/* Copyright (c) 2016, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <openssl/ssl.h> #include <assert.h> #include <string.h> #include <utility> #include <openssl/aead.h> #include <openssl/bytestring.h> #include <openssl/digest.h> #include <openssl/hkdf.h> #include <openssl/hmac.h> #include <openssl/mem.h> #include "../crypto/internal.h" #include "internal.h" BSSL_NAMESPACE_BEGIN static bool init_key_schedule(SSL_HANDSHAKE *hs, uint16_t version, const SSL_CIPHER *cipher) { if (!hs->transcript.InitHash(version, cipher)) { return false; } hs->hash_len = hs->transcript.DigestLen(); // Initialize the secret to the zero key. OPENSSL_memset(hs->secret, 0, hs->hash_len); return true; } bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk, size_t psk_len) { if (!init_key_schedule(hs, ssl_protocol_version(hs->ssl), hs->new_cipher)) { return false; } hs->transcript.FreeBuffer(); return HKDF_extract(hs->secret, &hs->hash_len, hs->transcript.Digest(), psk, psk_len, hs->secret, hs->hash_len); } bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk, size_t psk_len) { SSL *const ssl = hs->ssl; return init_key_schedule(hs, ssl_session_protocol_version(ssl->session.get()), ssl->session->cipher) && HKDF_extract(hs->secret, &hs->hash_len, hs->transcript.Digest(), psk, psk_len, hs->secret, hs->hash_len); } static bool hkdf_expand_label(uint8_t *out, const EVP_MD *digest, const uint8_t *secret, size_t secret_len, const char *label, size_t label_len, const uint8_t *hash, size_t hash_len, size_t len) { static const char kTLS13ProtocolLabel[] = "tls13 "; ScopedCBB cbb; CBB child; Array<uint8_t> hkdf_label; if (!CBB_init(cbb.get(), 2 + 1 + strlen(kTLS13ProtocolLabel) + label_len + 1 + hash_len) || !CBB_add_u16(cbb.get(), len) || !CBB_add_u8_length_prefixed(cbb.get(), &child) || !CBB_add_bytes(&child, (const uint8_t *)kTLS13ProtocolLabel, strlen(kTLS13ProtocolLabel)) || !CBB_add_bytes(&child, (const uint8_t *)label, label_len) || !CBB_add_u8_length_prefixed(cbb.get(), &child) || !CBB_add_bytes(&child, hash, hash_len) || !CBBFinishArray(cbb.get(), &hkdf_label)) { return false; } return HKDF_expand(out, len, digest, secret, secret_len, hkdf_label.data(), hkdf_label.size()); } static const char kTLS13LabelDerived[] = "derived"; bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *in, size_t len) { uint8_t derive_context[EVP_MAX_MD_SIZE]; unsigned derive_context_len; if (!EVP_Digest(nullptr, 0, derive_context, &derive_context_len, hs->transcript.Digest(), nullptr)) { return false; } if (!hkdf_expand_label(hs->secret, hs->transcript.Digest(), hs->secret, hs->hash_len, kTLS13LabelDerived, strlen(kTLS13LabelDerived), derive_context, derive_context_len, hs->hash_len)) { return false; } return HKDF_extract(hs->secret, &hs->hash_len, hs->transcript.Digest(), in, len, hs->secret, hs->hash_len); } // derive_secret derives a secret of length |len| and writes the result in |out| // with the given label and the current base secret and most recently-saved // handshake context. It returns true on success and false on error. static bool derive_secret(SSL_HANDSHAKE *hs, uint8_t *out, size_t len, const char *label, size_t label_len) { uint8_t context_hash[EVP_MAX_MD_SIZE]; size_t context_hash_len; if (!hs->transcript.GetHash(context_hash, &context_hash_len)) { return false; } return hkdf_expand_label(out, hs->transcript.Digest(), hs->secret, hs->hash_len, label, label_len, context_hash, context_hash_len, len); } bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level, enum evp_aead_direction_t direction, const uint8_t *traffic_secret, size_t traffic_secret_len) { const SSL_SESSION *session = SSL_get_session(ssl); uint16_t version = ssl_session_protocol_version(session); if (traffic_secret_len > 0xff) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return false; } UniquePtr<SSLAEADContext> traffic_aead; if (ssl->quic_method == nullptr) { // Look up cipher suite properties. const EVP_AEAD *aead; size_t discard; if (!ssl_cipher_get_evp_aead(&aead, &discard, &discard, session->cipher, version, SSL_is_dtls(ssl))) { return false; } const EVP_MD *digest = ssl_session_get_digest(session); // Derive the key. size_t key_len = EVP_AEAD_key_length(aead); uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; if (!hkdf_expand_label(key, digest, traffic_secret, traffic_secret_len, "key", 3, NULL, 0, key_len)) { return false; } // Derive the IV. size_t iv_len = EVP_AEAD_nonce_length(aead); uint8_t iv[EVP_AEAD_MAX_NONCE_LENGTH]; if (!hkdf_expand_label(iv, digest, traffic_secret, traffic_secret_len, "iv", 2, NULL, 0, iv_len)) { return false; } traffic_aead = SSLAEADContext::Create( direction, session->ssl_version, SSL_is_dtls(ssl), session->cipher, MakeConstSpan(key, key_len), Span<const uint8_t>(), MakeConstSpan(iv, iv_len)); } else { // Install a placeholder SSLAEADContext so that SSL accessors work. The // encryption itself will be handled by the SSL_QUIC_METHOD. traffic_aead = SSLAEADContext::CreatePlaceholderForQUIC(version, session->cipher); } if (!traffic_aead) { return false; } if (direction == evp_aead_open) { if (!ssl->method->set_read_state(ssl, std::move(traffic_aead))) { return false; } } else { if (!ssl->method->set_write_state(ssl, std::move(traffic_aead))) { return false; } } // Save the traffic secret. if (direction == evp_aead_open) { OPENSSL_memmove(ssl->s3->read_traffic_secret, traffic_secret, traffic_secret_len); ssl->s3->read_traffic_secret_len = traffic_secret_len; ssl->s3->read_level = level; } else { OPENSSL_memmove(ssl->s3->write_traffic_secret, traffic_secret, traffic_secret_len); ssl->s3->write_traffic_secret_len = traffic_secret_len; ssl->s3->write_level = level; } return true; } static const char kTLS13LabelExporter[] = "exp master"; static const char kTLS13LabelEarlyExporter[] = "e exp master"; static const char kTLS13LabelClientEarlyTraffic[] = "c e traffic"; static const char kTLS13LabelClientHandshakeTraffic[] = "c hs traffic"; static const char kTLS13LabelServerHandshakeTraffic[] = "s hs traffic"; static const char kTLS13LabelClientApplicationTraffic[] = "c ap traffic"; static const char kTLS13LabelServerApplicationTraffic[] = "s ap traffic"; bool tls13_derive_early_secrets(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; if (!derive_secret(hs, hs->early_traffic_secret, hs->hash_len, kTLS13LabelClientEarlyTraffic, strlen(kTLS13LabelClientEarlyTraffic)) || !ssl_log_secret(ssl, "CLIENT_EARLY_TRAFFIC_SECRET", hs->early_traffic_secret, hs->hash_len) || !derive_secret(hs, ssl->s3->early_exporter_secret, hs->hash_len, kTLS13LabelEarlyExporter, strlen(kTLS13LabelEarlyExporter))) { return false; } ssl->s3->early_exporter_secret_len = hs->hash_len; if (ssl->quic_method != nullptr) { if (ssl->server) { if (!ssl->quic_method->set_encryption_secrets( ssl, ssl_encryption_early_data, nullptr, hs->early_traffic_secret, hs->hash_len)) { OPENSSL_PUT_ERROR(SSL, SSL_R_QUIC_INTERNAL_ERROR); return false; } } else { if (!ssl->quic_method->set_encryption_secrets( ssl, ssl_encryption_early_data, hs->early_traffic_secret, nullptr, hs->hash_len)) { OPENSSL_PUT_ERROR(SSL, SSL_R_QUIC_INTERNAL_ERROR); return false; } } } return true; } bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; if (!derive_secret(hs, hs->client_handshake_secret, hs->hash_len, kTLS13LabelClientHandshakeTraffic, strlen(kTLS13LabelClientHandshakeTraffic)) || !ssl_log_secret(ssl, "CLIENT_HANDSHAKE_TRAFFIC_SECRET", hs->client_handshake_secret, hs->hash_len) || !derive_secret(hs, hs->server_handshake_secret, hs->hash_len, kTLS13LabelServerHandshakeTraffic, strlen(kTLS13LabelServerHandshakeTraffic)) || !ssl_log_secret(ssl, "SERVER_HANDSHAKE_TRAFFIC_SECRET", hs->server_handshake_secret, hs->hash_len)) { return false; } if (ssl->quic_method != nullptr) { if (ssl->server) { if (!ssl->quic_method->set_encryption_secrets( ssl, ssl_encryption_handshake, hs->client_handshake_secret, hs->server_handshake_secret, hs->hash_len)) { OPENSSL_PUT_ERROR(SSL, SSL_R_QUIC_INTERNAL_ERROR); return false; } } else { if (!ssl->quic_method->set_encryption_secrets( ssl, ssl_encryption_handshake, hs->server_handshake_secret, hs->client_handshake_secret, hs->hash_len)) { OPENSSL_PUT_ERROR(SSL, SSL_R_QUIC_INTERNAL_ERROR); return false; } } } return true; } bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; ssl->s3->exporter_secret_len = hs->hash_len; if (!derive_secret(hs, hs->client_traffic_secret_0, hs->hash_len, kTLS13LabelClientApplicationTraffic, strlen(kTLS13LabelClientApplicationTraffic)) || !ssl_log_secret(ssl, "CLIENT_TRAFFIC_SECRET_0", hs->client_traffic_secret_0, hs->hash_len) || !derive_secret(hs, hs->server_traffic_secret_0, hs->hash_len, kTLS13LabelServerApplicationTraffic, strlen(kTLS13LabelServerApplicationTraffic)) || !ssl_log_secret(ssl, "SERVER_TRAFFIC_SECRET_0", hs->server_traffic_secret_0, hs->hash_len) || !derive_secret(hs, ssl->s3->exporter_secret, hs->hash_len, kTLS13LabelExporter, strlen(kTLS13LabelExporter)) || !ssl_log_secret(ssl, "EXPORTER_SECRET", ssl->s3->exporter_secret, hs->hash_len)) { return false; } if (ssl->quic_method != nullptr) { if (ssl->server) { if (!ssl->quic_method->set_encryption_secrets( ssl, ssl_encryption_application, hs->client_traffic_secret_0, hs->server_traffic_secret_0, hs->hash_len)) { OPENSSL_PUT_ERROR(SSL, SSL_R_QUIC_INTERNAL_ERROR); return false; } } else { if (!ssl->quic_method->set_encryption_secrets( ssl, ssl_encryption_application, hs->server_traffic_secret_0, hs->client_traffic_secret_0, hs->hash_len)) { OPENSSL_PUT_ERROR(SSL, SSL_R_QUIC_INTERNAL_ERROR); return false; } } } return true; } static const char kTLS13LabelApplicationTraffic[] = "traffic upd"; bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction) { uint8_t *secret; size_t secret_len; if (direction == evp_aead_open) { secret = ssl->s3->read_traffic_secret; secret_len = ssl->s3->read_traffic_secret_len; } else { secret = ssl->s3->write_traffic_secret; secret_len = ssl->s3->write_traffic_secret_len; } const EVP_MD *digest = ssl_session_get_digest(SSL_get_session(ssl)); if (!hkdf_expand_label(secret, digest, secret, secret_len, kTLS13LabelApplicationTraffic, strlen(kTLS13LabelApplicationTraffic), NULL, 0, secret_len)) { return false; } return tls13_set_traffic_key(ssl, ssl_encryption_application, direction, secret, secret_len); } static const char kTLS13LabelResumption[] = "res master"; bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs) { if (hs->hash_len > SSL_MAX_MASTER_KEY_LENGTH) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } hs->new_session->master_key_length = hs->hash_len; return derive_secret(hs, hs->new_session->master_key, hs->new_session->master_key_length, kTLS13LabelResumption, strlen(kTLS13LabelResumption)); } static const char kTLS13LabelFinished[] = "finished"; // tls13_verify_data sets |out| to be the HMAC of |context| using a derived // Finished key for both Finished messages and the PSK binder. static bool tls13_verify_data(const EVP_MD *digest, uint16_t version, uint8_t *out, size_t *out_len, const uint8_t *secret, size_t hash_len, uint8_t *context, size_t context_len) { uint8_t key[EVP_MAX_MD_SIZE]; unsigned len; if (!hkdf_expand_label(key, digest, secret, hash_len, kTLS13LabelFinished, strlen(kTLS13LabelFinished), NULL, 0, hash_len) || HMAC(digest, key, hash_len, context, context_len, out, &len) == NULL) { return false; } *out_len = len; return true; } bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, bool is_server) { const uint8_t *traffic_secret; if (is_server) { traffic_secret = hs->server_handshake_secret; } else { traffic_secret = hs->client_handshake_secret; } uint8_t context_hash[EVP_MAX_MD_SIZE]; size_t context_hash_len; if (!hs->transcript.GetHash(context_hash, &context_hash_len) || !tls13_verify_data(hs->transcript.Digest(), hs->ssl->version, out, out_len, traffic_secret, hs->hash_len, context_hash, context_hash_len)) { return 0; } return 1; } static const char kTLS13LabelResumptionPSK[] = "resumption"; bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce) { const EVP_MD *digest = ssl_session_get_digest(session); return hkdf_expand_label(session->master_key, digest, session->master_key, session->master_key_length, kTLS13LabelResumptionPSK, strlen(kTLS13LabelResumptionPSK), nonce.data(), nonce.size(), session->master_key_length); } static const char kTLS13LabelExportKeying[] = "exporter"; bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out, Span<const uint8_t> secret, Span<const char> label, Span<const uint8_t> context) { if (secret.empty()) { assert(0); OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } const EVP_MD *digest = ssl_session_get_digest(SSL_get_session(ssl)); uint8_t hash[EVP_MAX_MD_SIZE]; uint8_t export_context[EVP_MAX_MD_SIZE]; uint8_t derived_secret[EVP_MAX_MD_SIZE]; unsigned hash_len; unsigned export_context_len; unsigned derived_secret_len = EVP_MD_size(digest); return EVP_Digest(context.data(), context.size(), hash, &hash_len, digest, nullptr) && EVP_Digest(nullptr, 0, export_context, &export_context_len, digest, nullptr) && hkdf_expand_label(derived_secret, digest, secret.data(), secret.size(), label.data(), label.size(), export_context, export_context_len, derived_secret_len) && hkdf_expand_label(out.data(), digest, derived_secret, derived_secret_len, kTLS13LabelExportKeying, strlen(kTLS13LabelExportKeying), hash, hash_len, out.size()); } static const char kTLS13LabelPSKBinder[] = "res binder"; static bool tls13_psk_binder(uint8_t *out, uint16_t version, const EVP_MD *digest, uint8_t *psk, size_t psk_len, uint8_t *context, size_t context_len, size_t hash_len) { uint8_t binder_context[EVP_MAX_MD_SIZE]; unsigned binder_context_len; if (!EVP_Digest(NULL, 0, binder_context, &binder_context_len, digest, NULL)) { return false; } uint8_t early_secret[EVP_MAX_MD_SIZE] = {0}; size_t early_secret_len; if (!HKDF_extract(early_secret, &early_secret_len, digest, psk, hash_len, NULL, 0)) { return false; } uint8_t binder_key[EVP_MAX_MD_SIZE] = {0}; size_t len; if (!hkdf_expand_label(binder_key, digest, early_secret, hash_len, kTLS13LabelPSKBinder, strlen(kTLS13LabelPSKBinder), binder_context, binder_context_len, hash_len) || !tls13_verify_data(digest, version, out, &len, binder_key, hash_len, context, context_len)) { return false; } return true; } bool tls13_write_psk_binder(SSL_HANDSHAKE *hs, uint8_t *msg, size_t len) { SSL *const ssl = hs->ssl; const EVP_MD *digest = ssl_session_get_digest(ssl->session.get()); size_t hash_len = EVP_MD_size(digest); if (len < hash_len + 3) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } ScopedEVP_MD_CTX ctx; uint8_t context[EVP_MAX_MD_SIZE]; unsigned context_len; if (!EVP_DigestInit_ex(ctx.get(), digest, NULL) || !EVP_DigestUpdate(ctx.get(), hs->transcript.buffer().data(), hs->transcript.buffer().size()) || !EVP_DigestUpdate(ctx.get(), msg, len - hash_len - 3) || !EVP_DigestFinal_ex(ctx.get(), context, &context_len)) { return false; } uint8_t verify_data[EVP_MAX_MD_SIZE] = {0}; if (!tls13_psk_binder(verify_data, ssl->session->ssl_version, digest, ssl->session->master_key, ssl->session->master_key_length, context, context_len, hash_len)) { return false; } OPENSSL_memcpy(msg + len - hash_len, verify_data, hash_len); return true; } bool tls13_verify_psk_binder(SSL_HANDSHAKE *hs, SSL_SESSION *session, const SSLMessage &msg, CBS *binders) { size_t hash_len = hs->transcript.DigestLen(); // The message must be large enough to exclude the binders. if (CBS_len(&msg.raw) < CBS_len(binders) + 2) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } // Hash a ClientHello prefix up to the binders. This includes the header. For // now, this assumes we only ever verify PSK binders on initial // ClientHellos. uint8_t context[EVP_MAX_MD_SIZE]; unsigned context_len; if (!EVP_Digest(CBS_data(&msg.raw), CBS_len(&msg.raw) - CBS_len(binders) - 2, context, &context_len, hs->transcript.Digest(), NULL)) { return false; } uint8_t verify_data[EVP_MAX_MD_SIZE] = {0}; CBS binder; if (!tls13_psk_binder(verify_data, hs->ssl->version, hs->transcript.Digest(), session->master_key, session->master_key_length, context, context_len, hash_len) || // We only consider the first PSK, so compare against the first binder. !CBS_get_u8_length_prefixed(binders, &binder)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } bool binder_ok = CBS_len(&binder) == hash_len && CRYPTO_memcmp(CBS_data(&binder), verify_data, hash_len) == 0; #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) binder_ok = true; #endif if (!binder_ok) { OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED); return false; } return true; } BSSL_NAMESPACE_END