===========================================
Control Flow Integrity Design Documentation
===========================================

This page documents the design of the :doc:`ControlFlowIntegrity` schemes
supported by Clang.

Forward-Edge CFI for Virtual Calls
==================================

This scheme works by allocating, for each static type used to make a virtual
call, a region of read-only storage in the object file holding a bit vector
that maps onto to the region of storage used for those virtual tables. Each
set bit in the bit vector corresponds to the `address point`_ for a virtual
table compatible with the static type for which the bit vector is being built.

For example, consider the following three C++ classes:

.. code-block:: c++

  struct A {
    virtual void f1();
    virtual void f2();
    virtual void f3();
  };

  struct B : A {
    virtual void f1();
    virtual void f2();
    virtual void f3();
  };

  struct C : A {
    virtual void f1();
    virtual void f2();
    virtual void f3();
  };

The scheme will cause the virtual tables for A, B and C to be laid out
consecutively:

.. csv-table:: Virtual Table Layout for A, B, C
  :header: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

  A::offset-to-top, &A::rtti, &A::f1, &A::f2, &A::f3, B::offset-to-top, &B::rtti, &B::f1, &B::f2, &B::f3, C::offset-to-top, &C::rtti, &C::f1, &C::f2, &C::f3

The bit vector for static types A, B and C will look like this:

.. csv-table:: Bit Vectors for A, B, C
  :header: Class, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

  A, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0
  B, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
  C, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0

Bit vectors are represented in the object file as byte arrays. By loading
from indexed offsets into the byte array and applying a mask, a program can
test bits from the bit set with a relatively short instruction sequence. Bit
vectors may overlap so long as they use different bits. For the full details,
see the `ByteArrayBuilder`_ class.

In this case, assuming A is laid out at offset 0 in bit 0, B at offset 0 in
bit 1 and C at offset 0 in bit 2, the byte array would look like this:

.. code-block:: c++

  char bits[] = { 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0 };

To emit a virtual call, the compiler will assemble code that checks that
the object's virtual table pointer is in-bounds and aligned and that the
relevant bit is set in the bit vector.

For example on x86 a typical virtual call may look like this:

.. code-block:: none

  ca7fbb:       48 8b 0f                mov    (%rdi),%rcx
  ca7fbe:       48 8d 15 c3 42 fb 07    lea    0x7fb42c3(%rip),%rdx
  ca7fc5:       48 89 c8                mov    %rcx,%rax
  ca7fc8:       48 29 d0                sub    %rdx,%rax
  ca7fcb:       48 c1 c0 3d             rol    $0x3d,%rax
  ca7fcf:       48 3d 7f 01 00 00       cmp    $0x17f,%rax
  ca7fd5:       0f 87 36 05 00 00       ja     ca8511
  ca7fdb:       48 8d 15 c0 0b f7 06    lea    0x6f70bc0(%rip),%rdx
  ca7fe2:       f6 04 10 10             testb  $0x10,(%rax,%rdx,1)
  ca7fe6:       0f 84 25 05 00 00       je     ca8511
  ca7fec:       ff 91 98 00 00 00       callq  *0x98(%rcx)
    [...]
  ca8511:       0f 0b                   ud2

The compiler relies on co-operation from the linker in order to assemble
the bit vectors for the whole program. It currently does this using LLVM's
`type metadata`_ mechanism together with link-time optimization.

.. _address point: https://mentorembedded.github.io/cxx-abi/abi.html#vtable-general
.. _type metadata: http://llvm.org/docs/TypeMetadata.html
.. _ByteArrayBuilder: http://llvm.org/docs/doxygen/html/structllvm_1_1ByteArrayBuilder.html

Optimizations
-------------

The scheme as described above is the fully general variant of the scheme.
Most of the time we are able to apply one or more of the following
optimizations to improve binary size or performance.

In fact, if you try the above example with the current version of the
compiler, you will probably find that it will not use the described virtual
table layout or machine instructions. Some of the optimizations we are about
to introduce cause the compiler to use a different layout or a different
sequence of machine instructions.

Stripping Leading/Trailing Zeros in Bit Vectors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If a bit vector contains leading or trailing zeros, we can strip them from
the vector. The compiler will emit code to check if the pointer is in range
of the region covered by ones, and perform the bit vector check using a
truncated version of the bit vector. For example, the bit vectors for our
example class hierarchy will be emitted like this:

.. csv-table:: Bit Vectors for A, B, C
  :header: Class, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

  A,  ,  , 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,  ,  
  B,  ,  ,  ,  ,  ,  ,  , 1,  ,  ,  ,  ,  ,  ,  
  C,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , 1,  ,  

Short Inline Bit Vectors
~~~~~~~~~~~~~~~~~~~~~~~~

If the vector is sufficiently short, we can represent it as an inline constant
on x86. This saves us a few instructions when reading the correct element
of the bit vector.

If the bit vector fits in 32 bits, the code looks like this:

.. code-block:: none

     dc2:       48 8b 03                mov    (%rbx),%rax
     dc5:       48 8d 15 14 1e 00 00    lea    0x1e14(%rip),%rdx
     dcc:       48 89 c1                mov    %rax,%rcx
     dcf:       48 29 d1                sub    %rdx,%rcx
     dd2:       48 c1 c1 3d             rol    $0x3d,%rcx
     dd6:       48 83 f9 03             cmp    $0x3,%rcx
     dda:       77 2f                   ja     e0b <main+0x9b>
     ddc:       ba 09 00 00 00          mov    $0x9,%edx
     de1:       0f a3 ca                bt     %ecx,%edx
     de4:       73 25                   jae    e0b <main+0x9b>
     de6:       48 89 df                mov    %rbx,%rdi
     de9:       ff 10                   callq  *(%rax)
    [...]
     e0b:       0f 0b                   ud2    

Or if the bit vector fits in 64 bits:

.. code-block:: none

    11a6:       48 8b 03                mov    (%rbx),%rax
    11a9:       48 8d 15 d0 28 00 00    lea    0x28d0(%rip),%rdx
    11b0:       48 89 c1                mov    %rax,%rcx
    11b3:       48 29 d1                sub    %rdx,%rcx
    11b6:       48 c1 c1 3d             rol    $0x3d,%rcx
    11ba:       48 83 f9 2a             cmp    $0x2a,%rcx
    11be:       77 35                   ja     11f5 <main+0xb5>
    11c0:       48 ba 09 00 00 00 00    movabs $0x40000000009,%rdx
    11c7:       04 00 00 
    11ca:       48 0f a3 ca             bt     %rcx,%rdx
    11ce:       73 25                   jae    11f5 <main+0xb5>
    11d0:       48 89 df                mov    %rbx,%rdi
    11d3:       ff 10                   callq  *(%rax)
    [...]
    11f5:       0f 0b                   ud2    

If the bit vector consists of a single bit, there is only one possible
virtual table, and the check can consist of a single equality comparison:

.. code-block:: none

     9a2:   48 8b 03                mov    (%rbx),%rax
     9a5:   48 8d 0d a4 13 00 00    lea    0x13a4(%rip),%rcx
     9ac:   48 39 c8                cmp    %rcx,%rax
     9af:   75 25                   jne    9d6 <main+0x86>
     9b1:   48 89 df                mov    %rbx,%rdi
     9b4:   ff 10                   callq  *(%rax)
     [...]
     9d6:   0f 0b                   ud2

Virtual Table Layout
~~~~~~~~~~~~~~~~~~~~

The compiler lays out classes of disjoint hierarchies in separate regions
of the object file. At worst, bit vectors in disjoint hierarchies only
need to cover their disjoint hierarchy. But the closer that classes in
sub-hierarchies are laid out to each other, the smaller the bit vectors for
those sub-hierarchies need to be (see "Stripping Leading/Trailing Zeros in Bit
Vectors" above). The `GlobalLayoutBuilder`_ class is responsible for laying
out the globals efficiently to minimize the sizes of the underlying bitsets.

.. _GlobalLayoutBuilder: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/IPO/LowerTypeTests.h?view=markup

Alignment
~~~~~~~~~

If all gaps between address points in a particular bit vector are multiples
of powers of 2, the compiler can compress the bit vector by strengthening
the alignment requirements of the virtual table pointer. For example, given
this class hierarchy:

.. code-block:: c++

  struct A {
    virtual void f1();
    virtual void f2();
  };

  struct B : A {
    virtual void f1();
    virtual void f2();
    virtual void f3();
    virtual void f4();
    virtual void f5();
    virtual void f6();
  };

  struct C : A {
    virtual void f1();
    virtual void f2();
  };

The virtual tables will be laid out like this:

.. csv-table:: Virtual Table Layout for A, B, C
  :header: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

  A::offset-to-top, &A::rtti, &A::f1, &A::f2, B::offset-to-top, &B::rtti, &B::f1, &B::f2, &B::f3, &B::f4, &B::f5, &B::f6, C::offset-to-top, &C::rtti, &C::f1, &C::f2

Notice that each address point for A is separated by 4 words. This lets us
emit a compressed bit vector for A that looks like this:

.. csv-table::
  :header: 2, 6, 10, 14

  1, 1, 0, 1

At call sites, the compiler will strengthen the alignment requirements by
using a different rotate count. For example, on a 64-bit machine where the
address points are 4-word aligned (as in A from our example), the ``rol``
instruction may look like this:

.. code-block:: none

     dd2:       48 c1 c1 3b             rol    $0x3b,%rcx

Padding to Powers of 2
~~~~~~~~~~~~~~~~~~~~~~

Of course, this alignment scheme works best if the address points are
in fact aligned correctly. To make this more likely to happen, we insert
padding between virtual tables that in many cases aligns address points to
a power of 2. Specifically, our padding aligns virtual tables to the next
highest power of 2 bytes; because address points for specific base classes
normally appear at fixed offsets within the virtual table, this normally
has the effect of aligning the address points as well.

This scheme introduces tradeoffs between decreased space overhead for
instructions and bit vectors and increased overhead in the form of padding. We
therefore limit the amount of padding so that we align to no more than 128
bytes. This number was found experimentally to provide a good tradeoff.

Eliminating Bit Vector Checks for All-Ones Bit Vectors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If the bit vector is all ones, the bit vector check is redundant; we simply
need to check that the address is in range and well aligned. This is more
likely to occur if the virtual tables are padded.

Forward-Edge CFI for Indirect Function Calls
============================================

Under forward-edge CFI for indirect function calls, each unique function
type has its own bit vector, and at each call site we need to check that the
function pointer is a member of the function type's bit vector. This scheme
works in a similar way to forward-edge CFI for virtual calls, the distinction
being that we need to build bit vectors of function entry points rather than
of virtual tables.

Unlike when re-arranging global variables, we cannot re-arrange functions
in a particular order and base our calculations on the layout of the
functions' entry points, as we have no idea how large a particular function
will end up being (the function sizes could even depend on how we arrange
the functions). Instead, we build a jump table, which is a block of code
consisting of one branch instruction for each of the functions in the bit
set that branches to the target function, and redirect any taken function
addresses to the corresponding jump table entry. In this way, the distance
between function entry points is predictable and controllable. In the object
file's symbol table, the symbols for the target functions also refer to the
jump table entries, so that addresses taken outside the module will pass
any verification done inside the module.

In more concrete terms, suppose we have three functions ``f``, ``g``,
``h`` which are all of the same type, and a function foo that returns their
addresses:

.. code-block:: none

  f:
  mov 0, %eax
  ret

  g:
  mov 1, %eax
  ret

  h:
  mov 2, %eax
  ret

  foo:
  mov f, %eax
  mov g, %edx
  mov h, %ecx
  ret

Our jump table will (conceptually) look like this:

.. code-block:: none

  f:
  jmp .Ltmp0 ; 5 bytes
  int3       ; 1 byte
  int3       ; 1 byte
  int3       ; 1 byte

  g:
  jmp .Ltmp1 ; 5 bytes
  int3       ; 1 byte
  int3       ; 1 byte
  int3       ; 1 byte

  h:
  jmp .Ltmp2 ; 5 bytes
  int3       ; 1 byte
  int3       ; 1 byte
  int3       ; 1 byte

  .Ltmp0:
  mov 0, %eax
  ret

  .Ltmp1:
  mov 1, %eax
  ret

  .Ltmp2:
  mov 2, %eax
  ret

  foo:
  mov f, %eax
  mov g, %edx
  mov h, %ecx
  ret

Because the addresses of ``f``, ``g``, ``h`` are evenly spaced at a power of
2, and function types do not overlap (unlike class types with base classes),
we can normally apply the `Alignment`_ and `Eliminating Bit Vector Checks
for All-Ones Bit Vectors`_ optimizations thus simplifying the check at each
call site to a range and alignment check.

Shared library support
======================

**EXPERIMENTAL**

The basic CFI mode described above assumes that the application is a
monolithic binary; at least that all possible virtual/indirect call
targets and the entire class hierarchy are known at link time. The
cross-DSO mode, enabled with **-f[no-]sanitize-cfi-cross-dso** relaxes
this requirement by allowing virtual and indirect calls to cross the
DSO boundary.

Assuming the following setup: the binary consists of several
instrumented and several uninstrumented DSOs. Some of them may be
dlopen-ed/dlclose-d periodically, even frequently.

  - Calls made from uninstrumented DSOs are not checked and just work.
  - Calls inside any instrumented DSO are fully protected.
  - Calls between different instrumented DSOs are also protected, with
     a performance penalty (in addition to the monolithic CFI
     overhead).
  - Calls from an instrumented DSO to an uninstrumented one are
     unchecked and just work, with performance penalty.
  - Calls from an instrumented DSO outside of any known DSO are
     detected as CFI violations.

In the monolithic scheme a call site is instrumented as

.. code-block:: none

   if (!InlinedFastCheck(f))
     abort();
   call *f

In the cross-DSO scheme it becomes

.. code-block:: none

   if (!InlinedFastCheck(f))
     __cfi_slowpath(CallSiteTypeId, f);
   call *f

CallSiteTypeId
--------------

``CallSiteTypeId`` is a stable process-wide identifier of the
call-site type. For a virtual call site, the type in question is the class
type; for an indirect function call it is the function signature. The
mapping from a type to an identifier is an ABI detail. In the current,
experimental, implementation the identifier of type T is calculated as
follows:

  -  Obtain the mangled name for "typeinfo name for T".
  -  Calculate MD5 hash of the name as a string.
  -  Reinterpret the first 8 bytes of the hash as a little-endian
     64-bit integer.

It is possible, but unlikely, that collisions in the
``CallSiteTypeId`` hashing will result in weaker CFI checks that would
still be conservatively correct.

CFI_Check
---------

In the general case, only the target DSO knows whether the call to
function ``f`` with type ``CallSiteTypeId`` is valid or not.  To
export this information, every DSO implements

.. code-block:: none

   void __cfi_check(uint64 CallSiteTypeId, void *TargetAddr)

This function provides external modules with access to CFI checks for the
targets inside this DSO.  For each known ``CallSiteTypeId``, this function
performs an ``llvm.type.test`` with the corresponding type identifier. It
aborts if the type is unknown, or if the check fails.

The basic implementation is a large switch statement over all values
of CallSiteTypeId supported by this DSO, and each case is similar to
the InlinedFastCheck() in the basic CFI mode.

CFI Shadow
----------

To route CFI checks to the target DSO's __cfi_check function, a
mapping from possible virtual / indirect call targets to
the corresponding __cfi_check functions is maintained. This mapping is
implemented as a sparse array of 2 bytes for every possible page (4096
bytes) of memory. The table is kept readonly (FIXME: not yet) most of
the time.

There are 3 types of shadow values:

  -  Address in a CFI-instrumented DSO.
  -  Unchecked address (a “trusted” non-instrumented DSO). Encoded as
     value 0xFFFF.
  -  Invalid address (everything else). Encoded as value 0.

For a CFI-instrumented DSO, a shadow value encodes the address of the
__cfi_check function for all call targets in the corresponding memory
page. If Addr is the target address, and V is the shadow value, then
the address of __cfi_check is calculated as

.. code-block:: none

  __cfi_check = AlignUpTo(Addr, 4096) - (V + 1) * 4096

This works as long as __cfi_check is aligned by 4096 bytes and located
below any call targets in its DSO, but not more than 256MB apart from
them.

CFI_SlowPath
------------

The slow path check is implemented in compiler-rt library as

.. code-block:: none

  void __cfi_slowpath(uint64 CallSiteTypeId, void *TargetAddr)

This functions loads a shadow value for ``TargetAddr``, finds the
address of __cfi_check as described above and calls that.

Position-independent executable requirement
-------------------------------------------

Cross-DSO CFI mode requires that the main executable is built as PIE.
In non-PIE executables the address of an external function (taken from
the main executable) is the address of that function’s PLT record in
the main executable. This would break the CFI checks.