb *pp on error, but fixing that belongs in i2d_X509() * not here. It should be that if a == NULL length is zero, but we check * both just in case. */ length = i2d_X509(a, pp); if (length <= 0 || a == NULL) { return length; } tmplen = i2d_X509_CERT_AUX(a->aux, pp); if (tmplen < 0) { if (start != NULL) *pp = start; return tmplen; } length += tmplen; return length; } /* * Serialize trusted certificate to *pp, or just return the required buffer * length if pp == NULL. * * When pp is not NULL, but *pp == NULL, we allocate the buffer, but since * we're writing two ASN.1 objects back to back, we can't have i2d_X509() do * the allocation, nor can we allow i2d_X509_CERT_AUX() to increment the * allocated buffer. */ int i2d_X509_AUX(X509 *a, unsigned char **pp) { int length; unsigned char *tmp; /* Buffer provided by caller */ if (pp == NULL || *pp != NULL) return i2d_x509_aux_internal(a, pp); /* Obtain the combined length */ if ((length = i2d_x509_aux_internal(a, NULL)) <= 0) return length; /* Allocate requisite combined storage */ *pp = tmp = OPENSSL_malloc(length); if (tmp == NULL) return -1; /* Push error onto error stack? */ /* Encode, but keep *pp at the originally malloced pointer */ length = i2d_x509_aux_internal(a, &tmp); if (length <= 0) { OPENSSL_free(*pp); *pp = NULL; } return length; } int i2d_re_X509_tbs(X509 *x, unsigned char **pp) { x->cert_info->enc.modified = 1; return i2d_X509_CINF(x->cert_info, pp); } void X509_get0_signature(const ASN1_BIT_STRING **psig, const X509_ALGOR **palg, const X509 *x) { if (psig) *psig = x->signature; if (palg) *palg = x->sig_alg; } int X509_get_signature_nid(const X509 *x) { return OBJ_obj2nid(x->sig_alg->algorithm); }