/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <openssl/base.h> #include <stdio.h> #if !defined(OPENSSL_WINDOWS) #include <sys/select.h> #else OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include <winsock2.h> OPENSSL_MSVC_PRAGMA(warning(pop)) #endif #include <openssl/err.h> #include <openssl/pem.h> #include <openssl/ssl.h> #include "../crypto/internal.h" #include "internal.h" #include "transport_common.h" static const struct argument kArguments[] = { { "-connect", kRequiredArgument, "The hostname and port of the server to connect to, e.g. foo.com:443", }, { "-cipher", kOptionalArgument, "An OpenSSL-style cipher suite string that configures the offered " "ciphers", }, { "-curves", kOptionalArgument, "An OpenSSL-style ECDH curves list that configures the offered curves", }, { "-max-version", kOptionalArgument, "The maximum acceptable protocol version", }, { "-min-version", kOptionalArgument, "The minimum acceptable protocol version", }, { "-server-name", kOptionalArgument, "The server name to advertise", }, { "-select-next-proto", kOptionalArgument, "An NPN protocol to select if the server supports NPN", }, { "-alpn-protos", kOptionalArgument, "A comma-separated list of ALPN protocols to advertise", }, { "-fallback-scsv", kBooleanArgument, "Enable FALLBACK_SCSV", }, { "-ocsp-stapling", kBooleanArgument, "Advertise support for OCSP stabling", }, { "-signed-certificate-timestamps", kBooleanArgument, "Advertise support for signed certificate timestamps", }, { "-channel-id-key", kOptionalArgument, "The key to use for signing a channel ID", }, { "-false-start", kBooleanArgument, "Enable False Start", }, { "-session-in", kOptionalArgument, "A file containing a session to resume.", }, { "-session-out", kOptionalArgument, "A file to write the negotiated session to.", }, { "-key", kOptionalArgument, "PEM-encoded file containing the private key.", }, { "-cert", kOptionalArgument, "PEM-encoded file containing the leaf certificate and optional " "certificate chain. This is taken from the -key argument if this " "argument is not provided.", }, { "-starttls", kOptionalArgument, "A STARTTLS mini-protocol to run before the TLS handshake. Supported" " values: 'smtp'", }, { "-grease", kBooleanArgument, "Enable GREASE", }, { "-test-resumption", kBooleanArgument, "Connect to the server twice. The first connection is closed once a " "session is established. The second connection offers it.", }, { "-root-certs", kOptionalArgument, "A filename containing one of more PEM root certificates. Implies that " "verification is required.", }, { "-early-data", kOptionalArgument, "Enable early data. The argument to " "this flag is the early data to send or if it starts with '@', the " "file to read from for early data.", }, { "-ed25519", kBooleanArgument, "Advertise Ed25519 support", }, { "-http-tunnel", kOptionalArgument, "An HTTP proxy server to tunnel the TCP connection through", }, { "-renegotiate-freely", kBooleanArgument, "Allow renegotiations from the peer.", }, { "-debug", kBooleanArgument, "Print debug information about the handshake", }, { "", kOptionalArgument, "", }, }; static bssl::UniquePtr<EVP_PKEY> LoadPrivateKey(const std::string &file) { bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file())); if (!bio || !BIO_read_filename(bio.get(), file.c_str())) { return nullptr; } bssl::UniquePtr<EVP_PKEY> pkey(PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr)); return pkey; } static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen, const uint8_t* in, unsigned inlen, void* arg) { *out = reinterpret_cast<uint8_t *>(arg); *outlen = strlen(reinterpret_cast<const char *>(arg)); return SSL_TLSEXT_ERR_OK; } static FILE *g_keylog_file = nullptr; static void KeyLogCallback(const SSL *ssl, const char *line) { fprintf(g_keylog_file, "%s\n", line); fflush(g_keylog_file); } static bssl::UniquePtr<BIO> session_out; static bssl::UniquePtr<SSL_SESSION> resume_session; static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) { if (session_out) { if (!PEM_write_bio_SSL_SESSION(session_out.get(), session) || BIO_flush(session_out.get()) <= 0) { fprintf(stderr, "Error while saving session:\n"); ERR_print_errors_fp(stderr); return 0; } } resume_session = bssl::UniquePtr<SSL_SESSION>(session); return 1; } static bool WaitForSession(SSL *ssl, int sock) { fd_set read_fds; FD_ZERO(&read_fds); if (!SocketSetNonBlocking(sock, true)) { return false; } while (!resume_session) { #if defined(OPENSSL_WINDOWS) // Windows sockets are really of type SOCKET, not int, but everything here // casts them to ints. Clang gets unhappy about signed values as a result. // // TODO(davidben): Keep everything as the appropriate platform type. FD_SET(static_cast<SOCKET>(sock), &read_fds); #else FD_SET(sock, &read_fds); #endif int ret = select(sock + 1, &read_fds, NULL, NULL, NULL); if (ret <= 0) { perror("select"); return false; } uint8_t buffer[512]; int ssl_ret = SSL_read(ssl, buffer, sizeof(buffer)); if (ssl_ret <= 0) { int ssl_err = SSL_get_error(ssl, ssl_ret); if (ssl_err == SSL_ERROR_WANT_READ) { continue; } PrintSSLError(stderr, "Error while reading", ssl_err, ssl_ret); return false; } } return true; } static bool DoConnection(SSL_CTX *ctx, std::map<std::string, std::string> args_map, bool (*cb)(SSL *ssl, int sock)) { int sock = -1; if (args_map.count("-http-tunnel") != 0) { if (!Connect(&sock, args_map["-http-tunnel"]) || !DoHTTPTunnel(sock, args_map["-connect"])) { return false; } } else if (!Connect(&sock, args_map["-connect"])) { return false; } if (args_map.count("-starttls") != 0) { const std::string& starttls = args_map["-starttls"]; if (starttls == "smtp") { if (!DoSMTPStartTLS(sock)) { return false; } } else { fprintf(stderr, "Unknown value for -starttls: %s\n", starttls.c_str()); return false; } } bssl::UniquePtr<BIO> bio(BIO_new_socket(sock, BIO_CLOSE)); bssl::UniquePtr<SSL> ssl(SSL_new(ctx)); if (args_map.count("-server-name") != 0) { SSL_set_tlsext_host_name(ssl.get(), args_map["-server-name"].c_str()); } if (args_map.count("-session-in") != 0) { bssl::UniquePtr<BIO> in(BIO_new_file(args_map["-session-in"].c_str(), "rb")); if (!in) { fprintf(stderr, "Error reading session\n"); ERR_print_errors_fp(stderr); return false; } bssl::UniquePtr<SSL_SESSION> session(PEM_read_bio_SSL_SESSION(in.get(), nullptr, nullptr, nullptr)); if (!session) { fprintf(stderr, "Error reading session\n"); ERR_print_errors_fp(stderr); return false; } SSL_set_session(ssl.get(), session.get()); } if (args_map.count("-renegotiate-freely") != 0) { SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely); } if (resume_session) { SSL_set_session(ssl.get(), resume_session.get()); } SSL_set_bio(ssl.get(), bio.get(), bio.get()); bio.release(); int ret = SSL_connect(ssl.get()); if (ret != 1) { int ssl_err = SSL_get_error(ssl.get(), ret); PrintSSLError(stderr, "Error while connecting", ssl_err, ret); return false; } if (args_map.count("-early-data") != 0 && SSL_in_early_data(ssl.get())) { std::string early_data = args_map["-early-data"]; if (early_data.size() > 0 && early_data[0] == '@') { const char *filename = early_data.c_str() + 1; std::vector<uint8_t> data; ScopedFILE f(fopen(filename, "rb")); if (f == nullptr || !ReadAll(&data, f.get())) { fprintf(stderr, "Error reading %s.\n", filename); return false; } early_data = std::string(data.begin(), data.end()); } int ed_size = early_data.size(); int ssl_ret = SSL_write(ssl.get(), early_data.data(), ed_size); if (ssl_ret <= 0) { int ssl_err = SSL_get_error(ssl.get(), ssl_ret); PrintSSLError(stderr, "Error while writing", ssl_err, ssl_ret); return false; } else if (ssl_ret != ed_size) { fprintf(stderr, "Short write from SSL_write.\n"); return false; } } fprintf(stderr, "Connected.\n"); bssl::UniquePtr<BIO> bio_stderr(BIO_new_fp(stderr, BIO_NOCLOSE)); PrintConnectionInfo(bio_stderr.get(), ssl.get()); return cb(ssl.get(), sock); } static void InfoCallback(const SSL *ssl, int type, int value) { switch (type) { case SSL_CB_HANDSHAKE_START: fprintf(stderr, "Handshake started.\n"); break; case SSL_CB_HANDSHAKE_DONE: fprintf(stderr, "Handshake done.\n"); break; case SSL_CB_CONNECT_LOOP: fprintf(stderr, "Handshake progress: %s\n", SSL_state_string_long(ssl)); break; } } bool Client(const std::vector<std::string> &args) { if (!InitSocketLibrary()) { return false; } std::map<std::string, std::string> args_map; if (!ParseKeyValueArguments(&args_map, args, kArguments)) { PrintUsage(kArguments); return false; } bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); const char *keylog_file = getenv("SSLKEYLOGFILE"); if (keylog_file) { g_keylog_file = fopen(keylog_file, "a"); if (g_keylog_file == nullptr) { perror("fopen"); return false; } SSL_CTX_set_keylog_callback(ctx.get(), KeyLogCallback); } if (args_map.count("-cipher") != 0 && !SSL_CTX_set_strict_cipher_list(ctx.get(), args_map["-cipher"].c_str())) { fprintf(stderr, "Failed setting cipher list\n"); return false; } if (args_map.count("-curves") != 0 && !SSL_CTX_set1_curves_list(ctx.get(), args_map["-curves"].c_str())) { fprintf(stderr, "Failed setting curves list\n"); return false; } uint16_t max_version = TLS1_3_VERSION; if (args_map.count("-max-version") != 0 && !VersionFromString(&max_version, args_map["-max-version"])) { fprintf(stderr, "Unknown protocol version: '%s'\n", args_map["-max-version"].c_str()); return false; } if (!SSL_CTX_set_max_proto_version(ctx.get(), max_version)) { return false; } if (args_map.count("-min-version") != 0) { uint16_t version; if (!VersionFromString(&version, args_map["-min-version"])) { fprintf(stderr, "Unknown protocol version: '%s'\n", args_map["-min-version"].c_str()); return false; } if (!SSL_CTX_set_min_proto_version(ctx.get(), version)) { return false; } } if (args_map.count("-select-next-proto") != 0) { const std::string &proto = args_map["-select-next-proto"]; if (proto.size() > 255) { fprintf(stderr, "Bad NPN protocol: '%s'\n", proto.c_str()); return false; } // |SSL_CTX_set_next_proto_select_cb| is not const-correct. SSL_CTX_set_next_proto_select_cb(ctx.get(), NextProtoSelectCallback, const_cast<char *>(proto.c_str())); } if (args_map.count("-alpn-protos") != 0) { const std::string &alpn_protos = args_map["-alpn-protos"]; std::vector<uint8_t> wire; size_t i = 0; while (i <= alpn_protos.size()) { size_t j = alpn_protos.find(',', i); if (j == std::string::npos) { j = alpn_protos.size(); } size_t len = j - i; if (len > 255) { fprintf(stderr, "Invalid ALPN protocols: '%s'\n", alpn_protos.c_str()); return false; } wire.push_back(static_cast<uint8_t>(len)); wire.resize(wire.size() + len); OPENSSL_memcpy(wire.data() + wire.size() - len, alpn_protos.data() + i, len); i = j + 1; } if (SSL_CTX_set_alpn_protos(ctx.get(), wire.data(), wire.size()) != 0) { return false; } } if (args_map.count("-fallback-scsv") != 0) { SSL_CTX_set_mode(ctx.get(), SSL_MODE_SEND_FALLBACK_SCSV); } if (args_map.count("-ocsp-stapling") != 0) { SSL_CTX_enable_ocsp_stapling(ctx.get()); } if (args_map.count("-signed-certificate-timestamps") != 0) { SSL_CTX_enable_signed_cert_timestamps(ctx.get()); } if (args_map.count("-channel-id-key") != 0) { bssl::UniquePtr<EVP_PKEY> pkey = LoadPrivateKey(args_map["-channel-id-key"]); if (!pkey || !SSL_CTX_set1_tls_channel_id(ctx.get(), pkey.get())) { return false; } } if (args_map.count("-false-start") != 0) { SSL_CTX_set_mode(ctx.get(), SSL_MODE_ENABLE_FALSE_START); } if (args_map.count("-key") != 0) { const std::string &key = args_map["-key"]; if (!SSL_CTX_use_PrivateKey_file(ctx.get(), key.c_str(), SSL_FILETYPE_PEM)) { fprintf(stderr, "Failed to load private key: %s\n", key.c_str()); return false; } const std::string &cert = args_map.count("-cert") != 0 ? args_map["-cert"] : key; if (!SSL_CTX_use_certificate_chain_file(ctx.get(), cert.c_str())) { fprintf(stderr, "Failed to load cert chain: %s\n", cert.c_str()); return false; } } SSL_CTX_set_session_cache_mode(ctx.get(), SSL_SESS_CACHE_CLIENT); SSL_CTX_sess_set_new_cb(ctx.get(), NewSessionCallback); if (args_map.count("-session-out") != 0) { session_out.reset(BIO_new_file(args_map["-session-out"].c_str(), "wb")); if (!session_out) { fprintf(stderr, "Error while opening %s:\n", args_map["-session-out"].c_str()); ERR_print_errors_fp(stderr); return false; } } if (args_map.count("-grease") != 0) { SSL_CTX_set_grease_enabled(ctx.get(), 1); } if (args_map.count("-root-certs") != 0) { if (!SSL_CTX_load_verify_locations( ctx.get(), args_map["-root-certs"].c_str(), nullptr)) { fprintf(stderr, "Failed to load root certificates.\n"); ERR_print_errors_fp(stderr); return false; } SSL_CTX_set_verify(ctx.get(), SSL_VERIFY_PEER, nullptr); } if (args_map.count("-early-data") != 0) { SSL_CTX_set_early_data_enabled(ctx.get(), 1); } if (args_map.count("-ed25519") != 0) { SSL_CTX_set_ed25519_enabled(ctx.get(), 1); } if (args_map.count("-debug") != 0) { SSL_CTX_set_info_callback(ctx.get(), InfoCallback); } if (args_map.count("-test-resumption") != 0) { if (args_map.count("-session-in") != 0) { fprintf(stderr, "Flags -session-in and -test-resumption are incompatible.\n"); return false; } if (!DoConnection(ctx.get(), args_map, &WaitForSession)) { return false; } } return DoConnection(ctx.get(), args_map, &TransferData); }