//===--- ASTImporter.cpp - Importing ASTs from other Contexts ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ASTImporter class which imports AST nodes from one // context into another context. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTImporter.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/StmtVisitor.h" #include "clang/AST/TypeVisitor.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceManager.h" #include "llvm/Support/MemoryBuffer.h" #include <deque> namespace clang { class ASTNodeImporter : public TypeVisitor<ASTNodeImporter, QualType>, public DeclVisitor<ASTNodeImporter, Decl *>, public StmtVisitor<ASTNodeImporter, Stmt *> { ASTImporter &Importer; public: explicit ASTNodeImporter(ASTImporter &Importer) : Importer(Importer) { } using TypeVisitor<ASTNodeImporter, QualType>::Visit; using DeclVisitor<ASTNodeImporter, Decl *>::Visit; using StmtVisitor<ASTNodeImporter, Stmt *>::Visit; // Importing types QualType VisitType(const Type *T); QualType VisitBuiltinType(const BuiltinType *T); QualType VisitComplexType(const ComplexType *T); QualType VisitPointerType(const PointerType *T); QualType VisitBlockPointerType(const BlockPointerType *T); QualType VisitLValueReferenceType(const LValueReferenceType *T); QualType VisitRValueReferenceType(const RValueReferenceType *T); QualType VisitMemberPointerType(const MemberPointerType *T); QualType VisitConstantArrayType(const ConstantArrayType *T); QualType VisitIncompleteArrayType(const IncompleteArrayType *T); QualType VisitVariableArrayType(const VariableArrayType *T); // FIXME: DependentSizedArrayType // FIXME: DependentSizedExtVectorType QualType VisitVectorType(const VectorType *T); QualType VisitExtVectorType(const ExtVectorType *T); QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T); QualType VisitFunctionProtoType(const FunctionProtoType *T); // FIXME: UnresolvedUsingType QualType VisitParenType(const ParenType *T); QualType VisitTypedefType(const TypedefType *T); QualType VisitTypeOfExprType(const TypeOfExprType *T); // FIXME: DependentTypeOfExprType QualType VisitTypeOfType(const TypeOfType *T); QualType VisitDecltypeType(const DecltypeType *T); QualType VisitUnaryTransformType(const UnaryTransformType *T); QualType VisitAutoType(const AutoType *T); QualType VisitInjectedClassNameType(const InjectedClassNameType *T); // FIXME: DependentDecltypeType QualType VisitRecordType(const RecordType *T); QualType VisitEnumType(const EnumType *T); QualType VisitAttributedType(const AttributedType *T); QualType VisitTemplateTypeParmType(const TemplateTypeParmType *T); // FIXME: SubstTemplateTypeParmType QualType VisitTemplateSpecializationType(const TemplateSpecializationType *T); QualType VisitElaboratedType(const ElaboratedType *T); // FIXME: DependentNameType // FIXME: DependentTemplateSpecializationType QualType VisitObjCInterfaceType(const ObjCInterfaceType *T); QualType VisitObjCObjectType(const ObjCObjectType *T); QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T); // Importing declarations bool ImportDeclParts(NamedDecl *D, DeclContext *&DC, DeclContext *&LexicalDC, DeclarationName &Name, NamedDecl *&ToD, SourceLocation &Loc); void ImportDefinitionIfNeeded(Decl *FromD, Decl *ToD = nullptr); void ImportDeclarationNameLoc(const DeclarationNameInfo &From, DeclarationNameInfo& To); void ImportDeclContext(DeclContext *FromDC, bool ForceImport = false); typedef DesignatedInitExpr::Designator Designator; Designator ImportDesignator(const Designator &D); /// \brief What we should import from the definition. enum ImportDefinitionKind { /// \brief Import the default subset of the definition, which might be /// nothing (if minimal import is set) or might be everything (if minimal /// import is not set). IDK_Default, /// \brief Import everything. IDK_Everything, /// \brief Import only the bare bones needed to establish a valid /// DeclContext. IDK_Basic }; bool shouldForceImportDeclContext(ImportDefinitionKind IDK) { return IDK == IDK_Everything || (IDK == IDK_Default && !Importer.isMinimalImport()); } bool ImportDefinition(RecordDecl *From, RecordDecl *To, ImportDefinitionKind Kind = IDK_Default); bool ImportDefinition(VarDecl *From, VarDecl *To, ImportDefinitionKind Kind = IDK_Default); bool ImportDefinition(EnumDecl *From, EnumDecl *To, ImportDefinitionKind Kind = IDK_Default); bool ImportDefinition(ObjCInterfaceDecl *From, ObjCInterfaceDecl *To, ImportDefinitionKind Kind = IDK_Default); bool ImportDefinition(ObjCProtocolDecl *From, ObjCProtocolDecl *To, ImportDefinitionKind Kind = IDK_Default); TemplateParameterList *ImportTemplateParameterList( TemplateParameterList *Params); TemplateArgument ImportTemplateArgument(const TemplateArgument &From); bool ImportTemplateArguments(const TemplateArgument *FromArgs, unsigned NumFromArgs, SmallVectorImpl<TemplateArgument> &ToArgs); bool IsStructuralMatch(RecordDecl *FromRecord, RecordDecl *ToRecord, bool Complain = true); bool IsStructuralMatch(VarDecl *FromVar, VarDecl *ToVar, bool Complain = true); bool IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToRecord); bool IsStructuralMatch(EnumConstantDecl *FromEC, EnumConstantDecl *ToEC); bool IsStructuralMatch(ClassTemplateDecl *From, ClassTemplateDecl *To); bool IsStructuralMatch(VarTemplateDecl *From, VarTemplateDecl *To); Decl *VisitDecl(Decl *D); Decl *VisitAccessSpecDecl(AccessSpecDecl *D); Decl *VisitTranslationUnitDecl(TranslationUnitDecl *D); Decl *VisitNamespaceDecl(NamespaceDecl *D); Decl *VisitTypedefNameDecl(TypedefNameDecl *D, bool IsAlias); Decl *VisitTypedefDecl(TypedefDecl *D); Decl *VisitTypeAliasDecl(TypeAliasDecl *D); Decl *VisitLabelDecl(LabelDecl *D); Decl *VisitEnumDecl(EnumDecl *D); Decl *VisitRecordDecl(RecordDecl *D); Decl *VisitEnumConstantDecl(EnumConstantDecl *D); Decl *VisitFunctionDecl(FunctionDecl *D); Decl *VisitCXXMethodDecl(CXXMethodDecl *D); Decl *VisitCXXConstructorDecl(CXXConstructorDecl *D); Decl *VisitCXXDestructorDecl(CXXDestructorDecl *D); Decl *VisitCXXConversionDecl(CXXConversionDecl *D); Decl *VisitFieldDecl(FieldDecl *D); Decl *VisitIndirectFieldDecl(IndirectFieldDecl *D); Decl *VisitObjCIvarDecl(ObjCIvarDecl *D); Decl *VisitVarDecl(VarDecl *D); Decl *VisitImplicitParamDecl(ImplicitParamDecl *D); Decl *VisitParmVarDecl(ParmVarDecl *D); Decl *VisitObjCMethodDecl(ObjCMethodDecl *D); Decl *VisitObjCTypeParamDecl(ObjCTypeParamDecl *D); Decl *VisitObjCCategoryDecl(ObjCCategoryDecl *D); Decl *VisitObjCProtocolDecl(ObjCProtocolDecl *D); Decl *VisitLinkageSpecDecl(LinkageSpecDecl *D); ObjCTypeParamList *ImportObjCTypeParamList(ObjCTypeParamList *list); Decl *VisitObjCInterfaceDecl(ObjCInterfaceDecl *D); Decl *VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D); Decl *VisitObjCImplementationDecl(ObjCImplementationDecl *D); Decl *VisitObjCPropertyDecl(ObjCPropertyDecl *D); Decl *VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D); Decl *VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D); Decl *VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D); Decl *VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D); Decl *VisitClassTemplateDecl(ClassTemplateDecl *D); Decl *VisitClassTemplateSpecializationDecl( ClassTemplateSpecializationDecl *D); Decl *VisitVarTemplateDecl(VarTemplateDecl *D); Decl *VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *D); // Importing statements DeclGroupRef ImportDeclGroup(DeclGroupRef DG); Stmt *VisitStmt(Stmt *S); Stmt *VisitGCCAsmStmt(GCCAsmStmt *S); Stmt *VisitDeclStmt(DeclStmt *S); Stmt *VisitNullStmt(NullStmt *S); Stmt *VisitCompoundStmt(CompoundStmt *S); Stmt *VisitCaseStmt(CaseStmt *S); Stmt *VisitDefaultStmt(DefaultStmt *S); Stmt *VisitLabelStmt(LabelStmt *S); Stmt *VisitAttributedStmt(AttributedStmt *S); Stmt *VisitIfStmt(IfStmt *S); Stmt *VisitSwitchStmt(SwitchStmt *S); Stmt *VisitWhileStmt(WhileStmt *S); Stmt *VisitDoStmt(DoStmt *S); Stmt *VisitForStmt(ForStmt *S); Stmt *VisitGotoStmt(GotoStmt *S); Stmt *VisitIndirectGotoStmt(IndirectGotoStmt *S); Stmt *VisitContinueStmt(ContinueStmt *S); Stmt *VisitBreakStmt(BreakStmt *S); Stmt *VisitReturnStmt(ReturnStmt *S); // FIXME: MSAsmStmt // FIXME: SEHExceptStmt // FIXME: SEHFinallyStmt // FIXME: SEHTryStmt // FIXME: SEHLeaveStmt // FIXME: CapturedStmt Stmt *VisitCXXCatchStmt(CXXCatchStmt *S); Stmt *VisitCXXTryStmt(CXXTryStmt *S); Stmt *VisitCXXForRangeStmt(CXXForRangeStmt *S); // FIXME: MSDependentExistsStmt Stmt *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S); Stmt *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S); Stmt *VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *S); Stmt *VisitObjCAtTryStmt(ObjCAtTryStmt *S); Stmt *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S); Stmt *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S); Stmt *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S); // Importing expressions Expr *VisitExpr(Expr *E); Expr *VisitVAArgExpr(VAArgExpr *E); Expr *VisitGNUNullExpr(GNUNullExpr *E); Expr *VisitPredefinedExpr(PredefinedExpr *E); Expr *VisitDeclRefExpr(DeclRefExpr *E); Expr *VisitImplicitValueInitExpr(ImplicitValueInitExpr *ILE); Expr *VisitDesignatedInitExpr(DesignatedInitExpr *E); Expr *VisitCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *E); Expr *VisitIntegerLiteral(IntegerLiteral *E); Expr *VisitFloatingLiteral(FloatingLiteral *E); Expr *VisitCharacterLiteral(CharacterLiteral *E); Expr *VisitStringLiteral(StringLiteral *E); Expr *VisitCompoundLiteralExpr(CompoundLiteralExpr *E); Expr *VisitAtomicExpr(AtomicExpr *E); Expr *VisitAddrLabelExpr(AddrLabelExpr *E); Expr *VisitParenExpr(ParenExpr *E); Expr *VisitParenListExpr(ParenListExpr *E); Expr *VisitStmtExpr(StmtExpr *E); Expr *VisitUnaryOperator(UnaryOperator *E); Expr *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E); Expr *VisitBinaryOperator(BinaryOperator *E); Expr *VisitConditionalOperator(ConditionalOperator *E); Expr *VisitBinaryConditionalOperator(BinaryConditionalOperator *E); Expr *VisitOpaqueValueExpr(OpaqueValueExpr *E); Expr *VisitCompoundAssignOperator(CompoundAssignOperator *E); Expr *VisitImplicitCastExpr(ImplicitCastExpr *E); Expr *VisitCStyleCastExpr(CStyleCastExpr *E); Expr *VisitCXXConstructExpr(CXXConstructExpr *E); Expr *VisitCXXMemberCallExpr(CXXMemberCallExpr *E); Expr *VisitCXXThisExpr(CXXThisExpr *E); Expr *VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E); Expr *VisitMemberExpr(MemberExpr *E); Expr *VisitCallExpr(CallExpr *E); Expr *VisitInitListExpr(InitListExpr *E); Expr *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E); Expr *VisitCXXNamedCastExpr(CXXNamedCastExpr *E); template<typename IIter, typename OIter> void ImportArray(IIter Ibegin, IIter Iend, OIter Obegin) { typedef typename std::remove_reference<decltype(*Obegin)>::type ItemT; ASTImporter &ImporterRef = Importer; std::transform(Ibegin, Iend, Obegin, [&ImporterRef](ItemT From) -> ItemT { return ImporterRef.Import(From); }); } template<typename IIter, typename OIter> bool ImportArrayChecked(IIter Ibegin, IIter Iend, OIter Obegin) { typedef typename std::remove_reference<decltype(**Obegin)>::type ItemT; ASTImporter &ImporterRef = Importer; bool Failed = false; std::transform(Ibegin, Iend, Obegin, [&ImporterRef, &Failed](ItemT *From) -> ItemT * { ItemT *To = ImporterRef.Import(From); if (!To && From) Failed = true; return To; }); return Failed; } }; } using namespace clang; //---------------------------------------------------------------------------- // Structural Equivalence //---------------------------------------------------------------------------- namespace { struct StructuralEquivalenceContext { /// \brief AST contexts for which we are checking structural equivalence. ASTContext &C1, &C2; /// \brief The set of "tentative" equivalences between two canonical /// declarations, mapping from a declaration in the first context to the /// declaration in the second context that we believe to be equivalent. llvm::DenseMap<Decl *, Decl *> TentativeEquivalences; /// \brief Queue of declarations in the first context whose equivalence /// with a declaration in the second context still needs to be verified. std::deque<Decl *> DeclsToCheck; /// \brief Declaration (from, to) pairs that are known not to be equivalent /// (which we have already complained about). llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls; /// \brief Whether we're being strict about the spelling of types when /// unifying two types. bool StrictTypeSpelling; /// \brief Whether to complain about failures. bool Complain; /// \brief \c true if the last diagnostic came from C2. bool LastDiagFromC2; StructuralEquivalenceContext(ASTContext &C1, ASTContext &C2, llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls, bool StrictTypeSpelling = false, bool Complain = true) : C1(C1), C2(C2), NonEquivalentDecls(NonEquivalentDecls), StrictTypeSpelling(StrictTypeSpelling), Complain(Complain), LastDiagFromC2(false) {} /// \brief Determine whether the two declarations are structurally /// equivalent. bool IsStructurallyEquivalent(Decl *D1, Decl *D2); /// \brief Determine whether the two types are structurally equivalent. bool IsStructurallyEquivalent(QualType T1, QualType T2); private: /// \brief Finish checking all of the structural equivalences. /// /// \returns true if an error occurred, false otherwise. bool Finish(); public: DiagnosticBuilder Diag1(SourceLocation Loc, unsigned DiagID) { assert(Complain && "Not allowed to complain"); if (LastDiagFromC2) C1.getDiagnostics().notePriorDiagnosticFrom(C2.getDiagnostics()); LastDiagFromC2 = false; return C1.getDiagnostics().Report(Loc, DiagID); } DiagnosticBuilder Diag2(SourceLocation Loc, unsigned DiagID) { assert(Complain && "Not allowed to complain"); if (!LastDiagFromC2) C2.getDiagnostics().notePriorDiagnosticFrom(C1.getDiagnostics()); LastDiagFromC2 = true; return C2.getDiagnostics().Report(Loc, DiagID); } }; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, QualType T1, QualType T2); static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, Decl *D2); /// \brief Determine structural equivalence of two expressions. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Expr *E1, Expr *E2) { if (!E1 || !E2) return E1 == E2; // FIXME: Actually perform a structural comparison! return true; } /// \brief Determine whether two identifiers are equivalent. static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, const IdentifierInfo *Name2) { if (!Name1 || !Name2) return Name1 == Name2; return Name1->getName() == Name2->getName(); } /// \brief Determine whether two nested-name-specifiers are equivalent. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, NestedNameSpecifier *NNS1, NestedNameSpecifier *NNS2) { // FIXME: Implement! return true; } /// \brief Determine whether two template arguments are equivalent. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const TemplateArgument &Arg1, const TemplateArgument &Arg2) { if (Arg1.getKind() != Arg2.getKind()) return false; switch (Arg1.getKind()) { case TemplateArgument::Null: return true; case TemplateArgument::Type: return Context.IsStructurallyEquivalent(Arg1.getAsType(), Arg2.getAsType()); case TemplateArgument::Integral: if (!Context.IsStructurallyEquivalent(Arg1.getIntegralType(), Arg2.getIntegralType())) return false; return llvm::APSInt::isSameValue(Arg1.getAsIntegral(), Arg2.getAsIntegral()); case TemplateArgument::Declaration: return Context.IsStructurallyEquivalent(Arg1.getAsDecl(), Arg2.getAsDecl()); case TemplateArgument::NullPtr: return true; // FIXME: Is this correct? case TemplateArgument::Template: return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(), Arg2.getAsTemplate()); case TemplateArgument::TemplateExpansion: return IsStructurallyEquivalent(Context, Arg1.getAsTemplateOrTemplatePattern(), Arg2.getAsTemplateOrTemplatePattern()); case TemplateArgument::Expression: return IsStructurallyEquivalent(Context, Arg1.getAsExpr(), Arg2.getAsExpr()); case TemplateArgument::Pack: if (Arg1.pack_size() != Arg2.pack_size()) return false; for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I) if (!IsStructurallyEquivalent(Context, Arg1.pack_begin()[I], Arg2.pack_begin()[I])) return false; return true; } llvm_unreachable("Invalid template argument kind"); } /// \brief Determine structural equivalence for the common part of array /// types. static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context, const ArrayType *Array1, const ArrayType *Array2) { if (!IsStructurallyEquivalent(Context, Array1->getElementType(), Array2->getElementType())) return false; if (Array1->getSizeModifier() != Array2->getSizeModifier()) return false; if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers()) return false; return true; } /// \brief Determine structural equivalence of two types. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, QualType T1, QualType T2) { if (T1.isNull() || T2.isNull()) return T1.isNull() && T2.isNull(); if (!Context.StrictTypeSpelling) { // We aren't being strict about token-to-token equivalence of types, // so map down to the canonical type. T1 = Context.C1.getCanonicalType(T1); T2 = Context.C2.getCanonicalType(T2); } if (T1.getQualifiers() != T2.getQualifiers()) return false; Type::TypeClass TC = T1->getTypeClass(); if (T1->getTypeClass() != T2->getTypeClass()) { // Compare function types with prototypes vs. without prototypes as if // both did not have prototypes. if (T1->getTypeClass() == Type::FunctionProto && T2->getTypeClass() == Type::FunctionNoProto) TC = Type::FunctionNoProto; else if (T1->getTypeClass() == Type::FunctionNoProto && T2->getTypeClass() == Type::FunctionProto) TC = Type::FunctionNoProto; else return false; } switch (TC) { case Type::Builtin: // FIXME: Deal with Char_S/Char_U. if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind()) return false; break; case Type::Complex: if (!IsStructurallyEquivalent(Context, cast<ComplexType>(T1)->getElementType(), cast<ComplexType>(T2)->getElementType())) return false; break; case Type::Adjusted: case Type::Decayed: if (!IsStructurallyEquivalent(Context, cast<AdjustedType>(T1)->getOriginalType(), cast<AdjustedType>(T2)->getOriginalType())) return false; break; case Type::Pointer: if (!IsStructurallyEquivalent(Context, cast<PointerType>(T1)->getPointeeType(), cast<PointerType>(T2)->getPointeeType())) return false; break; case Type::BlockPointer: if (!IsStructurallyEquivalent(Context, cast<BlockPointerType>(T1)->getPointeeType(), cast<BlockPointerType>(T2)->getPointeeType())) return false; break; case Type::LValueReference: case Type::RValueReference: { const ReferenceType *Ref1 = cast<ReferenceType>(T1); const ReferenceType *Ref2 = cast<ReferenceType>(T2); if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue()) return false; if (Ref1->isInnerRef() != Ref2->isInnerRef()) return false; if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(), Ref2->getPointeeTypeAsWritten())) return false; break; } case Type::MemberPointer: { const MemberPointerType *MemPtr1 = cast<MemberPointerType>(T1); const MemberPointerType *MemPtr2 = cast<MemberPointerType>(T2); if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(), MemPtr2->getPointeeType())) return false; if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0), QualType(MemPtr2->getClass(), 0))) return false; break; } case Type::ConstantArray: { const ConstantArrayType *Array1 = cast<ConstantArrayType>(T1); const ConstantArrayType *Array2 = cast<ConstantArrayType>(T2); if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize())) return false; if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) return false; break; } case Type::IncompleteArray: if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1), cast<ArrayType>(T2))) return false; break; case Type::VariableArray: { const VariableArrayType *Array1 = cast<VariableArrayType>(T1); const VariableArrayType *Array2 = cast<VariableArrayType>(T2); if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), Array2->getSizeExpr())) return false; if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) return false; break; } case Type::DependentSizedArray: { const DependentSizedArrayType *Array1 = cast<DependentSizedArrayType>(T1); const DependentSizedArrayType *Array2 = cast<DependentSizedArrayType>(T2); if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), Array2->getSizeExpr())) return false; if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) return false; break; } case Type::DependentSizedExtVector: { const DependentSizedExtVectorType *Vec1 = cast<DependentSizedExtVectorType>(T1); const DependentSizedExtVectorType *Vec2 = cast<DependentSizedExtVectorType>(T2); if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), Vec2->getSizeExpr())) return false; if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), Vec2->getElementType())) return false; break; } case Type::Vector: case Type::ExtVector: { const VectorType *Vec1 = cast<VectorType>(T1); const VectorType *Vec2 = cast<VectorType>(T2); if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), Vec2->getElementType())) return false; if (Vec1->getNumElements() != Vec2->getNumElements()) return false; if (Vec1->getVectorKind() != Vec2->getVectorKind()) return false; break; } case Type::FunctionProto: { const FunctionProtoType *Proto1 = cast<FunctionProtoType>(T1); const FunctionProtoType *Proto2 = cast<FunctionProtoType>(T2); if (Proto1->getNumParams() != Proto2->getNumParams()) return false; for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I), Proto2->getParamType(I))) return false; } if (Proto1->isVariadic() != Proto2->isVariadic()) return false; if (Proto1->getExceptionSpecType() != Proto2->getExceptionSpecType()) return false; if (Proto1->getExceptionSpecType() == EST_Dynamic) { if (Proto1->getNumExceptions() != Proto2->getNumExceptions()) return false; for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I), Proto2->getExceptionType(I))) return false; } } else if (Proto1->getExceptionSpecType() == EST_ComputedNoexcept) { if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(), Proto2->getNoexceptExpr())) return false; } if (Proto1->getTypeQuals() != Proto2->getTypeQuals()) return false; // Fall through to check the bits common with FunctionNoProtoType. } case Type::FunctionNoProto: { const FunctionType *Function1 = cast<FunctionType>(T1); const FunctionType *Function2 = cast<FunctionType>(T2); if (!IsStructurallyEquivalent(Context, Function1->getReturnType(), Function2->getReturnType())) return false; if (Function1->getExtInfo() != Function2->getExtInfo()) return false; break; } case Type::UnresolvedUsing: if (!IsStructurallyEquivalent(Context, cast<UnresolvedUsingType>(T1)->getDecl(), cast<UnresolvedUsingType>(T2)->getDecl())) return false; break; case Type::Attributed: if (!IsStructurallyEquivalent(Context, cast<AttributedType>(T1)->getModifiedType(), cast<AttributedType>(T2)->getModifiedType())) return false; if (!IsStructurallyEquivalent(Context, cast<AttributedType>(T1)->getEquivalentType(), cast<AttributedType>(T2)->getEquivalentType())) return false; break; case Type::Paren: if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(), cast<ParenType>(T2)->getInnerType())) return false; break; case Type::Typedef: if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(), cast<TypedefType>(T2)->getDecl())) return false; break; case Type::TypeOfExpr: if (!IsStructurallyEquivalent(Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(), cast<TypeOfExprType>(T2)->getUnderlyingExpr())) return false; break; case Type::TypeOf: if (!IsStructurallyEquivalent(Context, cast<TypeOfType>(T1)->getUnderlyingType(), cast<TypeOfType>(T2)->getUnderlyingType())) return false; break; case Type::UnaryTransform: if (!IsStructurallyEquivalent(Context, cast<UnaryTransformType>(T1)->getUnderlyingType(), cast<UnaryTransformType>(T1)->getUnderlyingType())) return false; break; case Type::Decltype: if (!IsStructurallyEquivalent(Context, cast<DecltypeType>(T1)->getUnderlyingExpr(), cast<DecltypeType>(T2)->getUnderlyingExpr())) return false; break; case Type::Auto: if (!IsStructurallyEquivalent(Context, cast<AutoType>(T1)->getDeducedType(), cast<AutoType>(T2)->getDeducedType())) return false; break; case Type::Record: case Type::Enum: if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(), cast<TagType>(T2)->getDecl())) return false; break; case Type::TemplateTypeParm: { const TemplateTypeParmType *Parm1 = cast<TemplateTypeParmType>(T1); const TemplateTypeParmType *Parm2 = cast<TemplateTypeParmType>(T2); if (Parm1->getDepth() != Parm2->getDepth()) return false; if (Parm1->getIndex() != Parm2->getIndex()) return false; if (Parm1->isParameterPack() != Parm2->isParameterPack()) return false; // Names of template type parameters are never significant. break; } case Type::SubstTemplateTypeParm: { const SubstTemplateTypeParmType *Subst1 = cast<SubstTemplateTypeParmType>(T1); const SubstTemplateTypeParmType *Subst2 = cast<SubstTemplateTypeParmType>(T2); if (!IsStructurallyEquivalent(Context, QualType(Subst1->getReplacedParameter(), 0), QualType(Subst2->getReplacedParameter(), 0))) return false; if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(), Subst2->getReplacementType())) return false; break; } case Type::SubstTemplateTypeParmPack: { const SubstTemplateTypeParmPackType *Subst1 = cast<SubstTemplateTypeParmPackType>(T1); const SubstTemplateTypeParmPackType *Subst2 = cast<SubstTemplateTypeParmPackType>(T2); if (!IsStructurallyEquivalent(Context, QualType(Subst1->getReplacedParameter(), 0), QualType(Subst2->getReplacedParameter(), 0))) return false; if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(), Subst2->getArgumentPack())) return false; break; } case Type::TemplateSpecialization: { const TemplateSpecializationType *Spec1 = cast<TemplateSpecializationType>(T1); const TemplateSpecializationType *Spec2 = cast<TemplateSpecializationType>(T2); if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(), Spec2->getTemplateName())) return false; if (Spec1->getNumArgs() != Spec2->getNumArgs()) return false; for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Spec1->getArg(I), Spec2->getArg(I))) return false; } break; } case Type::Elaborated: { const ElaboratedType *Elab1 = cast<ElaboratedType>(T1); const ElaboratedType *Elab2 = cast<ElaboratedType>(T2); // CHECKME: what if a keyword is ETK_None or ETK_typename ? if (Elab1->getKeyword() != Elab2->getKeyword()) return false; if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(), Elab2->getQualifier())) return false; if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(), Elab2->getNamedType())) return false; break; } case Type::InjectedClassName: { const InjectedClassNameType *Inj1 = cast<InjectedClassNameType>(T1); const InjectedClassNameType *Inj2 = cast<InjectedClassNameType>(T2); if (!IsStructurallyEquivalent(Context, Inj1->getInjectedSpecializationType(), Inj2->getInjectedSpecializationType())) return false; break; } case Type::DependentName: { const DependentNameType *Typename1 = cast<DependentNameType>(T1); const DependentNameType *Typename2 = cast<DependentNameType>(T2); if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(), Typename2->getQualifier())) return false; if (!IsStructurallyEquivalent(Typename1->getIdentifier(), Typename2->getIdentifier())) return false; break; } case Type::DependentTemplateSpecialization: { const DependentTemplateSpecializationType *Spec1 = cast<DependentTemplateSpecializationType>(T1); const DependentTemplateSpecializationType *Spec2 = cast<DependentTemplateSpecializationType>(T2); if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(), Spec2->getQualifier())) return false; if (!IsStructurallyEquivalent(Spec1->getIdentifier(), Spec2->getIdentifier())) return false; if (Spec1->getNumArgs() != Spec2->getNumArgs()) return false; for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Spec1->getArg(I), Spec2->getArg(I))) return false; } break; } case Type::PackExpansion: if (!IsStructurallyEquivalent(Context, cast<PackExpansionType>(T1)->getPattern(), cast<PackExpansionType>(T2)->getPattern())) return false; break; case Type::ObjCInterface: { const ObjCInterfaceType *Iface1 = cast<ObjCInterfaceType>(T1); const ObjCInterfaceType *Iface2 = cast<ObjCInterfaceType>(T2); if (!IsStructurallyEquivalent(Context, Iface1->getDecl(), Iface2->getDecl())) return false; break; } case Type::ObjCObject: { const ObjCObjectType *Obj1 = cast<ObjCObjectType>(T1); const ObjCObjectType *Obj2 = cast<ObjCObjectType>(T2); if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(), Obj2->getBaseType())) return false; if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) return false; for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), Obj2->getProtocol(I))) return false; } break; } case Type::ObjCObjectPointer: { const ObjCObjectPointerType *Ptr1 = cast<ObjCObjectPointerType>(T1); const ObjCObjectPointerType *Ptr2 = cast<ObjCObjectPointerType>(T2); if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(), Ptr2->getPointeeType())) return false; break; } case Type::Atomic: { if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(), cast<AtomicType>(T2)->getValueType())) return false; break; } case Type::Pipe: { if (!IsStructurallyEquivalent(Context, cast<PipeType>(T1)->getElementType(), cast<PipeType>(T2)->getElementType())) return false; break; } } // end switch return true; } /// \brief Determine structural equivalence of two fields. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FieldDecl *Field1, FieldDecl *Field2) { RecordDecl *Owner2 = cast<RecordDecl>(Field2->getDeclContext()); // For anonymous structs/unions, match up the anonymous struct/union type // declarations directly, so that we don't go off searching for anonymous // types if (Field1->isAnonymousStructOrUnion() && Field2->isAnonymousStructOrUnion()) { RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl(); RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl(); return IsStructurallyEquivalent(Context, D1, D2); } // Check for equivalent field names. IdentifierInfo *Name1 = Field1->getIdentifier(); IdentifierInfo *Name2 = Field2->getIdentifier(); if (!::IsStructurallyEquivalent(Name1, Name2)) return false; if (!IsStructurallyEquivalent(Context, Field1->getType(), Field2->getType())) { if (Context.Complain) { Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(Owner2); Context.Diag2(Field2->getLocation(), diag::note_odr_field) << Field2->getDeclName() << Field2->getType(); Context.Diag1(Field1->getLocation(), diag::note_odr_field) << Field1->getDeclName() << Field1->getType(); } return false; } if (Field1->isBitField() != Field2->isBitField()) { if (Context.Complain) { Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(Owner2); if (Field1->isBitField()) { Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field) << Field1->getDeclName() << Field1->getType() << Field1->getBitWidthValue(Context.C1); Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field) << Field2->getDeclName(); } else { Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field) << Field2->getDeclName() << Field2->getType() << Field2->getBitWidthValue(Context.C2); Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field) << Field1->getDeclName(); } } return false; } if (Field1->isBitField()) { // Make sure that the bit-fields are the same length. unsigned Bits1 = Field1->getBitWidthValue(Context.C1); unsigned Bits2 = Field2->getBitWidthValue(Context.C2); if (Bits1 != Bits2) { if (Context.Complain) { Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(Owner2); Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field) << Field2->getDeclName() << Field2->getType() << Bits2; Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field) << Field1->getDeclName() << Field1->getType() << Bits1; } return false; } } return true; } /// \brief Find the index of the given anonymous struct/union within its /// context. /// /// \returns Returns the index of this anonymous struct/union in its context, /// including the next assigned index (if none of them match). Returns an /// empty option if the context is not a record, i.e.. if the anonymous /// struct/union is at namespace or block scope. static Optional<unsigned> findUntaggedStructOrUnionIndex(RecordDecl *Anon) { ASTContext &Context = Anon->getASTContext(); QualType AnonTy = Context.getRecordType(Anon); RecordDecl *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext()); if (!Owner) return None; unsigned Index = 0; for (const auto *D : Owner->noload_decls()) { const auto *F = dyn_cast<FieldDecl>(D); if (!F) continue; if (F->isAnonymousStructOrUnion()) { if (Context.hasSameType(F->getType(), AnonTy)) break; ++Index; continue; } // If the field looks like this: // struct { ... } A; QualType FieldType = F->getType(); if (const auto *RecType = dyn_cast<RecordType>(FieldType)) { const RecordDecl *RecDecl = RecType->getDecl(); if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) { if (Context.hasSameType(FieldType, AnonTy)) break; ++Index; continue; } } } return Index; } /// \brief Determine structural equivalence of two records. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, RecordDecl *D1, RecordDecl *D2) { if (D1->isUnion() != D2->isUnion()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here) << D1->getDeclName() << (unsigned)D1->getTagKind(); } return false; } if (D1->isAnonymousStructOrUnion() && D2->isAnonymousStructOrUnion()) { // If both anonymous structs/unions are in a record context, make sure // they occur in the same location in the context records. if (Optional<unsigned> Index1 = findUntaggedStructOrUnionIndex(D1)) { if (Optional<unsigned> Index2 = findUntaggedStructOrUnionIndex(D2)) { if (*Index1 != *Index2) return false; } } } // If both declarations are class template specializations, we know // the ODR applies, so check the template and template arguments. ClassTemplateSpecializationDecl *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(D1); ClassTemplateSpecializationDecl *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(D2); if (Spec1 && Spec2) { // Check that the specialized templates are the same. if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(), Spec2->getSpecializedTemplate())) return false; // Check that the template arguments are the same. if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size()) return false; for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I) if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I), Spec2->getTemplateArgs().get(I))) return false; } // If one is a class template specialization and the other is not, these // structures are different. else if (Spec1 || Spec2) return false; // Compare the definitions of these two records. If either or both are // incomplete, we assume that they are equivalent. D1 = D1->getDefinition(); D2 = D2->getDefinition(); if (!D1 || !D2) return true; if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D1)) { if (CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(D2)) { if (D1CXX->getNumBases() != D2CXX->getNumBases()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases) << D2CXX->getNumBases(); Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases) << D1CXX->getNumBases(); } return false; } // Check the base classes. for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(), BaseEnd1 = D1CXX->bases_end(), Base2 = D2CXX->bases_begin(); Base1 != BaseEnd1; ++Base1, ++Base2) { if (!IsStructurallyEquivalent(Context, Base1->getType(), Base2->getType())) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag2(Base2->getLocStart(), diag::note_odr_base) << Base2->getType() << Base2->getSourceRange(); Context.Diag1(Base1->getLocStart(), diag::note_odr_base) << Base1->getType() << Base1->getSourceRange(); } return false; } // Check virtual vs. non-virtual inheritance mismatch. if (Base1->isVirtual() != Base2->isVirtual()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag2(Base2->getLocStart(), diag::note_odr_virtual_base) << Base2->isVirtual() << Base2->getSourceRange(); Context.Diag1(Base1->getLocStart(), diag::note_odr_base) << Base1->isVirtual() << Base1->getSourceRange(); } return false; } } } else if (D1CXX->getNumBases() > 0) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); const CXXBaseSpecifier *Base1 = D1CXX->bases_begin(); Context.Diag1(Base1->getLocStart(), diag::note_odr_base) << Base1->getType() << Base1->getSourceRange(); Context.Diag2(D2->getLocation(), diag::note_odr_missing_base); } return false; } } // Check the fields for consistency. RecordDecl::field_iterator Field2 = D2->field_begin(), Field2End = D2->field_end(); for (RecordDecl::field_iterator Field1 = D1->field_begin(), Field1End = D1->field_end(); Field1 != Field1End; ++Field1, ++Field2) { if (Field2 == Field2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag1(Field1->getLocation(), diag::note_odr_field) << Field1->getDeclName() << Field1->getType(); Context.Diag2(D2->getLocation(), diag::note_odr_missing_field); } return false; } if (!IsStructurallyEquivalent(Context, *Field1, *Field2)) return false; } if (Field2 != Field2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag2(Field2->getLocation(), diag::note_odr_field) << Field2->getDeclName() << Field2->getType(); Context.Diag1(D1->getLocation(), diag::note_odr_missing_field); } return false; } return true; } /// \brief Determine structural equivalence of two enums. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, EnumDecl *D1, EnumDecl *D2) { EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(), EC2End = D2->enumerator_end(); for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(), EC1End = D1->enumerator_end(); EC1 != EC1End; ++EC1, ++EC2) { if (EC2 == EC2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) << EC1->getDeclName() << EC1->getInitVal().toString(10); Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator); } return false; } llvm::APSInt Val1 = EC1->getInitVal(); llvm::APSInt Val2 = EC2->getInitVal(); if (!llvm::APSInt::isSameValue(Val1, Val2) || !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) << EC2->getDeclName() << EC2->getInitVal().toString(10); Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) << EC1->getDeclName() << EC1->getInitVal().toString(10); } return false; } } if (EC2 != EC2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) << Context.C2.getTypeDeclType(D2); Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) << EC2->getDeclName() << EC2->getInitVal().toString(10); Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator); } return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TemplateParameterList *Params1, TemplateParameterList *Params2) { if (Params1->size() != Params2->size()) { if (Context.Complain) { Context.Diag2(Params2->getTemplateLoc(), diag::err_odr_different_num_template_parameters) << Params1->size() << Params2->size(); Context.Diag1(Params1->getTemplateLoc(), diag::note_odr_template_parameter_list); } return false; } for (unsigned I = 0, N = Params1->size(); I != N; ++I) { if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) { if (Context.Complain) { Context.Diag2(Params2->getParam(I)->getLocation(), diag::err_odr_different_template_parameter_kind); Context.Diag1(Params1->getParam(I)->getLocation(), diag::note_odr_template_parameter_here); } return false; } if (!Context.IsStructurallyEquivalent(Params1->getParam(I), Params2->getParam(I))) { return false; } } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TemplateTypeParmDecl *D1, TemplateTypeParmDecl *D2) { if (D1->isParameterPack() != D2->isParameterPack()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack) << D2->isParameterPack(); Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) << D1->isParameterPack(); } return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, NonTypeTemplateParmDecl *D1, NonTypeTemplateParmDecl *D2) { if (D1->isParameterPack() != D2->isParameterPack()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack) << D2->isParameterPack(); Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) << D1->isParameterPack(); } return false; } // Check types. if (!Context.IsStructurallyEquivalent(D1->getType(), D2->getType())) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::err_odr_non_type_parameter_type_inconsistent) << D2->getType() << D1->getType(); Context.Diag1(D1->getLocation(), diag::note_odr_value_here) << D1->getType(); } return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TemplateTemplateParmDecl *D1, TemplateTemplateParmDecl *D2) { if (D1->isParameterPack() != D2->isParameterPack()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack) << D2->isParameterPack(); Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) << D1->isParameterPack(); } return false; } // Check template parameter lists. return IsStructurallyEquivalent(Context, D1->getTemplateParameters(), D2->getTemplateParameters()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, ClassTemplateDecl *D1, ClassTemplateDecl *D2) { // Check template parameters. if (!IsStructurallyEquivalent(Context, D1->getTemplateParameters(), D2->getTemplateParameters())) return false; // Check the templated declaration. return Context.IsStructurallyEquivalent(D1->getTemplatedDecl(), D2->getTemplatedDecl()); } /// \brief Determine structural equivalence of two declarations. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, Decl *D2) { // FIXME: Check for known structural equivalences via a callback of some sort. // Check whether we already know that these two declarations are not // structurally equivalent. if (Context.NonEquivalentDecls.count(std::make_pair(D1->getCanonicalDecl(), D2->getCanonicalDecl()))) return false; // Determine whether we've already produced a tentative equivalence for D1. Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()]; if (EquivToD1) return EquivToD1 == D2->getCanonicalDecl(); // Produce a tentative equivalence D1 <-> D2, which will be checked later. EquivToD1 = D2->getCanonicalDecl(); Context.DeclsToCheck.push_back(D1->getCanonicalDecl()); return true; } bool StructuralEquivalenceContext::IsStructurallyEquivalent(Decl *D1, Decl *D2) { if (!::IsStructurallyEquivalent(*this, D1, D2)) return false; return !Finish(); } bool StructuralEquivalenceContext::IsStructurallyEquivalent(QualType T1, QualType T2) { if (!::IsStructurallyEquivalent(*this, T1, T2)) return false; return !Finish(); } bool StructuralEquivalenceContext::Finish() { while (!DeclsToCheck.empty()) { // Check the next declaration. Decl *D1 = DeclsToCheck.front(); DeclsToCheck.pop_front(); Decl *D2 = TentativeEquivalences[D1]; assert(D2 && "Unrecorded tentative equivalence?"); bool Equivalent = true; // FIXME: Switch on all declaration kinds. For now, we're just going to // check the obvious ones. if (RecordDecl *Record1 = dyn_cast<RecordDecl>(D1)) { if (RecordDecl *Record2 = dyn_cast<RecordDecl>(D2)) { // Check for equivalent structure names. IdentifierInfo *Name1 = Record1->getIdentifier(); if (!Name1 && Record1->getTypedefNameForAnonDecl()) Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier(); IdentifierInfo *Name2 = Record2->getIdentifier(); if (!Name2 && Record2->getTypedefNameForAnonDecl()) Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier(); if (!::IsStructurallyEquivalent(Name1, Name2) || !::IsStructurallyEquivalent(*this, Record1, Record2)) Equivalent = false; } else { // Record/non-record mismatch. Equivalent = false; } } else if (EnumDecl *Enum1 = dyn_cast<EnumDecl>(D1)) { if (EnumDecl *Enum2 = dyn_cast<EnumDecl>(D2)) { // Check for equivalent enum names. IdentifierInfo *Name1 = Enum1->getIdentifier(); if (!Name1 && Enum1->getTypedefNameForAnonDecl()) Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier(); IdentifierInfo *Name2 = Enum2->getIdentifier(); if (!Name2 && Enum2->getTypedefNameForAnonDecl()) Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier(); if (!::IsStructurallyEquivalent(Name1, Name2) || !::IsStructurallyEquivalent(*this, Enum1, Enum2)) Equivalent = false; } else { // Enum/non-enum mismatch Equivalent = false; } } else if (TypedefNameDecl *Typedef1 = dyn_cast<TypedefNameDecl>(D1)) { if (TypedefNameDecl *Typedef2 = dyn_cast<TypedefNameDecl>(D2)) { if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(), Typedef2->getIdentifier()) || !::IsStructurallyEquivalent(*this, Typedef1->getUnderlyingType(), Typedef2->getUnderlyingType())) Equivalent = false; } else { // Typedef/non-typedef mismatch. Equivalent = false; } } else if (ClassTemplateDecl *ClassTemplate1 = dyn_cast<ClassTemplateDecl>(D1)) { if (ClassTemplateDecl *ClassTemplate2 = dyn_cast<ClassTemplateDecl>(D2)) { if (!::IsStructurallyEquivalent(ClassTemplate1->getIdentifier(), ClassTemplate2->getIdentifier()) || !::IsStructurallyEquivalent(*this, ClassTemplate1, ClassTemplate2)) Equivalent = false; } else { // Class template/non-class-template mismatch. Equivalent = false; } } else if (TemplateTypeParmDecl *TTP1= dyn_cast<TemplateTypeParmDecl>(D1)) { if (TemplateTypeParmDecl *TTP2 = dyn_cast<TemplateTypeParmDecl>(D2)) { if (!::IsStructurallyEquivalent(*this, TTP1, TTP2)) Equivalent = false; } else { // Kind mismatch. Equivalent = false; } } else if (NonTypeTemplateParmDecl *NTTP1 = dyn_cast<NonTypeTemplateParmDecl>(D1)) { if (NonTypeTemplateParmDecl *NTTP2 = dyn_cast<NonTypeTemplateParmDecl>(D2)) { if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2)) Equivalent = false; } else { // Kind mismatch. Equivalent = false; } } else if (TemplateTemplateParmDecl *TTP1 = dyn_cast<TemplateTemplateParmDecl>(D1)) { if (TemplateTemplateParmDecl *TTP2 = dyn_cast<TemplateTemplateParmDecl>(D2)) { if (!::IsStructurallyEquivalent(*this, TTP1, TTP2)) Equivalent = false; } else { // Kind mismatch. Equivalent = false; } } if (!Equivalent) { // Note that these two declarations are not equivalent (and we already // know about it). NonEquivalentDecls.insert(std::make_pair(D1->getCanonicalDecl(), D2->getCanonicalDecl())); return true; } // FIXME: Check other declaration kinds! } return false; } //---------------------------------------------------------------------------- // Import Types //---------------------------------------------------------------------------- QualType ASTNodeImporter::VisitType(const Type *T) { Importer.FromDiag(SourceLocation(), diag::err_unsupported_ast_node) << T->getTypeClassName(); return QualType(); } QualType ASTNodeImporter::VisitBuiltinType(const BuiltinType *T) { switch (T->getKind()) { #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ case BuiltinType::Id: \ return Importer.getToContext().SingletonId; #include "clang/Basic/OpenCLImageTypes.def" #define SHARED_SINGLETON_TYPE(Expansion) #define BUILTIN_TYPE(Id, SingletonId) \ case BuiltinType::Id: return Importer.getToContext().SingletonId; #include "clang/AST/BuiltinTypes.def" // FIXME: for Char16, Char32, and NullPtr, make sure that the "to" // context supports C++. // FIXME: for ObjCId, ObjCClass, and ObjCSel, make sure that the "to" // context supports ObjC. case BuiltinType::Char_U: // The context we're importing from has an unsigned 'char'. If we're // importing into a context with a signed 'char', translate to // 'unsigned char' instead. if (Importer.getToContext().getLangOpts().CharIsSigned) return Importer.getToContext().UnsignedCharTy; return Importer.getToContext().CharTy; case BuiltinType::Char_S: // The context we're importing from has an unsigned 'char'. If we're // importing into a context with a signed 'char', translate to // 'unsigned char' instead. if (!Importer.getToContext().getLangOpts().CharIsSigned) return Importer.getToContext().SignedCharTy; return Importer.getToContext().CharTy; case BuiltinType::WChar_S: case BuiltinType::WChar_U: // FIXME: If not in C++, shall we translate to the C equivalent of // wchar_t? return Importer.getToContext().WCharTy; } llvm_unreachable("Invalid BuiltinType Kind!"); } QualType ASTNodeImporter::VisitComplexType(const ComplexType *T) { QualType ToElementType = Importer.Import(T->getElementType()); if (ToElementType.isNull()) return QualType(); return Importer.getToContext().getComplexType(ToElementType); } QualType ASTNodeImporter::VisitPointerType(const PointerType *T) { QualType ToPointeeType = Importer.Import(T->getPointeeType()); if (ToPointeeType.isNull()) return QualType(); return Importer.getToContext().getPointerType(ToPointeeType); } QualType ASTNodeImporter::VisitBlockPointerType(const BlockPointerType *T) { // FIXME: Check for blocks support in "to" context. QualType ToPointeeType = Importer.Import(T->getPointeeType()); if (ToPointeeType.isNull()) return QualType(); return Importer.getToContext().getBlockPointerType(ToPointeeType); } QualType ASTNodeImporter::VisitLValueReferenceType(const LValueReferenceType *T) { // FIXME: Check for C++ support in "to" context. QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten()); if (ToPointeeType.isNull()) return QualType(); return Importer.getToContext().getLValueReferenceType(ToPointeeType); } QualType ASTNodeImporter::VisitRValueReferenceType(const RValueReferenceType *T) { // FIXME: Check for C++0x support in "to" context. QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten()); if (ToPointeeType.isNull()) return QualType(); return Importer.getToContext().getRValueReferenceType(ToPointeeType); } QualType ASTNodeImporter::VisitMemberPointerType(const MemberPointerType *T) { // FIXME: Check for C++ support in "to" context. QualType ToPointeeType = Importer.Import(T->getPointeeType()); if (ToPointeeType.isNull()) return QualType(); QualType ClassType = Importer.Import(QualType(T->getClass(), 0)); return Importer.getToContext().getMemberPointerType(ToPointeeType, ClassType.getTypePtr()); } QualType ASTNodeImporter::VisitConstantArrayType(const ConstantArrayType *T) { QualType ToElementType = Importer.Import(T->getElementType()); if (ToElementType.isNull()) return QualType(); return Importer.getToContext().getConstantArrayType(ToElementType, T->getSize(), T->getSizeModifier(), T->getIndexTypeCVRQualifiers()); } QualType ASTNodeImporter::VisitIncompleteArrayType(const IncompleteArrayType *T) { QualType ToElementType = Importer.Import(T->getElementType()); if (ToElementType.isNull()) return QualType(); return Importer.getToContext().getIncompleteArrayType(ToElementType, T->getSizeModifier(), T->getIndexTypeCVRQualifiers()); } QualType ASTNodeImporter::VisitVariableArrayType(const VariableArrayType *T) { QualType ToElementType = Importer.Import(T->getElementType()); if (ToElementType.isNull()) return QualType(); Expr *Size = Importer.Import(T->getSizeExpr()); if (!Size) return QualType(); SourceRange Brackets = Importer.Import(T->getBracketsRange()); return Importer.getToContext().getVariableArrayType(ToElementType, Size, T->getSizeModifier(), T->getIndexTypeCVRQualifiers(), Brackets); } QualType ASTNodeImporter::VisitVectorType(const VectorType *T) { QualType ToElementType = Importer.Import(T->getElementType()); if (ToElementType.isNull()) return QualType(); return Importer.getToContext().getVectorType(ToElementType, T->getNumElements(), T->getVectorKind()); } QualType ASTNodeImporter::VisitExtVectorType(const ExtVectorType *T) { QualType ToElementType = Importer.Import(T->getElementType()); if (ToElementType.isNull()) return QualType(); return Importer.getToContext().getExtVectorType(ToElementType, T->getNumElements()); } QualType ASTNodeImporter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) { // FIXME: What happens if we're importing a function without a prototype // into C++? Should we make it variadic? QualType ToResultType = Importer.Import(T->getReturnType()); if (ToResultType.isNull()) return QualType(); return Importer.getToContext().getFunctionNoProtoType(ToResultType, T->getExtInfo()); } QualType ASTNodeImporter::VisitFunctionProtoType(const FunctionProtoType *T) { QualType ToResultType = Importer.Import(T->getReturnType()); if (ToResultType.isNull()) return QualType(); // Import argument types SmallVector<QualType, 4> ArgTypes; for (const auto &A : T->param_types()) { QualType ArgType = Importer.Import(A); if (ArgType.isNull()) return QualType(); ArgTypes.push_back(ArgType); } // Import exception types SmallVector<QualType, 4> ExceptionTypes; for (const auto &E : T->exceptions()) { QualType ExceptionType = Importer.Import(E); if (ExceptionType.isNull()) return QualType(); ExceptionTypes.push_back(ExceptionType); } FunctionProtoType::ExtProtoInfo FromEPI = T->getExtProtoInfo(); FunctionProtoType::ExtProtoInfo ToEPI; ToEPI.ExtInfo = FromEPI.ExtInfo; ToEPI.Variadic = FromEPI.Variadic; ToEPI.HasTrailingReturn = FromEPI.HasTrailingReturn; ToEPI.TypeQuals = FromEPI.TypeQuals; ToEPI.RefQualifier = FromEPI.RefQualifier; ToEPI.ExceptionSpec.Type = FromEPI.ExceptionSpec.Type; ToEPI.ExceptionSpec.Exceptions = ExceptionTypes; ToEPI.ExceptionSpec.NoexceptExpr = Importer.Import(FromEPI.ExceptionSpec.NoexceptExpr); ToEPI.ExceptionSpec.SourceDecl = cast_or_null<FunctionDecl>( Importer.Import(FromEPI.ExceptionSpec.SourceDecl)); ToEPI.ExceptionSpec.SourceTemplate = cast_or_null<FunctionDecl>( Importer.Import(FromEPI.ExceptionSpec.SourceTemplate)); return Importer.getToContext().getFunctionType(ToResultType, ArgTypes, ToEPI); } QualType ASTNodeImporter::VisitParenType(const ParenType *T) { QualType ToInnerType = Importer.Import(T->getInnerType()); if (ToInnerType.isNull()) return QualType(); return Importer.getToContext().getParenType(ToInnerType); } QualType ASTNodeImporter::VisitTypedefType(const TypedefType *T) { TypedefNameDecl *ToDecl = dyn_cast_or_null<TypedefNameDecl>(Importer.Import(T->getDecl())); if (!ToDecl) return QualType(); return Importer.getToContext().getTypeDeclType(ToDecl); } QualType ASTNodeImporter::VisitTypeOfExprType(const TypeOfExprType *T) { Expr *ToExpr = Importer.Import(T->getUnderlyingExpr()); if (!ToExpr) return QualType(); return Importer.getToContext().getTypeOfExprType(ToExpr); } QualType ASTNodeImporter::VisitTypeOfType(const TypeOfType *T) { QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType()); if (ToUnderlyingType.isNull()) return QualType(); return Importer.getToContext().getTypeOfType(ToUnderlyingType); } QualType ASTNodeImporter::VisitDecltypeType(const DecltypeType *T) { // FIXME: Make sure that the "to" context supports C++0x! Expr *ToExpr = Importer.Import(T->getUnderlyingExpr()); if (!ToExpr) return QualType(); QualType UnderlyingType = Importer.Import(T->getUnderlyingType()); if (UnderlyingType.isNull()) return QualType(); return Importer.getToContext().getDecltypeType(ToExpr, UnderlyingType); } QualType ASTNodeImporter::VisitUnaryTransformType(const UnaryTransformType *T) { QualType ToBaseType = Importer.Import(T->getBaseType()); QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType()); if (ToBaseType.isNull() || ToUnderlyingType.isNull()) return QualType(); return Importer.getToContext().getUnaryTransformType(ToBaseType, ToUnderlyingType, T->getUTTKind()); } QualType ASTNodeImporter::VisitAutoType(const AutoType *T) { // FIXME: Make sure that the "to" context supports C++11! QualType FromDeduced = T->getDeducedType(); QualType ToDeduced; if (!FromDeduced.isNull()) { ToDeduced = Importer.Import(FromDeduced); if (ToDeduced.isNull()) return QualType(); } return Importer.getToContext().getAutoType(ToDeduced, T->getKeyword(), /*IsDependent*/false); } QualType ASTNodeImporter::VisitInjectedClassNameType( const InjectedClassNameType *T) { CXXRecordDecl *D = cast_or_null<CXXRecordDecl>(Importer.Import(T->getDecl())); if (!D) return QualType(); QualType InjType = Importer.Import(T->getInjectedSpecializationType()); if (InjType.isNull()) return QualType(); // FIXME: ASTContext::getInjectedClassNameType is not suitable for AST reading // See comments in InjectedClassNameType definition for details // return Importer.getToContext().getInjectedClassNameType(D, InjType); enum { TypeAlignmentInBits = 4, TypeAlignment = 1 << TypeAlignmentInBits }; return QualType(new (Importer.getToContext(), TypeAlignment) InjectedClassNameType(D, InjType), 0); } QualType ASTNodeImporter::VisitRecordType(const RecordType *T) { RecordDecl *ToDecl = dyn_cast_or_null<RecordDecl>(Importer.Import(T->getDecl())); if (!ToDecl) return QualType(); return Importer.getToContext().getTagDeclType(ToDecl); } QualType ASTNodeImporter::VisitEnumType(const EnumType *T) { EnumDecl *ToDecl = dyn_cast_or_null<EnumDecl>(Importer.Import(T->getDecl())); if (!ToDecl) return QualType(); return Importer.getToContext().getTagDeclType(ToDecl); } QualType ASTNodeImporter::VisitAttributedType(const AttributedType *T) { QualType FromModifiedType = T->getModifiedType(); QualType FromEquivalentType = T->getEquivalentType(); QualType ToModifiedType; QualType ToEquivalentType; if (!FromModifiedType.isNull()) { ToModifiedType = Importer.Import(FromModifiedType); if (ToModifiedType.isNull()) return QualType(); } if (!FromEquivalentType.isNull()) { ToEquivalentType = Importer.Import(FromEquivalentType); if (ToEquivalentType.isNull()) return QualType(); } return Importer.getToContext().getAttributedType(T->getAttrKind(), ToModifiedType, ToEquivalentType); } QualType ASTNodeImporter::VisitTemplateTypeParmType( const TemplateTypeParmType *T) { TemplateTypeParmDecl *ParmDecl = cast_or_null<TemplateTypeParmDecl>(Importer.Import(T->getDecl())); if (!ParmDecl && T->getDecl()) return QualType(); return Importer.getToContext().getTemplateTypeParmType( T->getDepth(), T->getIndex(), T->isParameterPack(), ParmDecl); } QualType ASTNodeImporter::VisitTemplateSpecializationType( const TemplateSpecializationType *T) { TemplateName ToTemplate = Importer.Import(T->getTemplateName()); if (ToTemplate.isNull()) return QualType(); SmallVector<TemplateArgument, 2> ToTemplateArgs; if (ImportTemplateArguments(T->getArgs(), T->getNumArgs(), ToTemplateArgs)) return QualType(); QualType ToCanonType; if (!QualType(T, 0).isCanonical()) { QualType FromCanonType = Importer.getFromContext().getCanonicalType(QualType(T, 0)); ToCanonType =Importer.Import(FromCanonType); if (ToCanonType.isNull()) return QualType(); } return Importer.getToContext().getTemplateSpecializationType(ToTemplate, ToTemplateArgs, ToCanonType); } QualType ASTNodeImporter::VisitElaboratedType(const ElaboratedType *T) { NestedNameSpecifier *ToQualifier = nullptr; // Note: the qualifier in an ElaboratedType is optional. if (T->getQualifier()) { ToQualifier = Importer.Import(T->getQualifier()); if (!ToQualifier) return QualType(); } QualType ToNamedType = Importer.Import(T->getNamedType()); if (ToNamedType.isNull()) return QualType(); return Importer.getToContext().getElaboratedType(T->getKeyword(), ToQualifier, ToNamedType); } QualType ASTNodeImporter::VisitObjCInterfaceType(const ObjCInterfaceType *T) { ObjCInterfaceDecl *Class = dyn_cast_or_null<ObjCInterfaceDecl>(Importer.Import(T->getDecl())); if (!Class) return QualType(); return Importer.getToContext().getObjCInterfaceType(Class); } QualType ASTNodeImporter::VisitObjCObjectType(const ObjCObjectType *T) { QualType ToBaseType = Importer.Import(T->getBaseType()); if (ToBaseType.isNull()) return QualType(); SmallVector<QualType, 4> TypeArgs; for (auto TypeArg : T->getTypeArgsAsWritten()) { QualType ImportedTypeArg = Importer.Import(TypeArg); if (ImportedTypeArg.isNull()) return QualType(); TypeArgs.push_back(ImportedTypeArg); } SmallVector<ObjCProtocolDecl *, 4> Protocols; for (auto *P : T->quals()) { ObjCProtocolDecl *Protocol = dyn_cast_or_null<ObjCProtocolDecl>(Importer.Import(P)); if (!Protocol) return QualType(); Protocols.push_back(Protocol); } return Importer.getToContext().getObjCObjectType(ToBaseType, TypeArgs, Protocols, T->isKindOfTypeAsWritten()); } QualType ASTNodeImporter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) { QualType ToPointeeType = Importer.Import(T->getPointeeType()); if (ToPointeeType.isNull()) return QualType(); return Importer.getToContext().getObjCObjectPointerType(ToPointeeType); } //---------------------------------------------------------------------------- // Import Declarations //---------------------------------------------------------------------------- bool ASTNodeImporter::ImportDeclParts(NamedDecl *D, DeclContext *&DC, DeclContext *&LexicalDC, DeclarationName &Name, NamedDecl *&ToD, SourceLocation &Loc) { // Import the context of this declaration. DC = Importer.ImportContext(D->getDeclContext()); if (!DC) return true; LexicalDC = DC; if (D->getDeclContext() != D->getLexicalDeclContext()) { LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); if (!LexicalDC) return true; } // Import the name of this declaration. Name = Importer.Import(D->getDeclName()); if (D->getDeclName() && !Name) return true; // Import the location of this declaration. Loc = Importer.Import(D->getLocation()); ToD = cast_or_null<NamedDecl>(Importer.GetAlreadyImportedOrNull(D)); return false; } void ASTNodeImporter::ImportDefinitionIfNeeded(Decl *FromD, Decl *ToD) { if (!FromD) return; if (!ToD) { ToD = Importer.Import(FromD); if (!ToD) return; } if (RecordDecl *FromRecord = dyn_cast<RecordDecl>(FromD)) { if (RecordDecl *ToRecord = cast_or_null<RecordDecl>(ToD)) { if (FromRecord->getDefinition() && FromRecord->isCompleteDefinition() && !ToRecord->getDefinition()) { ImportDefinition(FromRecord, ToRecord); } } return; } if (EnumDecl *FromEnum = dyn_cast<EnumDecl>(FromD)) { if (EnumDecl *ToEnum = cast_or_null<EnumDecl>(ToD)) { if (FromEnum->getDefinition() && !ToEnum->getDefinition()) { ImportDefinition(FromEnum, ToEnum); } } return; } } void ASTNodeImporter::ImportDeclarationNameLoc(const DeclarationNameInfo &From, DeclarationNameInfo& To) { // NOTE: To.Name and To.Loc are already imported. // We only have to import To.LocInfo. switch (To.getName().getNameKind()) { case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXUsingDirective: return; case DeclarationName::CXXOperatorName: { SourceRange Range = From.getCXXOperatorNameRange(); To.setCXXOperatorNameRange(Importer.Import(Range)); return; } case DeclarationName::CXXLiteralOperatorName: { SourceLocation Loc = From.getCXXLiteralOperatorNameLoc(); To.setCXXLiteralOperatorNameLoc(Importer.Import(Loc)); return; } case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: { TypeSourceInfo *FromTInfo = From.getNamedTypeInfo(); To.setNamedTypeInfo(Importer.Import(FromTInfo)); return; } } llvm_unreachable("Unknown name kind."); } void ASTNodeImporter::ImportDeclContext(DeclContext *FromDC, bool ForceImport) { if (Importer.isMinimalImport() && !ForceImport) { Importer.ImportContext(FromDC); return; } for (auto *From : FromDC->decls()) Importer.Import(From); } bool ASTNodeImporter::ImportDefinition(RecordDecl *From, RecordDecl *To, ImportDefinitionKind Kind) { if (To->getDefinition() || To->isBeingDefined()) { if (Kind == IDK_Everything) ImportDeclContext(From, /*ForceImport=*/true); return false; } To->startDefinition(); // Add base classes. if (CXXRecordDecl *ToCXX = dyn_cast<CXXRecordDecl>(To)) { CXXRecordDecl *FromCXX = cast<CXXRecordDecl>(From); struct CXXRecordDecl::DefinitionData &ToData = ToCXX->data(); struct CXXRecordDecl::DefinitionData &FromData = FromCXX->data(); ToData.UserDeclaredConstructor = FromData.UserDeclaredConstructor; ToData.UserDeclaredSpecialMembers = FromData.UserDeclaredSpecialMembers; ToData.Aggregate = FromData.Aggregate; ToData.PlainOldData = FromData.PlainOldData; ToData.Empty = FromData.Empty; ToData.Polymorphic = FromData.Polymorphic; ToData.Abstract = FromData.Abstract; ToData.IsStandardLayout = FromData.IsStandardLayout; ToData.HasNoNonEmptyBases = FromData.HasNoNonEmptyBases; ToData.HasPrivateFields = FromData.HasPrivateFields; ToData.HasProtectedFields = FromData.HasProtectedFields; ToData.HasPublicFields = FromData.HasPublicFields; ToData.HasMutableFields = FromData.HasMutableFields; ToData.HasVariantMembers = FromData.HasVariantMembers; ToData.HasOnlyCMembers = FromData.HasOnlyCMembers; ToData.HasInClassInitializer = FromData.HasInClassInitializer; ToData.HasUninitializedReferenceMember = FromData.HasUninitializedReferenceMember; ToData.HasUninitializedFields = FromData.HasUninitializedFields; ToData.HasInheritedConstructor = FromData.HasInheritedConstructor; ToData.HasInheritedAssignment = FromData.HasInheritedAssignment; ToData.NeedOverloadResolutionForMoveConstructor = FromData.NeedOverloadResolutionForMoveConstructor; ToData.NeedOverloadResolutionForMoveAssignment = FromData.NeedOverloadResolutionForMoveAssignment; ToData.NeedOverloadResolutionForDestructor = FromData.NeedOverloadResolutionForDestructor; ToData.DefaultedMoveConstructorIsDeleted = FromData.DefaultedMoveConstructorIsDeleted; ToData.DefaultedMoveAssignmentIsDeleted = FromData.DefaultedMoveAssignmentIsDeleted; ToData.DefaultedDestructorIsDeleted = FromData.DefaultedDestructorIsDeleted; ToData.HasTrivialSpecialMembers = FromData.HasTrivialSpecialMembers; ToData.HasIrrelevantDestructor = FromData.HasIrrelevantDestructor; ToData.HasConstexprNonCopyMoveConstructor = FromData.HasConstexprNonCopyMoveConstructor; ToData.HasDefaultedDefaultConstructor = FromData.HasDefaultedDefaultConstructor; ToData.DefaultedDefaultConstructorIsConstexpr = FromData.DefaultedDefaultConstructorIsConstexpr; ToData.HasConstexprDefaultConstructor = FromData.HasConstexprDefaultConstructor; ToData.HasNonLiteralTypeFieldsOrBases = FromData.HasNonLiteralTypeFieldsOrBases; // ComputedVisibleConversions not imported. ToData.UserProvidedDefaultConstructor = FromData.UserProvidedDefaultConstructor; ToData.DeclaredSpecialMembers = FromData.DeclaredSpecialMembers; ToData.ImplicitCopyConstructorHasConstParam = FromData.ImplicitCopyConstructorHasConstParam; ToData.ImplicitCopyAssignmentHasConstParam = FromData.ImplicitCopyAssignmentHasConstParam; ToData.HasDeclaredCopyConstructorWithConstParam = FromData.HasDeclaredCopyConstructorWithConstParam; ToData.HasDeclaredCopyAssignmentWithConstParam = FromData.HasDeclaredCopyAssignmentWithConstParam; ToData.IsLambda = FromData.IsLambda; SmallVector<CXXBaseSpecifier *, 4> Bases; for (const auto &Base1 : FromCXX->bases()) { QualType T = Importer.Import(Base1.getType()); if (T.isNull()) return true; SourceLocation EllipsisLoc; if (Base1.isPackExpansion()) EllipsisLoc = Importer.Import(Base1.getEllipsisLoc()); // Ensure that we have a definition for the base. ImportDefinitionIfNeeded(Base1.getType()->getAsCXXRecordDecl()); Bases.push_back( new (Importer.getToContext()) CXXBaseSpecifier(Importer.Import(Base1.getSourceRange()), Base1.isVirtual(), Base1.isBaseOfClass(), Base1.getAccessSpecifierAsWritten(), Importer.Import(Base1.getTypeSourceInfo()), EllipsisLoc)); } if (!Bases.empty()) ToCXX->setBases(Bases.data(), Bases.size()); } if (shouldForceImportDeclContext(Kind)) ImportDeclContext(From, /*ForceImport=*/true); To->completeDefinition(); return false; } bool ASTNodeImporter::ImportDefinition(VarDecl *From, VarDecl *To, ImportDefinitionKind Kind) { if (To->getAnyInitializer()) return false; // FIXME: Can we really import any initializer? Alternatively, we could force // ourselves to import every declaration of a variable and then only use // getInit() here. To->setInit(Importer.Import(const_cast<Expr *>(From->getAnyInitializer()))); // FIXME: Other bits to merge? return false; } bool ASTNodeImporter::ImportDefinition(EnumDecl *From, EnumDecl *To, ImportDefinitionKind Kind) { if (To->getDefinition() || To->isBeingDefined()) { if (Kind == IDK_Everything) ImportDeclContext(From, /*ForceImport=*/true); return false; } To->startDefinition(); QualType T = Importer.Import(Importer.getFromContext().getTypeDeclType(From)); if (T.isNull()) return true; QualType ToPromotionType = Importer.Import(From->getPromotionType()); if (ToPromotionType.isNull()) return true; if (shouldForceImportDeclContext(Kind)) ImportDeclContext(From, /*ForceImport=*/true); // FIXME: we might need to merge the number of positive or negative bits // if the enumerator lists don't match. To->completeDefinition(T, ToPromotionType, From->getNumPositiveBits(), From->getNumNegativeBits()); return false; } TemplateParameterList *ASTNodeImporter::ImportTemplateParameterList( TemplateParameterList *Params) { SmallVector<NamedDecl *, 4> ToParams; ToParams.reserve(Params->size()); for (TemplateParameterList::iterator P = Params->begin(), PEnd = Params->end(); P != PEnd; ++P) { Decl *To = Importer.Import(*P); if (!To) return nullptr; ToParams.push_back(cast<NamedDecl>(To)); } return TemplateParameterList::Create(Importer.getToContext(), Importer.Import(Params->getTemplateLoc()), Importer.Import(Params->getLAngleLoc()), ToParams, Importer.Import(Params->getRAngleLoc())); } TemplateArgument ASTNodeImporter::ImportTemplateArgument(const TemplateArgument &From) { switch (From.getKind()) { case TemplateArgument::Null: return TemplateArgument(); case TemplateArgument::Type: { QualType ToType = Importer.Import(From.getAsType()); if (ToType.isNull()) return TemplateArgument(); return TemplateArgument(ToType); } case TemplateArgument::Integral: { QualType ToType = Importer.Import(From.getIntegralType()); if (ToType.isNull()) return TemplateArgument(); return TemplateArgument(From, ToType); } case TemplateArgument::Declaration: { ValueDecl *To = cast_or_null<ValueDecl>(Importer.Import(From.getAsDecl())); QualType ToType = Importer.Import(From.getParamTypeForDecl()); if (!To || ToType.isNull()) return TemplateArgument(); return TemplateArgument(To, ToType); } case TemplateArgument::NullPtr: { QualType ToType = Importer.Import(From.getNullPtrType()); if (ToType.isNull()) return TemplateArgument(); return TemplateArgument(ToType, /*isNullPtr*/true); } case TemplateArgument::Template: { TemplateName ToTemplate = Importer.Import(From.getAsTemplate()); if (ToTemplate.isNull()) return TemplateArgument(); return TemplateArgument(ToTemplate); } case TemplateArgument::TemplateExpansion: { TemplateName ToTemplate = Importer.Import(From.getAsTemplateOrTemplatePattern()); if (ToTemplate.isNull()) return TemplateArgument(); return TemplateArgument(ToTemplate, From.getNumTemplateExpansions()); } case TemplateArgument::Expression: if (Expr *ToExpr = Importer.Import(From.getAsExpr())) return TemplateArgument(ToExpr); return TemplateArgument(); case TemplateArgument::Pack: { SmallVector<TemplateArgument, 2> ToPack; ToPack.reserve(From.pack_size()); if (ImportTemplateArguments(From.pack_begin(), From.pack_size(), ToPack)) return TemplateArgument(); return TemplateArgument( llvm::makeArrayRef(ToPack).copy(Importer.getToContext())); } } llvm_unreachable("Invalid template argument kind"); } bool ASTNodeImporter::ImportTemplateArguments(const TemplateArgument *FromArgs, unsigned NumFromArgs, SmallVectorImpl<TemplateArgument> &ToArgs) { for (unsigned I = 0; I != NumFromArgs; ++I) { TemplateArgument To = ImportTemplateArgument(FromArgs[I]); if (To.isNull() && !FromArgs[I].isNull()) return true; ToArgs.push_back(To); } return false; } bool ASTNodeImporter::IsStructuralMatch(RecordDecl *FromRecord, RecordDecl *ToRecord, bool Complain) { // Eliminate a potential failure point where we attempt to re-import // something we're trying to import while completing ToRecord. Decl *ToOrigin = Importer.GetOriginalDecl(ToRecord); if (ToOrigin) { RecordDecl *ToOriginRecord = dyn_cast<RecordDecl>(ToOrigin); if (ToOriginRecord) ToRecord = ToOriginRecord; } StructuralEquivalenceContext Ctx(Importer.getFromContext(), ToRecord->getASTContext(), Importer.getNonEquivalentDecls(), false, Complain); return Ctx.IsStructurallyEquivalent(FromRecord, ToRecord); } bool ASTNodeImporter::IsStructuralMatch(VarDecl *FromVar, VarDecl *ToVar, bool Complain) { StructuralEquivalenceContext Ctx( Importer.getFromContext(), Importer.getToContext(), Importer.getNonEquivalentDecls(), false, Complain); return Ctx.IsStructurallyEquivalent(FromVar, ToVar); } bool ASTNodeImporter::IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToEnum) { StructuralEquivalenceContext Ctx(Importer.getFromContext(), Importer.getToContext(), Importer.getNonEquivalentDecls()); return Ctx.IsStructurallyEquivalent(FromEnum, ToEnum); } bool ASTNodeImporter::IsStructuralMatch(EnumConstantDecl *FromEC, EnumConstantDecl *ToEC) { const llvm::APSInt &FromVal = FromEC->getInitVal(); const llvm::APSInt &ToVal = ToEC->getInitVal(); return FromVal.isSigned() == ToVal.isSigned() && FromVal.getBitWidth() == ToVal.getBitWidth() && FromVal == ToVal; } bool ASTNodeImporter::IsStructuralMatch(ClassTemplateDecl *From, ClassTemplateDecl *To) { StructuralEquivalenceContext Ctx(Importer.getFromContext(), Importer.getToContext(), Importer.getNonEquivalentDecls()); return Ctx.IsStructurallyEquivalent(From, To); } bool ASTNodeImporter::IsStructuralMatch(VarTemplateDecl *From, VarTemplateDecl *To) { StructuralEquivalenceContext Ctx(Importer.getFromContext(), Importer.getToContext(), Importer.getNonEquivalentDecls()); return Ctx.IsStructurallyEquivalent(From, To); } Decl *ASTNodeImporter::VisitDecl(Decl *D) { Importer.FromDiag(D->getLocation(), diag::err_unsupported_ast_node) << D->getDeclKindName(); return nullptr; } Decl *ASTNodeImporter::VisitTranslationUnitDecl(TranslationUnitDecl *D) { TranslationUnitDecl *ToD = Importer.getToContext().getTranslationUnitDecl(); Importer.Imported(D, ToD); return ToD; } Decl *ASTNodeImporter::VisitAccessSpecDecl(AccessSpecDecl *D) { SourceLocation Loc = Importer.Import(D->getLocation()); SourceLocation ColonLoc = Importer.Import(D->getColonLoc()); // Import the context of this declaration. DeclContext *DC = Importer.ImportContext(D->getDeclContext()); if (!DC) return nullptr; AccessSpecDecl *accessSpecDecl = AccessSpecDecl::Create(Importer.getToContext(), D->getAccess(), DC, Loc, ColonLoc); if (!accessSpecDecl) return nullptr; // Lexical DeclContext and Semantic DeclContext // is always the same for the accessSpec. accessSpecDecl->setLexicalDeclContext(DC); DC->addDeclInternal(accessSpecDecl); return accessSpecDecl; } Decl *ASTNodeImporter::VisitNamespaceDecl(NamespaceDecl *D) { // Import the major distinguishing characteristics of this namespace. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; NamespaceDecl *MergeWithNamespace = nullptr; if (!Name) { // This is an anonymous namespace. Adopt an existing anonymous // namespace if we can. // FIXME: Not testable. if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC)) MergeWithNamespace = TU->getAnonymousNamespace(); else MergeWithNamespace = cast<NamespaceDecl>(DC)->getAnonymousNamespace(); } else { SmallVector<NamedDecl *, 4> ConflictingDecls; SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Namespace)) continue; if (NamespaceDecl *FoundNS = dyn_cast<NamespaceDecl>(FoundDecls[I])) { MergeWithNamespace = FoundNS; ConflictingDecls.clear(); break; } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Namespace, ConflictingDecls.data(), ConflictingDecls.size()); } } // Create the "to" namespace, if needed. NamespaceDecl *ToNamespace = MergeWithNamespace; if (!ToNamespace) { ToNamespace = NamespaceDecl::Create(Importer.getToContext(), DC, D->isInline(), Importer.Import(D->getLocStart()), Loc, Name.getAsIdentifierInfo(), /*PrevDecl=*/nullptr); ToNamespace->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(ToNamespace); // If this is an anonymous namespace, register it as the anonymous // namespace within its context. if (!Name) { if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC)) TU->setAnonymousNamespace(ToNamespace); else cast<NamespaceDecl>(DC)->setAnonymousNamespace(ToNamespace); } } Importer.Imported(D, ToNamespace); ImportDeclContext(D); return ToNamespace; } Decl *ASTNodeImporter::VisitTypedefNameDecl(TypedefNameDecl *D, bool IsAlias) { // Import the major distinguishing characteristics of this typedef. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; // If this typedef is not in block scope, determine whether we've // seen a typedef with the same name (that we can merge with) or any // other entity by that name (which name lookup could conflict with). if (!DC->isFunctionOrMethod()) { SmallVector<NamedDecl *, 4> ConflictingDecls; unsigned IDNS = Decl::IDNS_Ordinary; SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(IDNS)) continue; if (TypedefNameDecl *FoundTypedef = dyn_cast<TypedefNameDecl>(FoundDecls[I])) { if (Importer.IsStructurallyEquivalent(D->getUnderlyingType(), FoundTypedef->getUnderlyingType())) return Importer.Imported(D, FoundTypedef); } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, IDNS, ConflictingDecls.data(), ConflictingDecls.size()); if (!Name) return nullptr; } } // Import the underlying type of this typedef; QualType T = Importer.Import(D->getUnderlyingType()); if (T.isNull()) return nullptr; // Create the new typedef node. TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); SourceLocation StartL = Importer.Import(D->getLocStart()); TypedefNameDecl *ToTypedef; if (IsAlias) ToTypedef = TypeAliasDecl::Create(Importer.getToContext(), DC, StartL, Loc, Name.getAsIdentifierInfo(), TInfo); else ToTypedef = TypedefDecl::Create(Importer.getToContext(), DC, StartL, Loc, Name.getAsIdentifierInfo(), TInfo); ToTypedef->setAccess(D->getAccess()); ToTypedef->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToTypedef); LexicalDC->addDeclInternal(ToTypedef); return ToTypedef; } Decl *ASTNodeImporter::VisitTypedefDecl(TypedefDecl *D) { return VisitTypedefNameDecl(D, /*IsAlias=*/false); } Decl *ASTNodeImporter::VisitTypeAliasDecl(TypeAliasDecl *D) { return VisitTypedefNameDecl(D, /*IsAlias=*/true); } Decl *ASTNodeImporter::VisitLabelDecl(LabelDecl *D) { // Import the major distinguishing characteristics of this label. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; assert(LexicalDC->isFunctionOrMethod()); LabelDecl *ToLabel = D->isGnuLocal() ? LabelDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getLocation()), Name.getAsIdentifierInfo(), Importer.Import(D->getLocStart())) : LabelDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getLocation()), Name.getAsIdentifierInfo()); Importer.Imported(D, ToLabel); LabelStmt *Label = cast_or_null<LabelStmt>(Importer.Import(D->getStmt())); if (!Label) return nullptr; ToLabel->setStmt(Label); ToLabel->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(ToLabel); return ToLabel; } Decl *ASTNodeImporter::VisitEnumDecl(EnumDecl *D) { // Import the major distinguishing characteristics of this enum. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; // Figure out what enum name we're looking for. unsigned IDNS = Decl::IDNS_Tag; DeclarationName SearchName = Name; if (!SearchName && D->getTypedefNameForAnonDecl()) { SearchName = Importer.Import(D->getTypedefNameForAnonDecl()->getDeclName()); IDNS = Decl::IDNS_Ordinary; } else if (Importer.getToContext().getLangOpts().CPlusPlus) IDNS |= Decl::IDNS_Ordinary; // We may already have an enum of the same name; try to find and match it. if (!DC->isFunctionOrMethod() && SearchName) { SmallVector<NamedDecl *, 4> ConflictingDecls; SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(IDNS)) continue; Decl *Found = FoundDecls[I]; if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Found)) { if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>()) Found = Tag->getDecl(); } if (EnumDecl *FoundEnum = dyn_cast<EnumDecl>(Found)) { if (IsStructuralMatch(D, FoundEnum)) return Importer.Imported(D, FoundEnum); } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, IDNS, ConflictingDecls.data(), ConflictingDecls.size()); } } // Create the enum declaration. EnumDecl *D2 = EnumDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getLocStart()), Loc, Name.getAsIdentifierInfo(), nullptr, D->isScoped(), D->isScopedUsingClassTag(), D->isFixed()); // Import the qualifier, if any. D2->setQualifierInfo(Importer.Import(D->getQualifierLoc())); D2->setAccess(D->getAccess()); D2->setLexicalDeclContext(LexicalDC); Importer.Imported(D, D2); LexicalDC->addDeclInternal(D2); // Import the integer type. QualType ToIntegerType = Importer.Import(D->getIntegerType()); if (ToIntegerType.isNull()) return nullptr; D2->setIntegerType(ToIntegerType); // Import the definition if (D->isCompleteDefinition() && ImportDefinition(D, D2)) return nullptr; return D2; } Decl *ASTNodeImporter::VisitRecordDecl(RecordDecl *D) { // If this record has a definition in the translation unit we're coming from, // but this particular declaration is not that definition, import the // definition and map to that. TagDecl *Definition = D->getDefinition(); if (Definition && Definition != D) { Decl *ImportedDef = Importer.Import(Definition); if (!ImportedDef) return nullptr; return Importer.Imported(D, ImportedDef); } // Import the major distinguishing characteristics of this record. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; // Figure out what structure name we're looking for. unsigned IDNS = Decl::IDNS_Tag; DeclarationName SearchName = Name; if (!SearchName && D->getTypedefNameForAnonDecl()) { SearchName = Importer.Import(D->getTypedefNameForAnonDecl()->getDeclName()); IDNS = Decl::IDNS_Ordinary; } else if (Importer.getToContext().getLangOpts().CPlusPlus) IDNS |= Decl::IDNS_Ordinary; // We may already have a record of the same name; try to find and match it. RecordDecl *AdoptDecl = nullptr; if (!DC->isFunctionOrMethod()) { SmallVector<NamedDecl *, 4> ConflictingDecls; SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(IDNS)) continue; Decl *Found = FoundDecls[I]; if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Found)) { if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>()) Found = Tag->getDecl(); } if (RecordDecl *FoundRecord = dyn_cast<RecordDecl>(Found)) { if (D->isAnonymousStructOrUnion() && FoundRecord->isAnonymousStructOrUnion()) { // If both anonymous structs/unions are in a record context, make sure // they occur in the same location in the context records. if (Optional<unsigned> Index1 = findUntaggedStructOrUnionIndex(D)) { if (Optional<unsigned> Index2 = findUntaggedStructOrUnionIndex(FoundRecord)) { if (*Index1 != *Index2) continue; } } } if (RecordDecl *FoundDef = FoundRecord->getDefinition()) { if ((SearchName && !D->isCompleteDefinition()) || (D->isCompleteDefinition() && D->isAnonymousStructOrUnion() == FoundDef->isAnonymousStructOrUnion() && IsStructuralMatch(D, FoundDef))) { // The record types structurally match, or the "from" translation // unit only had a forward declaration anyway; call it the same // function. // FIXME: For C++, we should also merge methods here. return Importer.Imported(D, FoundDef); } } else if (!D->isCompleteDefinition()) { // We have a forward declaration of this type, so adopt that forward // declaration rather than building a new one. // If one or both can be completed from external storage then try one // last time to complete and compare them before doing this. if (FoundRecord->hasExternalLexicalStorage() && !FoundRecord->isCompleteDefinition()) FoundRecord->getASTContext().getExternalSource()->CompleteType(FoundRecord); if (D->hasExternalLexicalStorage()) D->getASTContext().getExternalSource()->CompleteType(D); if (FoundRecord->isCompleteDefinition() && D->isCompleteDefinition() && !IsStructuralMatch(D, FoundRecord)) continue; AdoptDecl = FoundRecord; continue; } else if (!SearchName) { continue; } } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty() && SearchName) { Name = Importer.HandleNameConflict(Name, DC, IDNS, ConflictingDecls.data(), ConflictingDecls.size()); } } // Create the record declaration. RecordDecl *D2 = AdoptDecl; SourceLocation StartLoc = Importer.Import(D->getLocStart()); if (!D2) { CXXRecordDecl *D2CXX = nullptr; if (CXXRecordDecl *DCXX = llvm::dyn_cast<CXXRecordDecl>(D)) { if (DCXX->isLambda()) { TypeSourceInfo *TInfo = Importer.Import(DCXX->getLambdaTypeInfo()); D2CXX = CXXRecordDecl::CreateLambda(Importer.getToContext(), DC, TInfo, Loc, DCXX->isDependentLambda(), DCXX->isGenericLambda(), DCXX->getLambdaCaptureDefault()); Decl *CDecl = Importer.Import(DCXX->getLambdaContextDecl()); if (DCXX->getLambdaContextDecl() && !CDecl) return nullptr; D2CXX->setLambdaMangling(DCXX->getLambdaManglingNumber(), CDecl); } else if (DCXX->isInjectedClassName()) { // We have to be careful to do a similar dance to the one in // Sema::ActOnStartCXXMemberDeclarations CXXRecordDecl *const PrevDecl = nullptr; const bool DelayTypeCreation = true; D2CXX = CXXRecordDecl::Create( Importer.getToContext(), D->getTagKind(), DC, StartLoc, Loc, Name.getAsIdentifierInfo(), PrevDecl, DelayTypeCreation); Importer.getToContext().getTypeDeclType( D2CXX, llvm::dyn_cast<CXXRecordDecl>(DC)); } else { D2CXX = CXXRecordDecl::Create(Importer.getToContext(), D->getTagKind(), DC, StartLoc, Loc, Name.getAsIdentifierInfo()); } D2 = D2CXX; D2->setAccess(D->getAccess()); } else { D2 = RecordDecl::Create(Importer.getToContext(), D->getTagKind(), DC, StartLoc, Loc, Name.getAsIdentifierInfo()); } D2->setQualifierInfo(Importer.Import(D->getQualifierLoc())); D2->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(D2); if (D->isAnonymousStructOrUnion()) D2->setAnonymousStructOrUnion(true); } Importer.Imported(D, D2); if (D->isCompleteDefinition() && ImportDefinition(D, D2, IDK_Default)) return nullptr; return D2; } Decl *ASTNodeImporter::VisitEnumConstantDecl(EnumConstantDecl *D) { // Import the major distinguishing characteristics of this enumerator. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; QualType T = Importer.Import(D->getType()); if (T.isNull()) return nullptr; // Determine whether there are any other declarations with the same name and // in the same context. if (!LexicalDC->isFunctionOrMethod()) { SmallVector<NamedDecl *, 4> ConflictingDecls; unsigned IDNS = Decl::IDNS_Ordinary; SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(IDNS)) continue; if (EnumConstantDecl *FoundEnumConstant = dyn_cast<EnumConstantDecl>(FoundDecls[I])) { if (IsStructuralMatch(D, FoundEnumConstant)) return Importer.Imported(D, FoundEnumConstant); } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, IDNS, ConflictingDecls.data(), ConflictingDecls.size()); if (!Name) return nullptr; } } Expr *Init = Importer.Import(D->getInitExpr()); if (D->getInitExpr() && !Init) return nullptr; EnumConstantDecl *ToEnumerator = EnumConstantDecl::Create(Importer.getToContext(), cast<EnumDecl>(DC), Loc, Name.getAsIdentifierInfo(), T, Init, D->getInitVal()); ToEnumerator->setAccess(D->getAccess()); ToEnumerator->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToEnumerator); LexicalDC->addDeclInternal(ToEnumerator); return ToEnumerator; } Decl *ASTNodeImporter::VisitFunctionDecl(FunctionDecl *D) { // Import the major distinguishing characteristics of this function. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; // Try to find a function in our own ("to") context with the same name, same // type, and in the same context as the function we're importing. if (!LexicalDC->isFunctionOrMethod()) { SmallVector<NamedDecl *, 4> ConflictingDecls; unsigned IDNS = Decl::IDNS_Ordinary; SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(IDNS)) continue; if (FunctionDecl *FoundFunction = dyn_cast<FunctionDecl>(FoundDecls[I])) { if (FoundFunction->hasExternalFormalLinkage() && D->hasExternalFormalLinkage()) { if (Importer.IsStructurallyEquivalent(D->getType(), FoundFunction->getType())) { // FIXME: Actually try to merge the body and other attributes. return Importer.Imported(D, FoundFunction); } // FIXME: Check for overloading more carefully, e.g., by boosting // Sema::IsOverload out to the AST library. // Function overloading is okay in C++. if (Importer.getToContext().getLangOpts().CPlusPlus) continue; // Complain about inconsistent function types. Importer.ToDiag(Loc, diag::err_odr_function_type_inconsistent) << Name << D->getType() << FoundFunction->getType(); Importer.ToDiag(FoundFunction->getLocation(), diag::note_odr_value_here) << FoundFunction->getType(); } } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, IDNS, ConflictingDecls.data(), ConflictingDecls.size()); if (!Name) return nullptr; } } DeclarationNameInfo NameInfo(Name, Loc); // Import additional name location/type info. ImportDeclarationNameLoc(D->getNameInfo(), NameInfo); QualType FromTy = D->getType(); bool usedDifferentExceptionSpec = false; if (const FunctionProtoType * FromFPT = D->getType()->getAs<FunctionProtoType>()) { FunctionProtoType::ExtProtoInfo FromEPI = FromFPT->getExtProtoInfo(); // FunctionProtoType::ExtProtoInfo's ExceptionSpecDecl can point to the // FunctionDecl that we are importing the FunctionProtoType for. // To avoid an infinite recursion when importing, create the FunctionDecl // with a simplified function type and update it afterwards. if (FromEPI.ExceptionSpec.SourceDecl || FromEPI.ExceptionSpec.SourceTemplate || FromEPI.ExceptionSpec.NoexceptExpr) { FunctionProtoType::ExtProtoInfo DefaultEPI; FromTy = Importer.getFromContext().getFunctionType( FromFPT->getReturnType(), FromFPT->getParamTypes(), DefaultEPI); usedDifferentExceptionSpec = true; } } // Import the type. QualType T = Importer.Import(FromTy); if (T.isNull()) return nullptr; // Import the function parameters. SmallVector<ParmVarDecl *, 8> Parameters; for (auto P : D->parameters()) { ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(P)); if (!ToP) return nullptr; Parameters.push_back(ToP); } // Create the imported function. TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); FunctionDecl *ToFunction = nullptr; SourceLocation InnerLocStart = Importer.Import(D->getInnerLocStart()); if (CXXConstructorDecl *FromConstructor = dyn_cast<CXXConstructorDecl>(D)) { ToFunction = CXXConstructorDecl::Create(Importer.getToContext(), cast<CXXRecordDecl>(DC), InnerLocStart, NameInfo, T, TInfo, FromConstructor->isExplicit(), D->isInlineSpecified(), D->isImplicit(), D->isConstexpr()); if (unsigned NumInitializers = FromConstructor->getNumCtorInitializers()) { SmallVector<CXXCtorInitializer *, 4> CtorInitializers; for (CXXCtorInitializer *I : FromConstructor->inits()) { CXXCtorInitializer *ToI = cast_or_null<CXXCtorInitializer>(Importer.Import(I)); if (!ToI && I) return nullptr; CtorInitializers.push_back(ToI); } CXXCtorInitializer **Memory = new (Importer.getToContext()) CXXCtorInitializer *[NumInitializers]; std::copy(CtorInitializers.begin(), CtorInitializers.end(), Memory); CXXConstructorDecl *ToCtor = llvm::cast<CXXConstructorDecl>(ToFunction); ToCtor->setCtorInitializers(Memory); ToCtor->setNumCtorInitializers(NumInitializers); } } else if (isa<CXXDestructorDecl>(D)) { ToFunction = CXXDestructorDecl::Create(Importer.getToContext(), cast<CXXRecordDecl>(DC), InnerLocStart, NameInfo, T, TInfo, D->isInlineSpecified(), D->isImplicit()); } else if (CXXConversionDecl *FromConversion = dyn_cast<CXXConversionDecl>(D)) { ToFunction = CXXConversionDecl::Create(Importer.getToContext(), cast<CXXRecordDecl>(DC), InnerLocStart, NameInfo, T, TInfo, D->isInlineSpecified(), FromConversion->isExplicit(), D->isConstexpr(), Importer.Import(D->getLocEnd())); } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { ToFunction = CXXMethodDecl::Create(Importer.getToContext(), cast<CXXRecordDecl>(DC), InnerLocStart, NameInfo, T, TInfo, Method->getStorageClass(), Method->isInlineSpecified(), D->isConstexpr(), Importer.Import(D->getLocEnd())); } else { ToFunction = FunctionDecl::Create(Importer.getToContext(), DC, InnerLocStart, NameInfo, T, TInfo, D->getStorageClass(), D->isInlineSpecified(), D->hasWrittenPrototype(), D->isConstexpr()); } // Import the qualifier, if any. ToFunction->setQualifierInfo(Importer.Import(D->getQualifierLoc())); ToFunction->setAccess(D->getAccess()); ToFunction->setLexicalDeclContext(LexicalDC); ToFunction->setVirtualAsWritten(D->isVirtualAsWritten()); ToFunction->setTrivial(D->isTrivial()); ToFunction->setPure(D->isPure()); Importer.Imported(D, ToFunction); // Set the parameters. for (unsigned I = 0, N = Parameters.size(); I != N; ++I) { Parameters[I]->setOwningFunction(ToFunction); ToFunction->addDeclInternal(Parameters[I]); } ToFunction->setParams(Parameters); if (usedDifferentExceptionSpec) { // Update FunctionProtoType::ExtProtoInfo. QualType T = Importer.Import(D->getType()); if (T.isNull()) return nullptr; ToFunction->setType(T); } // Import the body, if any. if (Stmt *FromBody = D->getBody()) { if (Stmt *ToBody = Importer.Import(FromBody)) { ToFunction->setBody(ToBody); } } // FIXME: Other bits to merge? // Add this function to the lexical context. LexicalDC->addDeclInternal(ToFunction); return ToFunction; } Decl *ASTNodeImporter::VisitCXXMethodDecl(CXXMethodDecl *D) { return VisitFunctionDecl(D); } Decl *ASTNodeImporter::VisitCXXConstructorDecl(CXXConstructorDecl *D) { return VisitCXXMethodDecl(D); } Decl *ASTNodeImporter::VisitCXXDestructorDecl(CXXDestructorDecl *D) { return VisitCXXMethodDecl(D); } Decl *ASTNodeImporter::VisitCXXConversionDecl(CXXConversionDecl *D) { return VisitCXXMethodDecl(D); } static unsigned getFieldIndex(Decl *F) { RecordDecl *Owner = dyn_cast<RecordDecl>(F->getDeclContext()); if (!Owner) return 0; unsigned Index = 1; for (const auto *D : Owner->noload_decls()) { if (D == F) return Index; if (isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) ++Index; } return Index; } Decl *ASTNodeImporter::VisitFieldDecl(FieldDecl *D) { // Import the major distinguishing characteristics of a variable. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; // Determine whether we've already imported this field. SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (FieldDecl *FoundField = dyn_cast<FieldDecl>(FoundDecls[I])) { // For anonymous fields, match up by index. if (!Name && getFieldIndex(D) != getFieldIndex(FoundField)) continue; if (Importer.IsStructurallyEquivalent(D->getType(), FoundField->getType())) { Importer.Imported(D, FoundField); return FoundField; } Importer.ToDiag(Loc, diag::err_odr_field_type_inconsistent) << Name << D->getType() << FoundField->getType(); Importer.ToDiag(FoundField->getLocation(), diag::note_odr_value_here) << FoundField->getType(); return nullptr; } } // Import the type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return nullptr; TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); Expr *BitWidth = Importer.Import(D->getBitWidth()); if (!BitWidth && D->getBitWidth()) return nullptr; FieldDecl *ToField = FieldDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getInnerLocStart()), Loc, Name.getAsIdentifierInfo(), T, TInfo, BitWidth, D->isMutable(), D->getInClassInitStyle()); ToField->setAccess(D->getAccess()); ToField->setLexicalDeclContext(LexicalDC); if (Expr *FromInitializer = D->getInClassInitializer()) { Expr *ToInitializer = Importer.Import(FromInitializer); if (ToInitializer) ToField->setInClassInitializer(ToInitializer); else return nullptr; } ToField->setImplicit(D->isImplicit()); Importer.Imported(D, ToField); LexicalDC->addDeclInternal(ToField); return ToField; } Decl *ASTNodeImporter::VisitIndirectFieldDecl(IndirectFieldDecl *D) { // Import the major distinguishing characteristics of a variable. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; // Determine whether we've already imported this field. SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (IndirectFieldDecl *FoundField = dyn_cast<IndirectFieldDecl>(FoundDecls[I])) { // For anonymous indirect fields, match up by index. if (!Name && getFieldIndex(D) != getFieldIndex(FoundField)) continue; if (Importer.IsStructurallyEquivalent(D->getType(), FoundField->getType(), !Name.isEmpty())) { Importer.Imported(D, FoundField); return FoundField; } // If there are more anonymous fields to check, continue. if (!Name && I < N-1) continue; Importer.ToDiag(Loc, diag::err_odr_field_type_inconsistent) << Name << D->getType() << FoundField->getType(); Importer.ToDiag(FoundField->getLocation(), diag::note_odr_value_here) << FoundField->getType(); return nullptr; } } // Import the type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return nullptr; NamedDecl **NamedChain = new (Importer.getToContext())NamedDecl*[D->getChainingSize()]; unsigned i = 0; for (auto *PI : D->chain()) { Decl *D = Importer.Import(PI); if (!D) return nullptr; NamedChain[i++] = cast<NamedDecl>(D); } IndirectFieldDecl *ToIndirectField = IndirectFieldDecl::Create( Importer.getToContext(), DC, Loc, Name.getAsIdentifierInfo(), T, {NamedChain, D->getChainingSize()}); for (const auto *Attr : D->attrs()) ToIndirectField->addAttr(Attr->clone(Importer.getToContext())); ToIndirectField->setAccess(D->getAccess()); ToIndirectField->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToIndirectField); LexicalDC->addDeclInternal(ToIndirectField); return ToIndirectField; } Decl *ASTNodeImporter::VisitObjCIvarDecl(ObjCIvarDecl *D) { // Import the major distinguishing characteristics of an ivar. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; // Determine whether we've already imported this ivar SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (ObjCIvarDecl *FoundIvar = dyn_cast<ObjCIvarDecl>(FoundDecls[I])) { if (Importer.IsStructurallyEquivalent(D->getType(), FoundIvar->getType())) { Importer.Imported(D, FoundIvar); return FoundIvar; } Importer.ToDiag(Loc, diag::err_odr_ivar_type_inconsistent) << Name << D->getType() << FoundIvar->getType(); Importer.ToDiag(FoundIvar->getLocation(), diag::note_odr_value_here) << FoundIvar->getType(); return nullptr; } } // Import the type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return nullptr; TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); Expr *BitWidth = Importer.Import(D->getBitWidth()); if (!BitWidth && D->getBitWidth()) return nullptr; ObjCIvarDecl *ToIvar = ObjCIvarDecl::Create(Importer.getToContext(), cast<ObjCContainerDecl>(DC), Importer.Import(D->getInnerLocStart()), Loc, Name.getAsIdentifierInfo(), T, TInfo, D->getAccessControl(), BitWidth, D->getSynthesize()); ToIvar->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToIvar); LexicalDC->addDeclInternal(ToIvar); return ToIvar; } Decl *ASTNodeImporter::VisitVarDecl(VarDecl *D) { // Import the major distinguishing characteristics of a variable. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; // Try to find a variable in our own ("to") context with the same name and // in the same context as the variable we're importing. if (D->isFileVarDecl()) { VarDecl *MergeWithVar = nullptr; SmallVector<NamedDecl *, 4> ConflictingDecls; unsigned IDNS = Decl::IDNS_Ordinary; SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(IDNS)) continue; if (VarDecl *FoundVar = dyn_cast<VarDecl>(FoundDecls[I])) { // We have found a variable that we may need to merge with. Check it. if (FoundVar->hasExternalFormalLinkage() && D->hasExternalFormalLinkage()) { if (Importer.IsStructurallyEquivalent(D->getType(), FoundVar->getType())) { MergeWithVar = FoundVar; break; } const ArrayType *FoundArray = Importer.getToContext().getAsArrayType(FoundVar->getType()); const ArrayType *TArray = Importer.getToContext().getAsArrayType(D->getType()); if (FoundArray && TArray) { if (isa<IncompleteArrayType>(FoundArray) && isa<ConstantArrayType>(TArray)) { // Import the type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return nullptr; FoundVar->setType(T); MergeWithVar = FoundVar; break; } else if (isa<IncompleteArrayType>(TArray) && isa<ConstantArrayType>(FoundArray)) { MergeWithVar = FoundVar; break; } } Importer.ToDiag(Loc, diag::err_odr_variable_type_inconsistent) << Name << D->getType() << FoundVar->getType(); Importer.ToDiag(FoundVar->getLocation(), diag::note_odr_value_here) << FoundVar->getType(); } } ConflictingDecls.push_back(FoundDecls[I]); } if (MergeWithVar) { // An equivalent variable with external linkage has been found. Link // the two declarations, then merge them. Importer.Imported(D, MergeWithVar); if (VarDecl *DDef = D->getDefinition()) { if (VarDecl *ExistingDef = MergeWithVar->getDefinition()) { Importer.ToDiag(ExistingDef->getLocation(), diag::err_odr_variable_multiple_def) << Name; Importer.FromDiag(DDef->getLocation(), diag::note_odr_defined_here); } else { Expr *Init = Importer.Import(DDef->getInit()); MergeWithVar->setInit(Init); if (DDef->isInitKnownICE()) { EvaluatedStmt *Eval = MergeWithVar->ensureEvaluatedStmt(); Eval->CheckedICE = true; Eval->IsICE = DDef->isInitICE(); } } } return MergeWithVar; } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, IDNS, ConflictingDecls.data(), ConflictingDecls.size()); if (!Name) return nullptr; } } // Import the type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return nullptr; // Create the imported variable. TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); VarDecl *ToVar = VarDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getInnerLocStart()), Loc, Name.getAsIdentifierInfo(), T, TInfo, D->getStorageClass()); ToVar->setQualifierInfo(Importer.Import(D->getQualifierLoc())); ToVar->setAccess(D->getAccess()); ToVar->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToVar); LexicalDC->addDeclInternal(ToVar); if (!D->isFileVarDecl() && D->isUsed()) ToVar->setIsUsed(); // Merge the initializer. if (ImportDefinition(D, ToVar)) return nullptr; return ToVar; } Decl *ASTNodeImporter::VisitImplicitParamDecl(ImplicitParamDecl *D) { // Parameters are created in the translation unit's context, then moved // into the function declaration's context afterward. DeclContext *DC = Importer.getToContext().getTranslationUnitDecl(); // Import the name of this declaration. DeclarationName Name = Importer.Import(D->getDeclName()); if (D->getDeclName() && !Name) return nullptr; // Import the location of this declaration. SourceLocation Loc = Importer.Import(D->getLocation()); // Import the parameter's type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return nullptr; // Create the imported parameter. ImplicitParamDecl *ToParm = ImplicitParamDecl::Create(Importer.getToContext(), DC, Loc, Name.getAsIdentifierInfo(), T); return Importer.Imported(D, ToParm); } Decl *ASTNodeImporter::VisitParmVarDecl(ParmVarDecl *D) { // Parameters are created in the translation unit's context, then moved // into the function declaration's context afterward. DeclContext *DC = Importer.getToContext().getTranslationUnitDecl(); // Import the name of this declaration. DeclarationName Name = Importer.Import(D->getDeclName()); if (D->getDeclName() && !Name) return nullptr; // Import the location of this declaration. SourceLocation Loc = Importer.Import(D->getLocation()); // Import the parameter's type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return nullptr; // Create the imported parameter. TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); ParmVarDecl *ToParm = ParmVarDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getInnerLocStart()), Loc, Name.getAsIdentifierInfo(), T, TInfo, D->getStorageClass(), /*FIXME: Default argument*/nullptr); ToParm->setHasInheritedDefaultArg(D->hasInheritedDefaultArg()); if (D->isUsed()) ToParm->setIsUsed(); return Importer.Imported(D, ToParm); } Decl *ASTNodeImporter::VisitObjCMethodDecl(ObjCMethodDecl *D) { // Import the major distinguishing characteristics of a method. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (ObjCMethodDecl *FoundMethod = dyn_cast<ObjCMethodDecl>(FoundDecls[I])) { if (FoundMethod->isInstanceMethod() != D->isInstanceMethod()) continue; // Check return types. if (!Importer.IsStructurallyEquivalent(D->getReturnType(), FoundMethod->getReturnType())) { Importer.ToDiag(Loc, diag::err_odr_objc_method_result_type_inconsistent) << D->isInstanceMethod() << Name << D->getReturnType() << FoundMethod->getReturnType(); Importer.ToDiag(FoundMethod->getLocation(), diag::note_odr_objc_method_here) << D->isInstanceMethod() << Name; return nullptr; } // Check the number of parameters. if (D->param_size() != FoundMethod->param_size()) { Importer.ToDiag(Loc, diag::err_odr_objc_method_num_params_inconsistent) << D->isInstanceMethod() << Name << D->param_size() << FoundMethod->param_size(); Importer.ToDiag(FoundMethod->getLocation(), diag::note_odr_objc_method_here) << D->isInstanceMethod() << Name; return nullptr; } // Check parameter types. for (ObjCMethodDecl::param_iterator P = D->param_begin(), PEnd = D->param_end(), FoundP = FoundMethod->param_begin(); P != PEnd; ++P, ++FoundP) { if (!Importer.IsStructurallyEquivalent((*P)->getType(), (*FoundP)->getType())) { Importer.FromDiag((*P)->getLocation(), diag::err_odr_objc_method_param_type_inconsistent) << D->isInstanceMethod() << Name << (*P)->getType() << (*FoundP)->getType(); Importer.ToDiag((*FoundP)->getLocation(), diag::note_odr_value_here) << (*FoundP)->getType(); return nullptr; } } // Check variadic/non-variadic. // Check the number of parameters. if (D->isVariadic() != FoundMethod->isVariadic()) { Importer.ToDiag(Loc, diag::err_odr_objc_method_variadic_inconsistent) << D->isInstanceMethod() << Name; Importer.ToDiag(FoundMethod->getLocation(), diag::note_odr_objc_method_here) << D->isInstanceMethod() << Name; return nullptr; } // FIXME: Any other bits we need to merge? return Importer.Imported(D, FoundMethod); } } // Import the result type. QualType ResultTy = Importer.Import(D->getReturnType()); if (ResultTy.isNull()) return nullptr; TypeSourceInfo *ReturnTInfo = Importer.Import(D->getReturnTypeSourceInfo()); ObjCMethodDecl *ToMethod = ObjCMethodDecl::Create( Importer.getToContext(), Loc, Importer.Import(D->getLocEnd()), Name.getObjCSelector(), ResultTy, ReturnTInfo, DC, D->isInstanceMethod(), D->isVariadic(), D->isPropertyAccessor(), D->isImplicit(), D->isDefined(), D->getImplementationControl(), D->hasRelatedResultType()); // FIXME: When we decide to merge method definitions, we'll need to // deal with implicit parameters. // Import the parameters SmallVector<ParmVarDecl *, 5> ToParams; for (auto *FromP : D->parameters()) { ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(FromP)); if (!ToP) return nullptr; ToParams.push_back(ToP); } // Set the parameters. for (unsigned I = 0, N = ToParams.size(); I != N; ++I) { ToParams[I]->setOwningFunction(ToMethod); ToMethod->addDeclInternal(ToParams[I]); } SmallVector<SourceLocation, 12> SelLocs; D->getSelectorLocs(SelLocs); ToMethod->setMethodParams(Importer.getToContext(), ToParams, SelLocs); ToMethod->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToMethod); LexicalDC->addDeclInternal(ToMethod); return ToMethod; } Decl *ASTNodeImporter::VisitObjCTypeParamDecl(ObjCTypeParamDecl *D) { // Import the major distinguishing characteristics of a category. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; TypeSourceInfo *BoundInfo = Importer.Import(D->getTypeSourceInfo()); if (!BoundInfo) return nullptr; ObjCTypeParamDecl *Result = ObjCTypeParamDecl::Create( Importer.getToContext(), DC, D->getVariance(), Importer.Import(D->getVarianceLoc()), D->getIndex(), Importer.Import(D->getLocation()), Name.getAsIdentifierInfo(), Importer.Import(D->getColonLoc()), BoundInfo); Importer.Imported(D, Result); Result->setLexicalDeclContext(LexicalDC); return Result; } Decl *ASTNodeImporter::VisitObjCCategoryDecl(ObjCCategoryDecl *D) { // Import the major distinguishing characteristics of a category. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; ObjCInterfaceDecl *ToInterface = cast_or_null<ObjCInterfaceDecl>(Importer.Import(D->getClassInterface())); if (!ToInterface) return nullptr; // Determine if we've already encountered this category. ObjCCategoryDecl *MergeWithCategory = ToInterface->FindCategoryDeclaration(Name.getAsIdentifierInfo()); ObjCCategoryDecl *ToCategory = MergeWithCategory; if (!ToCategory) { ToCategory = ObjCCategoryDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getAtStartLoc()), Loc, Importer.Import(D->getCategoryNameLoc()), Name.getAsIdentifierInfo(), ToInterface, /*TypeParamList=*/nullptr, Importer.Import(D->getIvarLBraceLoc()), Importer.Import(D->getIvarRBraceLoc())); ToCategory->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(ToCategory); Importer.Imported(D, ToCategory); // Import the type parameter list after calling Imported, to avoid // loops when bringing in their DeclContext. ToCategory->setTypeParamList(ImportObjCTypeParamList( D->getTypeParamList())); // Import protocols SmallVector<ObjCProtocolDecl *, 4> Protocols; SmallVector<SourceLocation, 4> ProtocolLocs; ObjCCategoryDecl::protocol_loc_iterator FromProtoLoc = D->protocol_loc_begin(); for (ObjCCategoryDecl::protocol_iterator FromProto = D->protocol_begin(), FromProtoEnd = D->protocol_end(); FromProto != FromProtoEnd; ++FromProto, ++FromProtoLoc) { ObjCProtocolDecl *ToProto = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto)); if (!ToProto) return nullptr; Protocols.push_back(ToProto); ProtocolLocs.push_back(Importer.Import(*FromProtoLoc)); } // FIXME: If we're merging, make sure that the protocol list is the same. ToCategory->setProtocolList(Protocols.data(), Protocols.size(), ProtocolLocs.data(), Importer.getToContext()); } else { Importer.Imported(D, ToCategory); } // Import all of the members of this category. ImportDeclContext(D); // If we have an implementation, import it as well. if (D->getImplementation()) { ObjCCategoryImplDecl *Impl = cast_or_null<ObjCCategoryImplDecl>( Importer.Import(D->getImplementation())); if (!Impl) return nullptr; ToCategory->setImplementation(Impl); } return ToCategory; } bool ASTNodeImporter::ImportDefinition(ObjCProtocolDecl *From, ObjCProtocolDecl *To, ImportDefinitionKind Kind) { if (To->getDefinition()) { if (shouldForceImportDeclContext(Kind)) ImportDeclContext(From); return false; } // Start the protocol definition To->startDefinition(); // Import protocols SmallVector<ObjCProtocolDecl *, 4> Protocols; SmallVector<SourceLocation, 4> ProtocolLocs; ObjCProtocolDecl::protocol_loc_iterator FromProtoLoc = From->protocol_loc_begin(); for (ObjCProtocolDecl::protocol_iterator FromProto = From->protocol_begin(), FromProtoEnd = From->protocol_end(); FromProto != FromProtoEnd; ++FromProto, ++FromProtoLoc) { ObjCProtocolDecl *ToProto = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto)); if (!ToProto) return true; Protocols.push_back(ToProto); ProtocolLocs.push_back(Importer.Import(*FromProtoLoc)); } // FIXME: If we're merging, make sure that the protocol list is the same. To->setProtocolList(Protocols.data(), Protocols.size(), ProtocolLocs.data(), Importer.getToContext()); if (shouldForceImportDeclContext(Kind)) { // Import all of the members of this protocol. ImportDeclContext(From, /*ForceImport=*/true); } return false; } Decl *ASTNodeImporter::VisitObjCProtocolDecl(ObjCProtocolDecl *D) { // If this protocol has a definition in the translation unit we're coming // from, but this particular declaration is not that definition, import the // definition and map to that. ObjCProtocolDecl *Definition = D->getDefinition(); if (Definition && Definition != D) { Decl *ImportedDef = Importer.Import(Definition); if (!ImportedDef) return nullptr; return Importer.Imported(D, ImportedDef); } // Import the major distinguishing characteristics of a protocol. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; ObjCProtocolDecl *MergeWithProtocol = nullptr; SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_ObjCProtocol)) continue; if ((MergeWithProtocol = dyn_cast<ObjCProtocolDecl>(FoundDecls[I]))) break; } ObjCProtocolDecl *ToProto = MergeWithProtocol; if (!ToProto) { ToProto = ObjCProtocolDecl::Create(Importer.getToContext(), DC, Name.getAsIdentifierInfo(), Loc, Importer.Import(D->getAtStartLoc()), /*PrevDecl=*/nullptr); ToProto->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(ToProto); } Importer.Imported(D, ToProto); if (D->isThisDeclarationADefinition() && ImportDefinition(D, ToProto)) return nullptr; return ToProto; } Decl *ASTNodeImporter::VisitLinkageSpecDecl(LinkageSpecDecl *D) { DeclContext *DC = Importer.ImportContext(D->getDeclContext()); DeclContext *LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); SourceLocation ExternLoc = Importer.Import(D->getExternLoc()); SourceLocation LangLoc = Importer.Import(D->getLocation()); bool HasBraces = D->hasBraces(); LinkageSpecDecl *ToLinkageSpec = LinkageSpecDecl::Create(Importer.getToContext(), DC, ExternLoc, LangLoc, D->getLanguage(), HasBraces); if (HasBraces) { SourceLocation RBraceLoc = Importer.Import(D->getRBraceLoc()); ToLinkageSpec->setRBraceLoc(RBraceLoc); } ToLinkageSpec->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(ToLinkageSpec); Importer.Imported(D, ToLinkageSpec); return ToLinkageSpec; } bool ASTNodeImporter::ImportDefinition(ObjCInterfaceDecl *From, ObjCInterfaceDecl *To, ImportDefinitionKind Kind) { if (To->getDefinition()) { // Check consistency of superclass. ObjCInterfaceDecl *FromSuper = From->getSuperClass(); if (FromSuper) { FromSuper = cast_or_null<ObjCInterfaceDecl>(Importer.Import(FromSuper)); if (!FromSuper) return true; } ObjCInterfaceDecl *ToSuper = To->getSuperClass(); if ((bool)FromSuper != (bool)ToSuper || (FromSuper && !declaresSameEntity(FromSuper, ToSuper))) { Importer.ToDiag(To->getLocation(), diag::err_odr_objc_superclass_inconsistent) << To->getDeclName(); if (ToSuper) Importer.ToDiag(To->getSuperClassLoc(), diag::note_odr_objc_superclass) << To->getSuperClass()->getDeclName(); else Importer.ToDiag(To->getLocation(), diag::note_odr_objc_missing_superclass); if (From->getSuperClass()) Importer.FromDiag(From->getSuperClassLoc(), diag::note_odr_objc_superclass) << From->getSuperClass()->getDeclName(); else Importer.FromDiag(From->getLocation(), diag::note_odr_objc_missing_superclass); } if (shouldForceImportDeclContext(Kind)) ImportDeclContext(From); return false; } // Start the definition. To->startDefinition(); // If this class has a superclass, import it. if (From->getSuperClass()) { TypeSourceInfo *SuperTInfo = Importer.Import(From->getSuperClassTInfo()); if (!SuperTInfo) return true; To->setSuperClass(SuperTInfo); } // Import protocols SmallVector<ObjCProtocolDecl *, 4> Protocols; SmallVector<SourceLocation, 4> ProtocolLocs; ObjCInterfaceDecl::protocol_loc_iterator FromProtoLoc = From->protocol_loc_begin(); for (ObjCInterfaceDecl::protocol_iterator FromProto = From->protocol_begin(), FromProtoEnd = From->protocol_end(); FromProto != FromProtoEnd; ++FromProto, ++FromProtoLoc) { ObjCProtocolDecl *ToProto = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto)); if (!ToProto) return true; Protocols.push_back(ToProto); ProtocolLocs.push_back(Importer.Import(*FromProtoLoc)); } // FIXME: If we're merging, make sure that the protocol list is the same. To->setProtocolList(Protocols.data(), Protocols.size(), ProtocolLocs.data(), Importer.getToContext()); // Import categories. When the categories themselves are imported, they'll // hook themselves into this interface. for (auto *Cat : From->known_categories()) Importer.Import(Cat); // If we have an @implementation, import it as well. if (From->getImplementation()) { ObjCImplementationDecl *Impl = cast_or_null<ObjCImplementationDecl>( Importer.Import(From->getImplementation())); if (!Impl) return true; To->setImplementation(Impl); } if (shouldForceImportDeclContext(Kind)) { // Import all of the members of this class. ImportDeclContext(From, /*ForceImport=*/true); } return false; } ObjCTypeParamList * ASTNodeImporter::ImportObjCTypeParamList(ObjCTypeParamList *list) { if (!list) return nullptr; SmallVector<ObjCTypeParamDecl *, 4> toTypeParams; for (auto fromTypeParam : *list) { auto toTypeParam = cast_or_null<ObjCTypeParamDecl>( Importer.Import(fromTypeParam)); if (!toTypeParam) return nullptr; toTypeParams.push_back(toTypeParam); } return ObjCTypeParamList::create(Importer.getToContext(), Importer.Import(list->getLAngleLoc()), toTypeParams, Importer.Import(list->getRAngleLoc())); } Decl *ASTNodeImporter::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) { // If this class has a definition in the translation unit we're coming from, // but this particular declaration is not that definition, import the // definition and map to that. ObjCInterfaceDecl *Definition = D->getDefinition(); if (Definition && Definition != D) { Decl *ImportedDef = Importer.Import(Definition); if (!ImportedDef) return nullptr; return Importer.Imported(D, ImportedDef); } // Import the major distinguishing characteristics of an @interface. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; // Look for an existing interface with the same name. ObjCInterfaceDecl *MergeWithIface = nullptr; SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary)) continue; if ((MergeWithIface = dyn_cast<ObjCInterfaceDecl>(FoundDecls[I]))) break; } // Create an interface declaration, if one does not already exist. ObjCInterfaceDecl *ToIface = MergeWithIface; if (!ToIface) { ToIface = ObjCInterfaceDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getAtStartLoc()), Name.getAsIdentifierInfo(), /*TypeParamList=*/nullptr, /*PrevDecl=*/nullptr, Loc, D->isImplicitInterfaceDecl()); ToIface->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(ToIface); } Importer.Imported(D, ToIface); // Import the type parameter list after calling Imported, to avoid // loops when bringing in their DeclContext. ToIface->setTypeParamList(ImportObjCTypeParamList( D->getTypeParamListAsWritten())); if (D->isThisDeclarationADefinition() && ImportDefinition(D, ToIface)) return nullptr; return ToIface; } Decl *ASTNodeImporter::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) { ObjCCategoryDecl *Category = cast_or_null<ObjCCategoryDecl>( Importer.Import(D->getCategoryDecl())); if (!Category) return nullptr; ObjCCategoryImplDecl *ToImpl = Category->getImplementation(); if (!ToImpl) { DeclContext *DC = Importer.ImportContext(D->getDeclContext()); if (!DC) return nullptr; SourceLocation CategoryNameLoc = Importer.Import(D->getCategoryNameLoc()); ToImpl = ObjCCategoryImplDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getIdentifier()), Category->getClassInterface(), Importer.Import(D->getLocation()), Importer.Import(D->getAtStartLoc()), CategoryNameLoc); DeclContext *LexicalDC = DC; if (D->getDeclContext() != D->getLexicalDeclContext()) { LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); if (!LexicalDC) return nullptr; ToImpl->setLexicalDeclContext(LexicalDC); } LexicalDC->addDeclInternal(ToImpl); Category->setImplementation(ToImpl); } Importer.Imported(D, ToImpl); ImportDeclContext(D); return ToImpl; } Decl *ASTNodeImporter::VisitObjCImplementationDecl(ObjCImplementationDecl *D) { // Find the corresponding interface. ObjCInterfaceDecl *Iface = cast_or_null<ObjCInterfaceDecl>( Importer.Import(D->getClassInterface())); if (!Iface) return nullptr; // Import the superclass, if any. ObjCInterfaceDecl *Super = nullptr; if (D->getSuperClass()) { Super = cast_or_null<ObjCInterfaceDecl>( Importer.Import(D->getSuperClass())); if (!Super) return nullptr; } ObjCImplementationDecl *Impl = Iface->getImplementation(); if (!Impl) { // We haven't imported an implementation yet. Create a new @implementation // now. Impl = ObjCImplementationDecl::Create(Importer.getToContext(), Importer.ImportContext(D->getDeclContext()), Iface, Super, Importer.Import(D->getLocation()), Importer.Import(D->getAtStartLoc()), Importer.Import(D->getSuperClassLoc()), Importer.Import(D->getIvarLBraceLoc()), Importer.Import(D->getIvarRBraceLoc())); if (D->getDeclContext() != D->getLexicalDeclContext()) { DeclContext *LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); if (!LexicalDC) return nullptr; Impl->setLexicalDeclContext(LexicalDC); } // Associate the implementation with the class it implements. Iface->setImplementation(Impl); Importer.Imported(D, Iface->getImplementation()); } else { Importer.Imported(D, Iface->getImplementation()); // Verify that the existing @implementation has the same superclass. if ((Super && !Impl->getSuperClass()) || (!Super && Impl->getSuperClass()) || (Super && Impl->getSuperClass() && !declaresSameEntity(Super->getCanonicalDecl(), Impl->getSuperClass()))) { Importer.ToDiag(Impl->getLocation(), diag::err_odr_objc_superclass_inconsistent) << Iface->getDeclName(); // FIXME: It would be nice to have the location of the superclass // below. if (Impl->getSuperClass()) Importer.ToDiag(Impl->getLocation(), diag::note_odr_objc_superclass) << Impl->getSuperClass()->getDeclName(); else Importer.ToDiag(Impl->getLocation(), diag::note_odr_objc_missing_superclass); if (D->getSuperClass()) Importer.FromDiag(D->getLocation(), diag::note_odr_objc_superclass) << D->getSuperClass()->getDeclName(); else Importer.FromDiag(D->getLocation(), diag::note_odr_objc_missing_superclass); return nullptr; } } // Import all of the members of this @implementation. ImportDeclContext(D); return Impl; } Decl *ASTNodeImporter::VisitObjCPropertyDecl(ObjCPropertyDecl *D) { // Import the major distinguishing characteristics of an @property. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; // Check whether we have already imported this property. SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (ObjCPropertyDecl *FoundProp = dyn_cast<ObjCPropertyDecl>(FoundDecls[I])) { // Check property types. if (!Importer.IsStructurallyEquivalent(D->getType(), FoundProp->getType())) { Importer.ToDiag(Loc, diag::err_odr_objc_property_type_inconsistent) << Name << D->getType() << FoundProp->getType(); Importer.ToDiag(FoundProp->getLocation(), diag::note_odr_value_here) << FoundProp->getType(); return nullptr; } // FIXME: Check property attributes, getters, setters, etc.? // Consider these properties to be equivalent. Importer.Imported(D, FoundProp); return FoundProp; } } // Import the type. TypeSourceInfo *TSI = Importer.Import(D->getTypeSourceInfo()); if (!TSI) return nullptr; // Create the new property. ObjCPropertyDecl *ToProperty = ObjCPropertyDecl::Create(Importer.getToContext(), DC, Loc, Name.getAsIdentifierInfo(), Importer.Import(D->getAtLoc()), Importer.Import(D->getLParenLoc()), Importer.Import(D->getType()), TSI, D->getPropertyImplementation()); Importer.Imported(D, ToProperty); ToProperty->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(ToProperty); ToProperty->setPropertyAttributes(D->getPropertyAttributes()); ToProperty->setPropertyAttributesAsWritten( D->getPropertyAttributesAsWritten()); ToProperty->setGetterName(Importer.Import(D->getGetterName())); ToProperty->setSetterName(Importer.Import(D->getSetterName())); ToProperty->setGetterMethodDecl( cast_or_null<ObjCMethodDecl>(Importer.Import(D->getGetterMethodDecl()))); ToProperty->setSetterMethodDecl( cast_or_null<ObjCMethodDecl>(Importer.Import(D->getSetterMethodDecl()))); ToProperty->setPropertyIvarDecl( cast_or_null<ObjCIvarDecl>(Importer.Import(D->getPropertyIvarDecl()))); return ToProperty; } Decl *ASTNodeImporter::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) { ObjCPropertyDecl *Property = cast_or_null<ObjCPropertyDecl>( Importer.Import(D->getPropertyDecl())); if (!Property) return nullptr; DeclContext *DC = Importer.ImportContext(D->getDeclContext()); if (!DC) return nullptr; // Import the lexical declaration context. DeclContext *LexicalDC = DC; if (D->getDeclContext() != D->getLexicalDeclContext()) { LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); if (!LexicalDC) return nullptr; } ObjCImplDecl *InImpl = dyn_cast<ObjCImplDecl>(LexicalDC); if (!InImpl) return nullptr; // Import the ivar (for an @synthesize). ObjCIvarDecl *Ivar = nullptr; if (D->getPropertyIvarDecl()) { Ivar = cast_or_null<ObjCIvarDecl>( Importer.Import(D->getPropertyIvarDecl())); if (!Ivar) return nullptr; } ObjCPropertyImplDecl *ToImpl = InImpl->FindPropertyImplDecl(Property->getIdentifier(), Property->getQueryKind()); if (!ToImpl) { ToImpl = ObjCPropertyImplDecl::Create(Importer.getToContext(), DC, Importer.Import(D->getLocStart()), Importer.Import(D->getLocation()), Property, D->getPropertyImplementation(), Ivar, Importer.Import(D->getPropertyIvarDeclLoc())); ToImpl->setLexicalDeclContext(LexicalDC); Importer.Imported(D, ToImpl); LexicalDC->addDeclInternal(ToImpl); } else { // Check that we have the same kind of property implementation (@synthesize // vs. @dynamic). if (D->getPropertyImplementation() != ToImpl->getPropertyImplementation()) { Importer.ToDiag(ToImpl->getLocation(), diag::err_odr_objc_property_impl_kind_inconsistent) << Property->getDeclName() << (ToImpl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic); Importer.FromDiag(D->getLocation(), diag::note_odr_objc_property_impl_kind) << D->getPropertyDecl()->getDeclName() << (D->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic); return nullptr; } // For @synthesize, check that we have the same if (D->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize && Ivar != ToImpl->getPropertyIvarDecl()) { Importer.ToDiag(ToImpl->getPropertyIvarDeclLoc(), diag::err_odr_objc_synthesize_ivar_inconsistent) << Property->getDeclName() << ToImpl->getPropertyIvarDecl()->getDeclName() << Ivar->getDeclName(); Importer.FromDiag(D->getPropertyIvarDeclLoc(), diag::note_odr_objc_synthesize_ivar_here) << D->getPropertyIvarDecl()->getDeclName(); return nullptr; } // Merge the existing implementation with the new implementation. Importer.Imported(D, ToImpl); } return ToImpl; } Decl *ASTNodeImporter::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) { // For template arguments, we adopt the translation unit as our declaration // context. This context will be fixed when the actual template declaration // is created. // FIXME: Import default argument. return TemplateTypeParmDecl::Create(Importer.getToContext(), Importer.getToContext().getTranslationUnitDecl(), Importer.Import(D->getLocStart()), Importer.Import(D->getLocation()), D->getDepth(), D->getIndex(), Importer.Import(D->getIdentifier()), D->wasDeclaredWithTypename(), D->isParameterPack()); } Decl * ASTNodeImporter::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { // Import the name of this declaration. DeclarationName Name = Importer.Import(D->getDeclName()); if (D->getDeclName() && !Name) return nullptr; // Import the location of this declaration. SourceLocation Loc = Importer.Import(D->getLocation()); // Import the type of this declaration. QualType T = Importer.Import(D->getType()); if (T.isNull()) return nullptr; // Import type-source information. TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); if (D->getTypeSourceInfo() && !TInfo) return nullptr; // FIXME: Import default argument. return NonTypeTemplateParmDecl::Create(Importer.getToContext(), Importer.getToContext().getTranslationUnitDecl(), Importer.Import(D->getInnerLocStart()), Loc, D->getDepth(), D->getPosition(), Name.getAsIdentifierInfo(), T, D->isParameterPack(), TInfo); } Decl * ASTNodeImporter::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) { // Import the name of this declaration. DeclarationName Name = Importer.Import(D->getDeclName()); if (D->getDeclName() && !Name) return nullptr; // Import the location of this declaration. SourceLocation Loc = Importer.Import(D->getLocation()); // Import template parameters. TemplateParameterList *TemplateParams = ImportTemplateParameterList(D->getTemplateParameters()); if (!TemplateParams) return nullptr; // FIXME: Import default argument. return TemplateTemplateParmDecl::Create(Importer.getToContext(), Importer.getToContext().getTranslationUnitDecl(), Loc, D->getDepth(), D->getPosition(), D->isParameterPack(), Name.getAsIdentifierInfo(), TemplateParams); } Decl *ASTNodeImporter::VisitClassTemplateDecl(ClassTemplateDecl *D) { // If this record has a definition in the translation unit we're coming from, // but this particular declaration is not that definition, import the // definition and map to that. CXXRecordDecl *Definition = cast_or_null<CXXRecordDecl>(D->getTemplatedDecl()->getDefinition()); if (Definition && Definition != D->getTemplatedDecl()) { Decl *ImportedDef = Importer.Import(Definition->getDescribedClassTemplate()); if (!ImportedDef) return nullptr; return Importer.Imported(D, ImportedDef); } // Import the major distinguishing characteristics of this class template. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; // We may already have a template of the same name; try to find and match it. if (!DC->isFunctionOrMethod()) { SmallVector<NamedDecl *, 4> ConflictingDecls; SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary)) continue; Decl *Found = FoundDecls[I]; if (ClassTemplateDecl *FoundTemplate = dyn_cast<ClassTemplateDecl>(Found)) { if (IsStructuralMatch(D, FoundTemplate)) { // The class templates structurally match; call it the same template. // FIXME: We may be filling in a forward declaration here. Handle // this case! Importer.Imported(D->getTemplatedDecl(), FoundTemplate->getTemplatedDecl()); return Importer.Imported(D, FoundTemplate); } } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Ordinary, ConflictingDecls.data(), ConflictingDecls.size()); } if (!Name) return nullptr; } CXXRecordDecl *DTemplated = D->getTemplatedDecl(); // Create the declaration that is being templated. // Create the declaration that is being templated. CXXRecordDecl *D2Templated = cast_or_null<CXXRecordDecl>( Importer.Import(DTemplated)); if (!D2Templated) return nullptr; // Resolve possible cyclic import. if (Decl *AlreadyImported = Importer.GetAlreadyImportedOrNull(D)) return AlreadyImported; // Create the class template declaration itself. TemplateParameterList *TemplateParams = ImportTemplateParameterList(D->getTemplateParameters()); if (!TemplateParams) return nullptr; ClassTemplateDecl *D2 = ClassTemplateDecl::Create(Importer.getToContext(), DC, Loc, Name, TemplateParams, D2Templated, /*PrevDecl=*/nullptr); D2Templated->setDescribedClassTemplate(D2); D2->setAccess(D->getAccess()); D2->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(D2); // Note the relationship between the class templates. Importer.Imported(D, D2); Importer.Imported(DTemplated, D2Templated); if (DTemplated->isCompleteDefinition() && !D2Templated->isCompleteDefinition()) { // FIXME: Import definition! } return D2; } Decl *ASTNodeImporter::VisitClassTemplateSpecializationDecl( ClassTemplateSpecializationDecl *D) { // If this record has a definition in the translation unit we're coming from, // but this particular declaration is not that definition, import the // definition and map to that. TagDecl *Definition = D->getDefinition(); if (Definition && Definition != D) { Decl *ImportedDef = Importer.Import(Definition); if (!ImportedDef) return nullptr; return Importer.Imported(D, ImportedDef); } ClassTemplateDecl *ClassTemplate = cast_or_null<ClassTemplateDecl>(Importer.Import( D->getSpecializedTemplate())); if (!ClassTemplate) return nullptr; // Import the context of this declaration. DeclContext *DC = ClassTemplate->getDeclContext(); if (!DC) return nullptr; DeclContext *LexicalDC = DC; if (D->getDeclContext() != D->getLexicalDeclContext()) { LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); if (!LexicalDC) return nullptr; } // Import the location of this declaration. SourceLocation StartLoc = Importer.Import(D->getLocStart()); SourceLocation IdLoc = Importer.Import(D->getLocation()); // Import template arguments. SmallVector<TemplateArgument, 2> TemplateArgs; if (ImportTemplateArguments(D->getTemplateArgs().data(), D->getTemplateArgs().size(), TemplateArgs)) return nullptr; // Try to find an existing specialization with these template arguments. void *InsertPos = nullptr; ClassTemplateSpecializationDecl *D2 = ClassTemplate->findSpecialization(TemplateArgs, InsertPos); if (D2) { // We already have a class template specialization with these template // arguments. // FIXME: Check for specialization vs. instantiation errors. if (RecordDecl *FoundDef = D2->getDefinition()) { if (!D->isCompleteDefinition() || IsStructuralMatch(D, FoundDef)) { // The record types structurally match, or the "from" translation // unit only had a forward declaration anyway; call it the same // function. return Importer.Imported(D, FoundDef); } } } else { // Create a new specialization. D2 = ClassTemplateSpecializationDecl::Create(Importer.getToContext(), D->getTagKind(), DC, StartLoc, IdLoc, ClassTemplate, TemplateArgs, /*PrevDecl=*/nullptr); D2->setSpecializationKind(D->getSpecializationKind()); // Add this specialization to the class template. ClassTemplate->AddSpecialization(D2, InsertPos); // Import the qualifier, if any. D2->setQualifierInfo(Importer.Import(D->getQualifierLoc())); // Add the specialization to this context. D2->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(D2); } Importer.Imported(D, D2); if (D->isCompleteDefinition() && ImportDefinition(D, D2)) return nullptr; return D2; } Decl *ASTNodeImporter::VisitVarTemplateDecl(VarTemplateDecl *D) { // If this variable has a definition in the translation unit we're coming // from, // but this particular declaration is not that definition, import the // definition and map to that. VarDecl *Definition = cast_or_null<VarDecl>(D->getTemplatedDecl()->getDefinition()); if (Definition && Definition != D->getTemplatedDecl()) { Decl *ImportedDef = Importer.Import(Definition->getDescribedVarTemplate()); if (!ImportedDef) return nullptr; return Importer.Imported(D, ImportedDef); } // Import the major distinguishing characteristics of this variable template. DeclContext *DC, *LexicalDC; DeclarationName Name; SourceLocation Loc; NamedDecl *ToD; if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc)) return nullptr; if (ToD) return ToD; // We may already have a template of the same name; try to find and match it. assert(!DC->isFunctionOrMethod() && "Variable templates cannot be declared at function scope"); SmallVector<NamedDecl *, 4> ConflictingDecls; SmallVector<NamedDecl *, 2> FoundDecls; DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls); for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) { if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary)) continue; Decl *Found = FoundDecls[I]; if (VarTemplateDecl *FoundTemplate = dyn_cast<VarTemplateDecl>(Found)) { if (IsStructuralMatch(D, FoundTemplate)) { // The variable templates structurally match; call it the same template. Importer.Imported(D->getTemplatedDecl(), FoundTemplate->getTemplatedDecl()); return Importer.Imported(D, FoundTemplate); } } ConflictingDecls.push_back(FoundDecls[I]); } if (!ConflictingDecls.empty()) { Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Ordinary, ConflictingDecls.data(), ConflictingDecls.size()); } if (!Name) return nullptr; VarDecl *DTemplated = D->getTemplatedDecl(); // Import the type. QualType T = Importer.Import(DTemplated->getType()); if (T.isNull()) return nullptr; // Create the declaration that is being templated. SourceLocation StartLoc = Importer.Import(DTemplated->getLocStart()); SourceLocation IdLoc = Importer.Import(DTemplated->getLocation()); TypeSourceInfo *TInfo = Importer.Import(DTemplated->getTypeSourceInfo()); VarDecl *D2Templated = VarDecl::Create(Importer.getToContext(), DC, StartLoc, IdLoc, Name.getAsIdentifierInfo(), T, TInfo, DTemplated->getStorageClass()); D2Templated->setAccess(DTemplated->getAccess()); D2Templated->setQualifierInfo(Importer.Import(DTemplated->getQualifierLoc())); D2Templated->setLexicalDeclContext(LexicalDC); // Importer.Imported(DTemplated, D2Templated); // LexicalDC->addDeclInternal(D2Templated); // Merge the initializer. if (ImportDefinition(DTemplated, D2Templated)) return nullptr; // Create the variable template declaration itself. TemplateParameterList *TemplateParams = ImportTemplateParameterList(D->getTemplateParameters()); if (!TemplateParams) return nullptr; VarTemplateDecl *D2 = VarTemplateDecl::Create( Importer.getToContext(), DC, Loc, Name, TemplateParams, D2Templated); D2Templated->setDescribedVarTemplate(D2); D2->setAccess(D->getAccess()); D2->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(D2); // Note the relationship between the variable templates. Importer.Imported(D, D2); Importer.Imported(DTemplated, D2Templated); if (DTemplated->isThisDeclarationADefinition() && !D2Templated->isThisDeclarationADefinition()) { // FIXME: Import definition! } return D2; } Decl *ASTNodeImporter::VisitVarTemplateSpecializationDecl( VarTemplateSpecializationDecl *D) { // If this record has a definition in the translation unit we're coming from, // but this particular declaration is not that definition, import the // definition and map to that. VarDecl *Definition = D->getDefinition(); if (Definition && Definition != D) { Decl *ImportedDef = Importer.Import(Definition); if (!ImportedDef) return nullptr; return Importer.Imported(D, ImportedDef); } VarTemplateDecl *VarTemplate = cast_or_null<VarTemplateDecl>( Importer.Import(D->getSpecializedTemplate())); if (!VarTemplate) return nullptr; // Import the context of this declaration. DeclContext *DC = VarTemplate->getDeclContext(); if (!DC) return nullptr; DeclContext *LexicalDC = DC; if (D->getDeclContext() != D->getLexicalDeclContext()) { LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); if (!LexicalDC) return nullptr; } // Import the location of this declaration. SourceLocation StartLoc = Importer.Import(D->getLocStart()); SourceLocation IdLoc = Importer.Import(D->getLocation()); // Import template arguments. SmallVector<TemplateArgument, 2> TemplateArgs; if (ImportTemplateArguments(D->getTemplateArgs().data(), D->getTemplateArgs().size(), TemplateArgs)) return nullptr; // Try to find an existing specialization with these template arguments. void *InsertPos = nullptr; VarTemplateSpecializationDecl *D2 = VarTemplate->findSpecialization( TemplateArgs, InsertPos); if (D2) { // We already have a variable template specialization with these template // arguments. // FIXME: Check for specialization vs. instantiation errors. if (VarDecl *FoundDef = D2->getDefinition()) { if (!D->isThisDeclarationADefinition() || IsStructuralMatch(D, FoundDef)) { // The record types structurally match, or the "from" translation // unit only had a forward declaration anyway; call it the same // variable. return Importer.Imported(D, FoundDef); } } } else { // Import the type. QualType T = Importer.Import(D->getType()); if (T.isNull()) return nullptr; TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); // Create a new specialization. D2 = VarTemplateSpecializationDecl::Create( Importer.getToContext(), DC, StartLoc, IdLoc, VarTemplate, T, TInfo, D->getStorageClass(), TemplateArgs); D2->setSpecializationKind(D->getSpecializationKind()); D2->setTemplateArgsInfo(D->getTemplateArgsInfo()); // Add this specialization to the class template. VarTemplate->AddSpecialization(D2, InsertPos); // Import the qualifier, if any. D2->setQualifierInfo(Importer.Import(D->getQualifierLoc())); // Add the specialization to this context. D2->setLexicalDeclContext(LexicalDC); LexicalDC->addDeclInternal(D2); } Importer.Imported(D, D2); if (D->isThisDeclarationADefinition() && ImportDefinition(D, D2)) return nullptr; return D2; } //---------------------------------------------------------------------------- // Import Statements //---------------------------------------------------------------------------- DeclGroupRef ASTNodeImporter::ImportDeclGroup(DeclGroupRef DG) { if (DG.isNull()) return DeclGroupRef::Create(Importer.getToContext(), nullptr, 0); size_t NumDecls = DG.end() - DG.begin(); SmallVector<Decl *, 1> ToDecls(NumDecls); auto &_Importer = this->Importer; std::transform(DG.begin(), DG.end(), ToDecls.begin(), [&_Importer](Decl *D) -> Decl * { return _Importer.Import(D); }); return DeclGroupRef::Create(Importer.getToContext(), ToDecls.begin(), NumDecls); } Stmt *ASTNodeImporter::VisitStmt(Stmt *S) { Importer.FromDiag(S->getLocStart(), diag::err_unsupported_ast_node) << S->getStmtClassName(); return nullptr; } Stmt *ASTNodeImporter::VisitGCCAsmStmt(GCCAsmStmt *S) { SmallVector<IdentifierInfo *, 4> Names; for (unsigned I = 0, E = S->getNumOutputs(); I != E; I++) { IdentifierInfo *ToII = Importer.Import(S->getOutputIdentifier(I)); if (!ToII) return nullptr; Names.push_back(ToII); } for (unsigned I = 0, E = S->getNumInputs(); I != E; I++) { IdentifierInfo *ToII = Importer.Import(S->getInputIdentifier(I)); if (!ToII) return nullptr; Names.push_back(ToII); } SmallVector<StringLiteral *, 4> Clobbers; for (unsigned I = 0, E = S->getNumClobbers(); I != E; I++) { StringLiteral *Clobber = cast_or_null<StringLiteral>( Importer.Import(S->getClobberStringLiteral(I))); if (!Clobber) return nullptr; Clobbers.push_back(Clobber); } SmallVector<StringLiteral *, 4> Constraints; for (unsigned I = 0, E = S->getNumOutputs(); I != E; I++) { StringLiteral *Output = cast_or_null<StringLiteral>( Importer.Import(S->getOutputConstraintLiteral(I))); if (!Output) return nullptr; Constraints.push_back(Output); } for (unsigned I = 0, E = S->getNumInputs(); I != E; I++) { StringLiteral *Input = cast_or_null<StringLiteral>( Importer.Import(S->getInputConstraintLiteral(I))); if (!Input) return nullptr; Constraints.push_back(Input); } SmallVector<Expr *, 4> Exprs(S->getNumOutputs() + S->getNumInputs()); if (ImportArrayChecked(S->begin_outputs(), S->end_outputs(), Exprs.begin())) return nullptr; if (ImportArrayChecked(S->begin_inputs(), S->end_inputs(), Exprs.begin() + S->getNumOutputs())) return nullptr; StringLiteral *AsmStr = cast_or_null<StringLiteral>( Importer.Import(S->getAsmString())); if (!AsmStr) return nullptr; return new (Importer.getToContext()) GCCAsmStmt( Importer.getToContext(), Importer.Import(S->getAsmLoc()), S->isSimple(), S->isVolatile(), S->getNumOutputs(), S->getNumInputs(), Names.data(), Constraints.data(), Exprs.data(), AsmStr, S->getNumClobbers(), Clobbers.data(), Importer.Import(S->getRParenLoc())); } Stmt *ASTNodeImporter::VisitDeclStmt(DeclStmt *S) { DeclGroupRef ToDG = ImportDeclGroup(S->getDeclGroup()); for (Decl *ToD : ToDG) { if (!ToD) return nullptr; } SourceLocation ToStartLoc = Importer.Import(S->getStartLoc()); SourceLocation ToEndLoc = Importer.Import(S->getEndLoc()); return new (Importer.getToContext()) DeclStmt(ToDG, ToStartLoc, ToEndLoc); } Stmt *ASTNodeImporter::VisitNullStmt(NullStmt *S) { SourceLocation ToSemiLoc = Importer.Import(S->getSemiLoc()); return new (Importer.getToContext()) NullStmt(ToSemiLoc, S->hasLeadingEmptyMacro()); } Stmt *ASTNodeImporter::VisitCompoundStmt(CompoundStmt *S) { llvm::SmallVector<Stmt *, 8> ToStmts(S->size()); if (ImportArrayChecked(S->body_begin(), S->body_end(), ToStmts.begin())) return nullptr; SourceLocation ToLBraceLoc = Importer.Import(S->getLBracLoc()); SourceLocation ToRBraceLoc = Importer.Import(S->getRBracLoc()); return new (Importer.getToContext()) CompoundStmt(Importer.getToContext(), ToStmts, ToLBraceLoc, ToRBraceLoc); } Stmt *ASTNodeImporter::VisitCaseStmt(CaseStmt *S) { Expr *ToLHS = Importer.Import(S->getLHS()); if (!ToLHS) return nullptr; Expr *ToRHS = Importer.Import(S->getRHS()); if (!ToRHS && S->getRHS()) return nullptr; SourceLocation ToCaseLoc = Importer.Import(S->getCaseLoc()); SourceLocation ToEllipsisLoc = Importer.Import(S->getEllipsisLoc()); SourceLocation ToColonLoc = Importer.Import(S->getColonLoc()); return new (Importer.getToContext()) CaseStmt(ToLHS, ToRHS, ToCaseLoc, ToEllipsisLoc, ToColonLoc); } Stmt *ASTNodeImporter::VisitDefaultStmt(DefaultStmt *S) { SourceLocation ToDefaultLoc = Importer.Import(S->getDefaultLoc()); SourceLocation ToColonLoc = Importer.Import(S->getColonLoc()); Stmt *ToSubStmt = Importer.Import(S->getSubStmt()); if (!ToSubStmt && S->getSubStmt()) return nullptr; return new (Importer.getToContext()) DefaultStmt(ToDefaultLoc, ToColonLoc, ToSubStmt); } Stmt *ASTNodeImporter::VisitLabelStmt(LabelStmt *S) { SourceLocation ToIdentLoc = Importer.Import(S->getIdentLoc()); LabelDecl *ToLabelDecl = cast_or_null<LabelDecl>(Importer.Import(S->getDecl())); if (!ToLabelDecl && S->getDecl()) return nullptr; Stmt *ToSubStmt = Importer.Import(S->getSubStmt()); if (!ToSubStmt && S->getSubStmt()) return nullptr; return new (Importer.getToContext()) LabelStmt(ToIdentLoc, ToLabelDecl, ToSubStmt); } Stmt *ASTNodeImporter::VisitAttributedStmt(AttributedStmt *S) { SourceLocation ToAttrLoc = Importer.Import(S->getAttrLoc()); ArrayRef<const Attr*> FromAttrs(S->getAttrs()); SmallVector<const Attr *, 1> ToAttrs(FromAttrs.size()); ASTContext &_ToContext = Importer.getToContext(); std::transform(FromAttrs.begin(), FromAttrs.end(), ToAttrs.begin(), [&_ToContext](const Attr *A) -> const Attr * { return A->clone(_ToContext); }); for (const Attr *ToA : ToAttrs) { if (!ToA) return nullptr; } Stmt *ToSubStmt = Importer.Import(S->getSubStmt()); if (!ToSubStmt && S->getSubStmt()) return nullptr; return AttributedStmt::Create(Importer.getToContext(), ToAttrLoc, ToAttrs, ToSubStmt); } Stmt *ASTNodeImporter::VisitIfStmt(IfStmt *S) { SourceLocation ToIfLoc = Importer.Import(S->getIfLoc()); Stmt *ToInit = Importer.Import(S->getInit()); if (!ToInit && S->getInit()) return nullptr; VarDecl *ToConditionVariable = nullptr; if (VarDecl *FromConditionVariable = S->getConditionVariable()) { ToConditionVariable = dyn_cast_or_null<VarDecl>(Importer.Import(FromConditionVariable)); if (!ToConditionVariable) return nullptr; } Expr *ToCondition = Importer.Import(S->getCond()); if (!ToCondition && S->getCond()) return nullptr; Stmt *ToThenStmt = Importer.Import(S->getThen()); if (!ToThenStmt && S->getThen()) return nullptr; SourceLocation ToElseLoc = Importer.Import(S->getElseLoc()); Stmt *ToElseStmt = Importer.Import(S->getElse()); if (!ToElseStmt && S->getElse()) return nullptr; return new (Importer.getToContext()) IfStmt(Importer.getToContext(), ToIfLoc, S->isConstexpr(), ToInit, ToConditionVariable, ToCondition, ToThenStmt, ToElseLoc, ToElseStmt); } Stmt *ASTNodeImporter::VisitSwitchStmt(SwitchStmt *S) { Stmt *ToInit = Importer.Import(S->getInit()); if (!ToInit && S->getInit()) return nullptr; VarDecl *ToConditionVariable = nullptr; if (VarDecl *FromConditionVariable = S->getConditionVariable()) { ToConditionVariable = dyn_cast_or_null<VarDecl>(Importer.Import(FromConditionVariable)); if (!ToConditionVariable) return nullptr; } Expr *ToCondition = Importer.Import(S->getCond()); if (!ToCondition && S->getCond()) return nullptr; SwitchStmt *ToStmt = new (Importer.getToContext()) SwitchStmt( Importer.getToContext(), ToInit, ToConditionVariable, ToCondition); Stmt *ToBody = Importer.Import(S->getBody()); if (!ToBody && S->getBody()) return nullptr; ToStmt->setBody(ToBody); ToStmt->setSwitchLoc(Importer.Import(S->getSwitchLoc())); // Now we have to re-chain the cases. SwitchCase *LastChainedSwitchCase = nullptr; for (SwitchCase *SC = S->getSwitchCaseList(); SC != nullptr; SC = SC->getNextSwitchCase()) { SwitchCase *ToSC = dyn_cast_or_null<SwitchCase>(Importer.Import(SC)); if (!ToSC) return nullptr; if (LastChainedSwitchCase) LastChainedSwitchCase->setNextSwitchCase(ToSC); else ToStmt->setSwitchCaseList(ToSC); LastChainedSwitchCase = ToSC; } return ToStmt; } Stmt *ASTNodeImporter::VisitWhileStmt(WhileStmt *S) { VarDecl *ToConditionVariable = nullptr; if (VarDecl *FromConditionVariable = S->getConditionVariable()) { ToConditionVariable = dyn_cast_or_null<VarDecl>(Importer.Import(FromConditionVariable)); if (!ToConditionVariable) return nullptr; } Expr *ToCondition = Importer.Import(S->getCond()); if (!ToCondition && S->getCond()) return nullptr; Stmt *ToBody = Importer.Import(S->getBody()); if (!ToBody && S->getBody()) return nullptr; SourceLocation ToWhileLoc = Importer.Import(S->getWhileLoc()); return new (Importer.getToContext()) WhileStmt(Importer.getToContext(), ToConditionVariable, ToCondition, ToBody, ToWhileLoc); } Stmt *ASTNodeImporter::VisitDoStmt(DoStmt *S) { Stmt *ToBody = Importer.Import(S->getBody()); if (!ToBody && S->getBody()) return nullptr; Expr *ToCondition = Importer.Import(S->getCond()); if (!ToCondition && S->getCond()) return nullptr; SourceLocation ToDoLoc = Importer.Import(S->getDoLoc()); SourceLocation ToWhileLoc = Importer.Import(S->getWhileLoc()); SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc()); return new (Importer.getToContext()) DoStmt(ToBody, ToCondition, ToDoLoc, ToWhileLoc, ToRParenLoc); } Stmt *ASTNodeImporter::VisitForStmt(ForStmt *S) { Stmt *ToInit = Importer.Import(S->getInit()); if (!ToInit && S->getInit()) return nullptr; Expr *ToCondition = Importer.Import(S->getCond()); if (!ToCondition && S->getCond()) return nullptr; VarDecl *ToConditionVariable = nullptr; if (VarDecl *FromConditionVariable = S->getConditionVariable()) { ToConditionVariable = dyn_cast_or_null<VarDecl>(Importer.Import(FromConditionVariable)); if (!ToConditionVariable) return nullptr; } Expr *ToInc = Importer.Import(S->getInc()); if (!ToInc && S->getInc()) return nullptr; Stmt *ToBody = Importer.Import(S->getBody()); if (!ToBody && S->getBody()) return nullptr; SourceLocation ToForLoc = Importer.Import(S->getForLoc()); SourceLocation ToLParenLoc = Importer.Import(S->getLParenLoc()); SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc()); return new (Importer.getToContext()) ForStmt(Importer.getToContext(), ToInit, ToCondition, ToConditionVariable, ToInc, ToBody, ToForLoc, ToLParenLoc, ToRParenLoc); } Stmt *ASTNodeImporter::VisitGotoStmt(GotoStmt *S) { LabelDecl *ToLabel = nullptr; if (LabelDecl *FromLabel = S->getLabel()) { ToLabel = dyn_cast_or_null<LabelDecl>(Importer.Import(FromLabel)); if (!ToLabel) return nullptr; } SourceLocation ToGotoLoc = Importer.Import(S->getGotoLoc()); SourceLocation ToLabelLoc = Importer.Import(S->getLabelLoc()); return new (Importer.getToContext()) GotoStmt(ToLabel, ToGotoLoc, ToLabelLoc); } Stmt *ASTNodeImporter::VisitIndirectGotoStmt(IndirectGotoStmt *S) { SourceLocation ToGotoLoc = Importer.Import(S->getGotoLoc()); SourceLocation ToStarLoc = Importer.Import(S->getStarLoc()); Expr *ToTarget = Importer.Import(S->getTarget()); if (!ToTarget && S->getTarget()) return nullptr; return new (Importer.getToContext()) IndirectGotoStmt(ToGotoLoc, ToStarLoc, ToTarget); } Stmt *ASTNodeImporter::VisitContinueStmt(ContinueStmt *S) { SourceLocation ToContinueLoc = Importer.Import(S->getContinueLoc()); return new (Importer.getToContext()) ContinueStmt(ToContinueLoc); } Stmt *ASTNodeImporter::VisitBreakStmt(BreakStmt *S) { SourceLocation ToBreakLoc = Importer.Import(S->getBreakLoc()); return new (Importer.getToContext()) BreakStmt(ToBreakLoc); } Stmt *ASTNodeImporter::VisitReturnStmt(ReturnStmt *S) { SourceLocation ToRetLoc = Importer.Import(S->getReturnLoc()); Expr *ToRetExpr = Importer.Import(S->getRetValue()); if (!ToRetExpr && S->getRetValue()) return nullptr; VarDecl *NRVOCandidate = const_cast<VarDecl*>(S->getNRVOCandidate()); VarDecl *ToNRVOCandidate = cast_or_null<VarDecl>(Importer.Import(NRVOCandidate)); if (!ToNRVOCandidate && NRVOCandidate) return nullptr; return new (Importer.getToContext()) ReturnStmt(ToRetLoc, ToRetExpr, ToNRVOCandidate); } Stmt *ASTNodeImporter::VisitCXXCatchStmt(CXXCatchStmt *S) { SourceLocation ToCatchLoc = Importer.Import(S->getCatchLoc()); VarDecl *ToExceptionDecl = nullptr; if (VarDecl *FromExceptionDecl = S->getExceptionDecl()) { ToExceptionDecl = dyn_cast_or_null<VarDecl>(Importer.Import(FromExceptionDecl)); if (!ToExceptionDecl) return nullptr; } Stmt *ToHandlerBlock = Importer.Import(S->getHandlerBlock()); if (!ToHandlerBlock && S->getHandlerBlock()) return nullptr; return new (Importer.getToContext()) CXXCatchStmt(ToCatchLoc, ToExceptionDecl, ToHandlerBlock); } Stmt *ASTNodeImporter::VisitCXXTryStmt(CXXTryStmt *S) { SourceLocation ToTryLoc = Importer.Import(S->getTryLoc()); Stmt *ToTryBlock = Importer.Import(S->getTryBlock()); if (!ToTryBlock && S->getTryBlock()) return nullptr; SmallVector<Stmt *, 1> ToHandlers(S->getNumHandlers()); for (unsigned HI = 0, HE = S->getNumHandlers(); HI != HE; ++HI) { CXXCatchStmt *FromHandler = S->getHandler(HI); if (Stmt *ToHandler = Importer.Import(FromHandler)) ToHandlers[HI] = ToHandler; else return nullptr; } return CXXTryStmt::Create(Importer.getToContext(), ToTryLoc, ToTryBlock, ToHandlers); } Stmt *ASTNodeImporter::VisitCXXForRangeStmt(CXXForRangeStmt *S) { DeclStmt *ToRange = dyn_cast_or_null<DeclStmt>(Importer.Import(S->getRangeStmt())); if (!ToRange && S->getRangeStmt()) return nullptr; DeclStmt *ToBegin = dyn_cast_or_null<DeclStmt>(Importer.Import(S->getBeginStmt())); if (!ToBegin && S->getBeginStmt()) return nullptr; DeclStmt *ToEnd = dyn_cast_or_null<DeclStmt>(Importer.Import(S->getEndStmt())); if (!ToEnd && S->getEndStmt()) return nullptr; Expr *ToCond = Importer.Import(S->getCond()); if (!ToCond && S->getCond()) return nullptr; Expr *ToInc = Importer.Import(S->getInc()); if (!ToInc && S->getInc()) return nullptr; DeclStmt *ToLoopVar = dyn_cast_or_null<DeclStmt>(Importer.Import(S->getLoopVarStmt())); if (!ToLoopVar && S->getLoopVarStmt()) return nullptr; Stmt *ToBody = Importer.Import(S->getBody()); if (!ToBody && S->getBody()) return nullptr; SourceLocation ToForLoc = Importer.Import(S->getForLoc()); SourceLocation ToCoawaitLoc = Importer.Import(S->getCoawaitLoc()); SourceLocation ToColonLoc = Importer.Import(S->getColonLoc()); SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc()); return new (Importer.getToContext()) CXXForRangeStmt(ToRange, ToBegin, ToEnd, ToCond, ToInc, ToLoopVar, ToBody, ToForLoc, ToCoawaitLoc, ToColonLoc, ToRParenLoc); } Stmt *ASTNodeImporter::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) { Stmt *ToElem = Importer.Import(S->getElement()); if (!ToElem && S->getElement()) return nullptr; Expr *ToCollect = Importer.Import(S->getCollection()); if (!ToCollect && S->getCollection()) return nullptr; Stmt *ToBody = Importer.Import(S->getBody()); if (!ToBody && S->getBody()) return nullptr; SourceLocation ToForLoc = Importer.Import(S->getForLoc()); SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc()); return new (Importer.getToContext()) ObjCForCollectionStmt(ToElem, ToCollect, ToBody, ToForLoc, ToRParenLoc); } Stmt *ASTNodeImporter::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) { SourceLocation ToAtCatchLoc = Importer.Import(S->getAtCatchLoc()); SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc()); VarDecl *ToExceptionDecl = nullptr; if (VarDecl *FromExceptionDecl = S->getCatchParamDecl()) { ToExceptionDecl = dyn_cast_or_null<VarDecl>(Importer.Import(FromExceptionDecl)); if (!ToExceptionDecl) return nullptr; } Stmt *ToBody = Importer.Import(S->getCatchBody()); if (!ToBody && S->getCatchBody()) return nullptr; return new (Importer.getToContext()) ObjCAtCatchStmt(ToAtCatchLoc, ToRParenLoc, ToExceptionDecl, ToBody); } Stmt *ASTNodeImporter::VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *S) { SourceLocation ToAtFinallyLoc = Importer.Import(S->getAtFinallyLoc()); Stmt *ToAtFinallyStmt = Importer.Import(S->getFinallyBody()); if (!ToAtFinallyStmt && S->getFinallyBody()) return nullptr; return new (Importer.getToContext()) ObjCAtFinallyStmt(ToAtFinallyLoc, ToAtFinallyStmt); } Stmt *ASTNodeImporter::VisitObjCAtTryStmt(ObjCAtTryStmt *S) { SourceLocation ToAtTryLoc = Importer.Import(S->getAtTryLoc()); Stmt *ToAtTryStmt = Importer.Import(S->getTryBody()); if (!ToAtTryStmt && S->getTryBody()) return nullptr; SmallVector<Stmt *, 1> ToCatchStmts(S->getNumCatchStmts()); for (unsigned CI = 0, CE = S->getNumCatchStmts(); CI != CE; ++CI) { ObjCAtCatchStmt *FromCatchStmt = S->getCatchStmt(CI); if (Stmt *ToCatchStmt = Importer.Import(FromCatchStmt)) ToCatchStmts[CI] = ToCatchStmt; else return nullptr; } Stmt *ToAtFinallyStmt = Importer.Import(S->getFinallyStmt()); if (!ToAtFinallyStmt && S->getFinallyStmt()) return nullptr; return ObjCAtTryStmt::Create(Importer.getToContext(), ToAtTryLoc, ToAtTryStmt, ToCatchStmts.begin(), ToCatchStmts.size(), ToAtFinallyStmt); } Stmt *ASTNodeImporter::VisitObjCAtSynchronizedStmt (ObjCAtSynchronizedStmt *S) { SourceLocation ToAtSynchronizedLoc = Importer.Import(S->getAtSynchronizedLoc()); Expr *ToSynchExpr = Importer.Import(S->getSynchExpr()); if (!ToSynchExpr && S->getSynchExpr()) return nullptr; Stmt *ToSynchBody = Importer.Import(S->getSynchBody()); if (!ToSynchBody && S->getSynchBody()) return nullptr; return new (Importer.getToContext()) ObjCAtSynchronizedStmt( ToAtSynchronizedLoc, ToSynchExpr, ToSynchBody); } Stmt *ASTNodeImporter::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) { SourceLocation ToAtThrowLoc = Importer.Import(S->getThrowLoc()); Expr *ToThrow = Importer.Import(S->getThrowExpr()); if (!ToThrow && S->getThrowExpr()) return nullptr; return new (Importer.getToContext()) ObjCAtThrowStmt(ToAtThrowLoc, ToThrow); } Stmt *ASTNodeImporter::VisitObjCAutoreleasePoolStmt (ObjCAutoreleasePoolStmt *S) { SourceLocation ToAtLoc = Importer.Import(S->getAtLoc()); Stmt *ToSubStmt = Importer.Import(S->getSubStmt()); if (!ToSubStmt && S->getSubStmt()) return nullptr; return new (Importer.getToContext()) ObjCAutoreleasePoolStmt(ToAtLoc, ToSubStmt); } //---------------------------------------------------------------------------- // Import Expressions //---------------------------------------------------------------------------- Expr *ASTNodeImporter::VisitExpr(Expr *E) { Importer.FromDiag(E->getLocStart(), diag::err_unsupported_ast_node) << E->getStmtClassName(); return nullptr; } Expr *ASTNodeImporter::VisitVAArgExpr(VAArgExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; Expr *SubExpr = Importer.Import(E->getSubExpr()); if (!SubExpr && E->getSubExpr()) return nullptr; TypeSourceInfo *TInfo = Importer.Import(E->getWrittenTypeInfo()); if (!TInfo) return nullptr; return new (Importer.getToContext()) VAArgExpr( Importer.Import(E->getBuiltinLoc()), SubExpr, TInfo, Importer.Import(E->getRParenLoc()), T, E->isMicrosoftABI()); } Expr *ASTNodeImporter::VisitGNUNullExpr(GNUNullExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; return new (Importer.getToContext()) GNUNullExpr( T, Importer.Import(E->getExprLoc())); } Expr *ASTNodeImporter::VisitPredefinedExpr(PredefinedExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; StringLiteral *SL = cast_or_null<StringLiteral>( Importer.Import(E->getFunctionName())); if (!SL && E->getFunctionName()) return nullptr; return new (Importer.getToContext()) PredefinedExpr( Importer.Import(E->getExprLoc()), T, E->getIdentType(), SL); } Expr *ASTNodeImporter::VisitDeclRefExpr(DeclRefExpr *E) { ValueDecl *ToD = cast_or_null<ValueDecl>(Importer.Import(E->getDecl())); if (!ToD) return nullptr; NamedDecl *FoundD = nullptr; if (E->getDecl() != E->getFoundDecl()) { FoundD = cast_or_null<NamedDecl>(Importer.Import(E->getFoundDecl())); if (!FoundD) return nullptr; } QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; DeclRefExpr *DRE = DeclRefExpr::Create(Importer.getToContext(), Importer.Import(E->getQualifierLoc()), Importer.Import(E->getTemplateKeywordLoc()), ToD, E->refersToEnclosingVariableOrCapture(), Importer.Import(E->getLocation()), T, E->getValueKind(), FoundD, /*FIXME:TemplateArgs=*/nullptr); if (E->hadMultipleCandidates()) DRE->setHadMultipleCandidates(true); return DRE; } Expr *ASTNodeImporter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return NULL; return new (Importer.getToContext()) ImplicitValueInitExpr(T); } ASTNodeImporter::Designator ASTNodeImporter::ImportDesignator(const Designator &D) { if (D.isFieldDesignator()) { IdentifierInfo *ToFieldName = Importer.Import(D.getFieldName()); // Caller checks for import error return Designator(ToFieldName, Importer.Import(D.getDotLoc()), Importer.Import(D.getFieldLoc())); } if (D.isArrayDesignator()) return Designator(D.getFirstExprIndex(), Importer.Import(D.getLBracketLoc()), Importer.Import(D.getRBracketLoc())); assert(D.isArrayRangeDesignator()); return Designator(D.getFirstExprIndex(), Importer.Import(D.getLBracketLoc()), Importer.Import(D.getEllipsisLoc()), Importer.Import(D.getRBracketLoc())); } Expr *ASTNodeImporter::VisitDesignatedInitExpr(DesignatedInitExpr *DIE) { Expr *Init = cast_or_null<Expr>(Importer.Import(DIE->getInit())); if (!Init) return nullptr; SmallVector<Expr *, 4> IndexExprs(DIE->getNumSubExprs() - 1); // List elements from the second, the first is Init itself for (unsigned I = 1, E = DIE->getNumSubExprs(); I < E; I++) { if (Expr *Arg = cast_or_null<Expr>(Importer.Import(DIE->getSubExpr(I)))) IndexExprs[I - 1] = Arg; else return nullptr; } SmallVector<Designator, 4> Designators(DIE->size()); llvm::transform(DIE->designators(), Designators.begin(), [this](const Designator &D) -> Designator { return ImportDesignator(D); }); for (const Designator &D : DIE->designators()) if (D.isFieldDesignator() && !D.getFieldName()) return nullptr; return DesignatedInitExpr::Create( Importer.getToContext(), Designators, IndexExprs, Importer.Import(DIE->getEqualOrColonLoc()), DIE->usesGNUSyntax(), Init); } Expr *ASTNodeImporter::VisitCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; return new (Importer.getToContext()) CXXNullPtrLiteralExpr(T, Importer.Import(E->getLocation())); } Expr *ASTNodeImporter::VisitIntegerLiteral(IntegerLiteral *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; return IntegerLiteral::Create(Importer.getToContext(), E->getValue(), T, Importer.Import(E->getLocation())); } Expr *ASTNodeImporter::VisitFloatingLiteral(FloatingLiteral *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; return FloatingLiteral::Create(Importer.getToContext(), E->getValue(), E->isExact(), T, Importer.Import(E->getLocation())); } Expr *ASTNodeImporter::VisitCharacterLiteral(CharacterLiteral *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; return new (Importer.getToContext()) CharacterLiteral(E->getValue(), E->getKind(), T, Importer.Import(E->getLocation())); } Expr *ASTNodeImporter::VisitStringLiteral(StringLiteral *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; SmallVector<SourceLocation, 4> Locations(E->getNumConcatenated()); ImportArray(E->tokloc_begin(), E->tokloc_end(), Locations.begin()); return StringLiteral::Create(Importer.getToContext(), E->getBytes(), E->getKind(), E->isPascal(), T, Locations.data(), Locations.size()); } Expr *ASTNodeImporter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; TypeSourceInfo *TInfo = Importer.Import(E->getTypeSourceInfo()); if (!TInfo) return nullptr; Expr *Init = Importer.Import(E->getInitializer()); if (!Init) return nullptr; return new (Importer.getToContext()) CompoundLiteralExpr( Importer.Import(E->getLParenLoc()), TInfo, T, E->getValueKind(), Init, E->isFileScope()); } Expr *ASTNodeImporter::VisitAtomicExpr(AtomicExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; SmallVector<Expr *, 6> Exprs(E->getNumSubExprs()); if (ImportArrayChecked( E->getSubExprs(), E->getSubExprs() + E->getNumSubExprs(), Exprs.begin())) return nullptr; return new (Importer.getToContext()) AtomicExpr( Importer.Import(E->getBuiltinLoc()), Exprs, T, E->getOp(), Importer.Import(E->getRParenLoc())); } Expr *ASTNodeImporter::VisitAddrLabelExpr(AddrLabelExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; LabelDecl *ToLabel = cast_or_null<LabelDecl>(Importer.Import(E->getLabel())); if (!ToLabel) return nullptr; return new (Importer.getToContext()) AddrLabelExpr( Importer.Import(E->getAmpAmpLoc()), Importer.Import(E->getLabelLoc()), ToLabel, T); } Expr *ASTNodeImporter::VisitParenExpr(ParenExpr *E) { Expr *SubExpr = Importer.Import(E->getSubExpr()); if (!SubExpr) return nullptr; return new (Importer.getToContext()) ParenExpr(Importer.Import(E->getLParen()), Importer.Import(E->getRParen()), SubExpr); } Expr *ASTNodeImporter::VisitParenListExpr(ParenListExpr *E) { SmallVector<Expr *, 4> Exprs(E->getNumExprs()); if (ImportArrayChecked( E->getExprs(), E->getExprs() + E->getNumExprs(), Exprs.begin())) return nullptr; return new (Importer.getToContext()) ParenListExpr( Importer.getToContext(), Importer.Import(E->getLParenLoc()), Exprs, Importer.Import(E->getLParenLoc())); } Expr *ASTNodeImporter::VisitStmtExpr(StmtExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; CompoundStmt *ToSubStmt = cast_or_null<CompoundStmt>( Importer.Import(E->getSubStmt())); if (!ToSubStmt && E->getSubStmt()) return nullptr; return new (Importer.getToContext()) StmtExpr(ToSubStmt, T, Importer.Import(E->getLParenLoc()), Importer.Import(E->getRParenLoc())); } Expr *ASTNodeImporter::VisitUnaryOperator(UnaryOperator *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; Expr *SubExpr = Importer.Import(E->getSubExpr()); if (!SubExpr) return nullptr; return new (Importer.getToContext()) UnaryOperator(SubExpr, E->getOpcode(), T, E->getValueKind(), E->getObjectKind(), Importer.Import(E->getOperatorLoc())); } Expr *ASTNodeImporter::VisitUnaryExprOrTypeTraitExpr( UnaryExprOrTypeTraitExpr *E) { QualType ResultType = Importer.Import(E->getType()); if (E->isArgumentType()) { TypeSourceInfo *TInfo = Importer.Import(E->getArgumentTypeInfo()); if (!TInfo) return nullptr; return new (Importer.getToContext()) UnaryExprOrTypeTraitExpr(E->getKind(), TInfo, ResultType, Importer.Import(E->getOperatorLoc()), Importer.Import(E->getRParenLoc())); } Expr *SubExpr = Importer.Import(E->getArgumentExpr()); if (!SubExpr) return nullptr; return new (Importer.getToContext()) UnaryExprOrTypeTraitExpr(E->getKind(), SubExpr, ResultType, Importer.Import(E->getOperatorLoc()), Importer.Import(E->getRParenLoc())); } Expr *ASTNodeImporter::VisitBinaryOperator(BinaryOperator *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; Expr *LHS = Importer.Import(E->getLHS()); if (!LHS) return nullptr; Expr *RHS = Importer.Import(E->getRHS()); if (!RHS) return nullptr; return new (Importer.getToContext()) BinaryOperator(LHS, RHS, E->getOpcode(), T, E->getValueKind(), E->getObjectKind(), Importer.Import(E->getOperatorLoc()), E->isFPContractable()); } Expr *ASTNodeImporter::VisitConditionalOperator(ConditionalOperator *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; Expr *ToLHS = Importer.Import(E->getLHS()); if (!ToLHS) return nullptr; Expr *ToRHS = Importer.Import(E->getRHS()); if (!ToRHS) return nullptr; Expr *ToCond = Importer.Import(E->getCond()); if (!ToCond) return nullptr; return new (Importer.getToContext()) ConditionalOperator( ToCond, Importer.Import(E->getQuestionLoc()), ToLHS, Importer.Import(E->getColonLoc()), ToRHS, T, E->getValueKind(), E->getObjectKind()); } Expr *ASTNodeImporter::VisitBinaryConditionalOperator( BinaryConditionalOperator *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; Expr *Common = Importer.Import(E->getCommon()); if (!Common) return nullptr; Expr *Cond = Importer.Import(E->getCond()); if (!Cond) return nullptr; OpaqueValueExpr *OpaqueValue = cast_or_null<OpaqueValueExpr>( Importer.Import(E->getOpaqueValue())); if (!OpaqueValue) return nullptr; Expr *TrueExpr = Importer.Import(E->getTrueExpr()); if (!TrueExpr) return nullptr; Expr *FalseExpr = Importer.Import(E->getFalseExpr()); if (!FalseExpr) return nullptr; return new (Importer.getToContext()) BinaryConditionalOperator( Common, OpaqueValue, Cond, TrueExpr, FalseExpr, Importer.Import(E->getQuestionLoc()), Importer.Import(E->getColonLoc()), T, E->getValueKind(), E->getObjectKind()); } Expr *ASTNodeImporter::VisitOpaqueValueExpr(OpaqueValueExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; Expr *SourceExpr = Importer.Import(E->getSourceExpr()); if (!SourceExpr && E->getSourceExpr()) return nullptr; return new (Importer.getToContext()) OpaqueValueExpr( Importer.Import(E->getExprLoc()), T, E->getValueKind(), E->getObjectKind(), SourceExpr); } Expr *ASTNodeImporter::VisitCompoundAssignOperator(CompoundAssignOperator *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; QualType CompLHSType = Importer.Import(E->getComputationLHSType()); if (CompLHSType.isNull()) return nullptr; QualType CompResultType = Importer.Import(E->getComputationResultType()); if (CompResultType.isNull()) return nullptr; Expr *LHS = Importer.Import(E->getLHS()); if (!LHS) return nullptr; Expr *RHS = Importer.Import(E->getRHS()); if (!RHS) return nullptr; return new (Importer.getToContext()) CompoundAssignOperator(LHS, RHS, E->getOpcode(), T, E->getValueKind(), E->getObjectKind(), CompLHSType, CompResultType, Importer.Import(E->getOperatorLoc()), E->isFPContractable()); } static bool ImportCastPath(CastExpr *E, CXXCastPath &Path) { if (E->path_empty()) return false; // TODO: import cast paths return true; } Expr *ASTNodeImporter::VisitImplicitCastExpr(ImplicitCastExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; Expr *SubExpr = Importer.Import(E->getSubExpr()); if (!SubExpr) return nullptr; CXXCastPath BasePath; if (ImportCastPath(E, BasePath)) return nullptr; return ImplicitCastExpr::Create(Importer.getToContext(), T, E->getCastKind(), SubExpr, &BasePath, E->getValueKind()); } Expr *ASTNodeImporter::VisitCStyleCastExpr(CStyleCastExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; Expr *SubExpr = Importer.Import(E->getSubExpr()); if (!SubExpr) return nullptr; TypeSourceInfo *TInfo = Importer.Import(E->getTypeInfoAsWritten()); if (!TInfo && E->getTypeInfoAsWritten()) return nullptr; CXXCastPath BasePath; if (ImportCastPath(E, BasePath)) return nullptr; return CStyleCastExpr::Create(Importer.getToContext(), T, E->getValueKind(), E->getCastKind(), SubExpr, &BasePath, TInfo, Importer.Import(E->getLParenLoc()), Importer.Import(E->getRParenLoc())); } Expr *ASTNodeImporter::VisitCXXConstructExpr(CXXConstructExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; CXXConstructorDecl *ToCCD = dyn_cast_or_null<CXXConstructorDecl>(Importer.Import(E->getConstructor())); if (!ToCCD) return nullptr; SmallVector<Expr *, 6> ToArgs(E->getNumArgs()); if (ImportArrayChecked(E->getArgs(), E->getArgs() + E->getNumArgs(), ToArgs.begin())) return nullptr; return CXXConstructExpr::Create(Importer.getToContext(), T, Importer.Import(E->getLocation()), ToCCD, E->isElidable(), ToArgs, E->hadMultipleCandidates(), E->isListInitialization(), E->isStdInitListInitialization(), E->requiresZeroInitialization(), E->getConstructionKind(), Importer.Import(E->getParenOrBraceRange())); } Expr *ASTNodeImporter::VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; Expr *ToFn = Importer.Import(E->getCallee()); if (!ToFn) return nullptr; SmallVector<Expr *, 4> ToArgs(E->getNumArgs()); if (ImportArrayChecked(E->arg_begin(), E->arg_end(), ToArgs.begin())) return nullptr; return new (Importer.getToContext()) CXXMemberCallExpr( Importer.getToContext(), ToFn, ToArgs, T, E->getValueKind(), Importer.Import(E->getRParenLoc())); } Expr *ASTNodeImporter::VisitCXXThisExpr(CXXThisExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; return new (Importer.getToContext()) CXXThisExpr(Importer.Import(E->getLocation()), T, E->isImplicit()); } Expr *ASTNodeImporter::VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; return new (Importer.getToContext()) CXXBoolLiteralExpr(E->getValue(), T, Importer.Import(E->getLocation())); } Expr *ASTNodeImporter::VisitMemberExpr(MemberExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; Expr *ToBase = Importer.Import(E->getBase()); if (!ToBase && E->getBase()) return nullptr; ValueDecl *ToMember = dyn_cast<ValueDecl>(Importer.Import(E->getMemberDecl())); if (!ToMember && E->getMemberDecl()) return nullptr; DeclAccessPair ToFoundDecl = DeclAccessPair::make( dyn_cast<NamedDecl>(Importer.Import(E->getFoundDecl().getDecl())), E->getFoundDecl().getAccess()); DeclarationNameInfo ToMemberNameInfo( Importer.Import(E->getMemberNameInfo().getName()), Importer.Import(E->getMemberNameInfo().getLoc())); if (E->hasExplicitTemplateArgs()) { return nullptr; // FIXME: handle template arguments } return MemberExpr::Create(Importer.getToContext(), ToBase, E->isArrow(), Importer.Import(E->getOperatorLoc()), Importer.Import(E->getQualifierLoc()), Importer.Import(E->getTemplateKeywordLoc()), ToMember, ToFoundDecl, ToMemberNameInfo, nullptr, T, E->getValueKind(), E->getObjectKind()); } Expr *ASTNodeImporter::VisitCallExpr(CallExpr *E) { QualType T = Importer.Import(E->getType()); if (T.isNull()) return nullptr; Expr *ToCallee = Importer.Import(E->getCallee()); if (!ToCallee && E->getCallee()) return nullptr; unsigned NumArgs = E->getNumArgs(); llvm::SmallVector<Expr *, 2> ToArgs(NumArgs); for (unsigned ai = 0, ae = NumArgs; ai != ae; ++ai) { Expr *FromArg = E->getArg(ai); Expr *ToArg = Importer.Import(FromArg); if (!ToArg) return nullptr; ToArgs[ai] = ToArg; } Expr **ToArgs_Copied = new (Importer.getToContext()) Expr*[NumArgs]; for (unsigned ai = 0, ae = NumArgs; ai != ae; ++ai) ToArgs_Copied[ai] = ToArgs[ai]; return new (Importer.getToContext()) CallExpr(Importer.getToContext(), ToCallee, llvm::makeArrayRef(ToArgs_Copied, NumArgs), T, E->getValueKind(), Importer.Import(E->getRParenLoc())); } Expr *ASTNodeImporter::VisitInitListExpr(InitListExpr *ILE) { QualType T = Importer.Import(ILE->getType()); if (T.isNull()) return nullptr; llvm::SmallVector<Expr *, 4> Exprs(ILE->getNumInits()); if (ImportArrayChecked( ILE->getInits(), ILE->getInits() + ILE->getNumInits(), Exprs.begin())) return nullptr; ASTContext &ToCtx = Importer.getToContext(); InitListExpr *To = new (ToCtx) InitListExpr( ToCtx, Importer.Import(ILE->getLBraceLoc()), Exprs, Importer.Import(ILE->getLBraceLoc())); To->setType(T); if (ILE->hasArrayFiller()) { Expr *Filler = Importer.Import(ILE->getArrayFiller()); if (!Filler) return nullptr; To->setArrayFiller(Filler); } if (FieldDecl *FromFD = ILE->getInitializedFieldInUnion()) { FieldDecl *ToFD = cast_or_null<FieldDecl>(Importer.Import(FromFD)); if (!ToFD) return nullptr; To->setInitializedFieldInUnion(ToFD); } if (InitListExpr *SyntForm = ILE->getSyntacticForm()) { InitListExpr *ToSyntForm = cast_or_null<InitListExpr>( Importer.Import(SyntForm)); if (!ToSyntForm) return nullptr; To->setSyntacticForm(ToSyntForm); } To->sawArrayRangeDesignator(ILE->hadArrayRangeDesignator()); To->setValueDependent(ILE->isValueDependent()); To->setInstantiationDependent(ILE->isInstantiationDependent()); return To; } Expr *ASTNodeImporter::VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { FieldDecl *ToField = llvm::dyn_cast_or_null<FieldDecl>( Importer.Import(DIE->getField())); if (!ToField && DIE->getField()) return nullptr; return CXXDefaultInitExpr::Create( Importer.getToContext(), Importer.Import(DIE->getLocStart()), ToField); } Expr *ASTNodeImporter::VisitCXXNamedCastExpr(CXXNamedCastExpr *E) { QualType ToType = Importer.Import(E->getType()); if (ToType.isNull() && !E->getType().isNull()) return nullptr; ExprValueKind VK = E->getValueKind(); CastKind CK = E->getCastKind(); Expr *ToOp = Importer.Import(E->getSubExpr()); if (!ToOp && E->getSubExpr()) return nullptr; CXXCastPath BasePath; if (ImportCastPath(E, BasePath)) return nullptr; TypeSourceInfo *ToWritten = Importer.Import(E->getTypeInfoAsWritten()); SourceLocation ToOperatorLoc = Importer.Import(E->getOperatorLoc()); SourceLocation ToRParenLoc = Importer.Import(E->getRParenLoc()); SourceRange ToAngleBrackets = Importer.Import(E->getAngleBrackets()); if (isa<CXXStaticCastExpr>(E)) { return CXXStaticCastExpr::Create( Importer.getToContext(), ToType, VK, CK, ToOp, &BasePath, ToWritten, ToOperatorLoc, ToRParenLoc, ToAngleBrackets); } else if (isa<CXXDynamicCastExpr>(E)) { return CXXDynamicCastExpr::Create( Importer.getToContext(), ToType, VK, CK, ToOp, &BasePath, ToWritten, ToOperatorLoc, ToRParenLoc, ToAngleBrackets); } else if (isa<CXXReinterpretCastExpr>(E)) { return CXXReinterpretCastExpr::Create( Importer.getToContext(), ToType, VK, CK, ToOp, &BasePath, ToWritten, ToOperatorLoc, ToRParenLoc, ToAngleBrackets); } else { return nullptr; } } ASTImporter::ASTImporter(ASTContext &ToContext, FileManager &ToFileManager, ASTContext &FromContext, FileManager &FromFileManager, bool MinimalImport) : ToContext(ToContext), FromContext(FromContext), ToFileManager(ToFileManager), FromFileManager(FromFileManager), Minimal(MinimalImport), LastDiagFromFrom(false) { ImportedDecls[FromContext.getTranslationUnitDecl()] = ToContext.getTranslationUnitDecl(); } ASTImporter::~ASTImporter() { } QualType ASTImporter::Import(QualType FromT) { if (FromT.isNull()) return QualType(); const Type *fromTy = FromT.getTypePtr(); // Check whether we've already imported this type. llvm::DenseMap<const Type *, const Type *>::iterator Pos = ImportedTypes.find(fromTy); if (Pos != ImportedTypes.end()) return ToContext.getQualifiedType(Pos->second, FromT.getLocalQualifiers()); // Import the type ASTNodeImporter Importer(*this); QualType ToT = Importer.Visit(fromTy); if (ToT.isNull()) return ToT; // Record the imported type. ImportedTypes[fromTy] = ToT.getTypePtr(); return ToContext.getQualifiedType(ToT, FromT.getLocalQualifiers()); } TypeSourceInfo *ASTImporter::Import(TypeSourceInfo *FromTSI) { if (!FromTSI) return FromTSI; // FIXME: For now we just create a "trivial" type source info based // on the type and a single location. Implement a real version of this. QualType T = Import(FromTSI->getType()); if (T.isNull()) return nullptr; return ToContext.getTrivialTypeSourceInfo(T, Import(FromTSI->getTypeLoc().getLocStart())); } Decl *ASTImporter::GetAlreadyImportedOrNull(Decl *FromD) { llvm::DenseMap<Decl *, Decl *>::iterator Pos = ImportedDecls.find(FromD); if (Pos != ImportedDecls.end()) { Decl *ToD = Pos->second; ASTNodeImporter(*this).ImportDefinitionIfNeeded(FromD, ToD); return ToD; } else { return nullptr; } } Decl *ASTImporter::Import(Decl *FromD) { if (!FromD) return nullptr; ASTNodeImporter Importer(*this); // Check whether we've already imported this declaration. llvm::DenseMap<Decl *, Decl *>::iterator Pos = ImportedDecls.find(FromD); if (Pos != ImportedDecls.end()) { Decl *ToD = Pos->second; Importer.ImportDefinitionIfNeeded(FromD, ToD); return ToD; } // Import the type Decl *ToD = Importer.Visit(FromD); if (!ToD) return nullptr; // Record the imported declaration. ImportedDecls[FromD] = ToD; if (TagDecl *FromTag = dyn_cast<TagDecl>(FromD)) { // Keep track of anonymous tags that have an associated typedef. if (FromTag->getTypedefNameForAnonDecl()) AnonTagsWithPendingTypedefs.push_back(FromTag); } else if (TypedefNameDecl *FromTypedef = dyn_cast<TypedefNameDecl>(FromD)) { // When we've finished transforming a typedef, see whether it was the // typedef for an anonymous tag. for (SmallVectorImpl<TagDecl *>::iterator FromTag = AnonTagsWithPendingTypedefs.begin(), FromTagEnd = AnonTagsWithPendingTypedefs.end(); FromTag != FromTagEnd; ++FromTag) { if ((*FromTag)->getTypedefNameForAnonDecl() == FromTypedef) { if (TagDecl *ToTag = cast_or_null<TagDecl>(Import(*FromTag))) { // We found the typedef for an anonymous tag; link them. ToTag->setTypedefNameForAnonDecl(cast<TypedefNameDecl>(ToD)); AnonTagsWithPendingTypedefs.erase(FromTag); break; } } } } return ToD; } DeclContext *ASTImporter::ImportContext(DeclContext *FromDC) { if (!FromDC) return FromDC; DeclContext *ToDC = cast_or_null<DeclContext>(Import(cast<Decl>(FromDC))); if (!ToDC) return nullptr; // When we're using a record/enum/Objective-C class/protocol as a context, we // need it to have a definition. if (RecordDecl *ToRecord = dyn_cast<RecordDecl>(ToDC)) { RecordDecl *FromRecord = cast<RecordDecl>(FromDC); if (ToRecord->isCompleteDefinition()) { // Do nothing. } else if (FromRecord->isCompleteDefinition()) { ASTNodeImporter(*this).ImportDefinition(FromRecord, ToRecord, ASTNodeImporter::IDK_Basic); } else { CompleteDecl(ToRecord); } } else if (EnumDecl *ToEnum = dyn_cast<EnumDecl>(ToDC)) { EnumDecl *FromEnum = cast<EnumDecl>(FromDC); if (ToEnum->isCompleteDefinition()) { // Do nothing. } else if (FromEnum->isCompleteDefinition()) { ASTNodeImporter(*this).ImportDefinition(FromEnum, ToEnum, ASTNodeImporter::IDK_Basic); } else { CompleteDecl(ToEnum); } } else if (ObjCInterfaceDecl *ToClass = dyn_cast<ObjCInterfaceDecl>(ToDC)) { ObjCInterfaceDecl *FromClass = cast<ObjCInterfaceDecl>(FromDC); if (ToClass->getDefinition()) { // Do nothing. } else if (ObjCInterfaceDecl *FromDef = FromClass->getDefinition()) { ASTNodeImporter(*this).ImportDefinition(FromDef, ToClass, ASTNodeImporter::IDK_Basic); } else { CompleteDecl(ToClass); } } else if (ObjCProtocolDecl *ToProto = dyn_cast<ObjCProtocolDecl>(ToDC)) { ObjCProtocolDecl *FromProto = cast<ObjCProtocolDecl>(FromDC); if (ToProto->getDefinition()) { // Do nothing. } else if (ObjCProtocolDecl *FromDef = FromProto->getDefinition()) { ASTNodeImporter(*this).ImportDefinition(FromDef, ToProto, ASTNodeImporter::IDK_Basic); } else { CompleteDecl(ToProto); } } return ToDC; } Expr *ASTImporter::Import(Expr *FromE) { if (!FromE) return nullptr; return cast_or_null<Expr>(Import(cast<Stmt>(FromE))); } Stmt *ASTImporter::Import(Stmt *FromS) { if (!FromS) return nullptr; // Check whether we've already imported this declaration. llvm::DenseMap<Stmt *, Stmt *>::iterator Pos = ImportedStmts.find(FromS); if (Pos != ImportedStmts.end()) return Pos->second; // Import the type ASTNodeImporter Importer(*this); Stmt *ToS = Importer.Visit(FromS); if (!ToS) return nullptr; // Record the imported declaration. ImportedStmts[FromS] = ToS; return ToS; } NestedNameSpecifier *ASTImporter::Import(NestedNameSpecifier *FromNNS) { if (!FromNNS) return nullptr; NestedNameSpecifier *prefix = Import(FromNNS->getPrefix()); switch (FromNNS->getKind()) { case NestedNameSpecifier::Identifier: if (IdentifierInfo *II = Import(FromNNS->getAsIdentifier())) { return NestedNameSpecifier::Create(ToContext, prefix, II); } return nullptr; case NestedNameSpecifier::Namespace: if (NamespaceDecl *NS = cast<NamespaceDecl>(Import(FromNNS->getAsNamespace()))) { return NestedNameSpecifier::Create(ToContext, prefix, NS); } return nullptr; case NestedNameSpecifier::NamespaceAlias: if (NamespaceAliasDecl *NSAD = cast<NamespaceAliasDecl>(Import(FromNNS->getAsNamespaceAlias()))) { return NestedNameSpecifier::Create(ToContext, prefix, NSAD); } return nullptr; case NestedNameSpecifier::Global: return NestedNameSpecifier::GlobalSpecifier(ToContext); case NestedNameSpecifier::Super: if (CXXRecordDecl *RD = cast<CXXRecordDecl>(Import(FromNNS->getAsRecordDecl()))) { return NestedNameSpecifier::SuperSpecifier(ToContext, RD); } return nullptr; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { QualType T = Import(QualType(FromNNS->getAsType(), 0u)); if (!T.isNull()) { bool bTemplate = FromNNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate; return NestedNameSpecifier::Create(ToContext, prefix, bTemplate, T.getTypePtr()); } } return nullptr; } llvm_unreachable("Invalid nested name specifier kind"); } NestedNameSpecifierLoc ASTImporter::Import(NestedNameSpecifierLoc FromNNS) { // FIXME: Implement! return NestedNameSpecifierLoc(); } TemplateName ASTImporter::Import(TemplateName From) { switch (From.getKind()) { case TemplateName::Template: if (TemplateDecl *ToTemplate = cast_or_null<TemplateDecl>(Import(From.getAsTemplateDecl()))) return TemplateName(ToTemplate); return TemplateName(); case TemplateName::OverloadedTemplate: { OverloadedTemplateStorage *FromStorage = From.getAsOverloadedTemplate(); UnresolvedSet<2> ToTemplates; for (OverloadedTemplateStorage::iterator I = FromStorage->begin(), E = FromStorage->end(); I != E; ++I) { if (NamedDecl *To = cast_or_null<NamedDecl>(Import(*I))) ToTemplates.addDecl(To); else return TemplateName(); } return ToContext.getOverloadedTemplateName(ToTemplates.begin(), ToTemplates.end()); } case TemplateName::QualifiedTemplate: { QualifiedTemplateName *QTN = From.getAsQualifiedTemplateName(); NestedNameSpecifier *Qualifier = Import(QTN->getQualifier()); if (!Qualifier) return TemplateName(); if (TemplateDecl *ToTemplate = cast_or_null<TemplateDecl>(Import(From.getAsTemplateDecl()))) return ToContext.getQualifiedTemplateName(Qualifier, QTN->hasTemplateKeyword(), ToTemplate); return TemplateName(); } case TemplateName::DependentTemplate: { DependentTemplateName *DTN = From.getAsDependentTemplateName(); NestedNameSpecifier *Qualifier = Import(DTN->getQualifier()); if (!Qualifier) return TemplateName(); if (DTN->isIdentifier()) { return ToContext.getDependentTemplateName(Qualifier, Import(DTN->getIdentifier())); } return ToContext.getDependentTemplateName(Qualifier, DTN->getOperator()); } case TemplateName::SubstTemplateTemplateParm: { SubstTemplateTemplateParmStorage *subst = From.getAsSubstTemplateTemplateParm(); TemplateTemplateParmDecl *param = cast_or_null<TemplateTemplateParmDecl>(Import(subst->getParameter())); if (!param) return TemplateName(); TemplateName replacement = Import(subst->getReplacement()); if (replacement.isNull()) return TemplateName(); return ToContext.getSubstTemplateTemplateParm(param, replacement); } case TemplateName::SubstTemplateTemplateParmPack: { SubstTemplateTemplateParmPackStorage *SubstPack = From.getAsSubstTemplateTemplateParmPack(); TemplateTemplateParmDecl *Param = cast_or_null<TemplateTemplateParmDecl>( Import(SubstPack->getParameterPack())); if (!Param) return TemplateName(); ASTNodeImporter Importer(*this); TemplateArgument ArgPack = Importer.ImportTemplateArgument(SubstPack->getArgumentPack()); if (ArgPack.isNull()) return TemplateName(); return ToContext.getSubstTemplateTemplateParmPack(Param, ArgPack); } } llvm_unreachable("Invalid template name kind"); } SourceLocation ASTImporter::Import(SourceLocation FromLoc) { if (FromLoc.isInvalid()) return SourceLocation(); SourceManager &FromSM = FromContext.getSourceManager(); // For now, map everything down to its spelling location, so that we // don't have to import macro expansions. // FIXME: Import macro expansions! FromLoc = FromSM.getSpellingLoc(FromLoc); std::pair<FileID, unsigned> Decomposed = FromSM.getDecomposedLoc(FromLoc); SourceManager &ToSM = ToContext.getSourceManager(); FileID ToFileID = Import(Decomposed.first); if (ToFileID.isInvalid()) return SourceLocation(); SourceLocation ret = ToSM.getLocForStartOfFile(ToFileID) .getLocWithOffset(Decomposed.second); return ret; } SourceRange ASTImporter::Import(SourceRange FromRange) { return SourceRange(Import(FromRange.getBegin()), Import(FromRange.getEnd())); } FileID ASTImporter::Import(FileID FromID) { llvm::DenseMap<FileID, FileID>::iterator Pos = ImportedFileIDs.find(FromID); if (Pos != ImportedFileIDs.end()) return Pos->second; SourceManager &FromSM = FromContext.getSourceManager(); SourceManager &ToSM = ToContext.getSourceManager(); const SrcMgr::SLocEntry &FromSLoc = FromSM.getSLocEntry(FromID); assert(FromSLoc.isFile() && "Cannot handle macro expansions yet"); // Include location of this file. SourceLocation ToIncludeLoc = Import(FromSLoc.getFile().getIncludeLoc()); // Map the FileID for to the "to" source manager. FileID ToID; const SrcMgr::ContentCache *Cache = FromSLoc.getFile().getContentCache(); if (Cache->OrigEntry && Cache->OrigEntry->getDir()) { // FIXME: We probably want to use getVirtualFile(), so we don't hit the // disk again // FIXME: We definitely want to re-use the existing MemoryBuffer, rather // than mmap the files several times. const FileEntry *Entry = ToFileManager.getFile(Cache->OrigEntry->getName()); if (!Entry) return FileID(); ToID = ToSM.createFileID(Entry, ToIncludeLoc, FromSLoc.getFile().getFileCharacteristic()); } else { // FIXME: We want to re-use the existing MemoryBuffer! const llvm::MemoryBuffer * FromBuf = Cache->getBuffer(FromContext.getDiagnostics(), FromSM); std::unique_ptr<llvm::MemoryBuffer> ToBuf = llvm::MemoryBuffer::getMemBufferCopy(FromBuf->getBuffer(), FromBuf->getBufferIdentifier()); ToID = ToSM.createFileID(std::move(ToBuf), FromSLoc.getFile().getFileCharacteristic()); } ImportedFileIDs[FromID] = ToID; return ToID; } CXXCtorInitializer *ASTImporter::Import(CXXCtorInitializer *From) { Expr *ToExpr = Import(From->getInit()); if (!ToExpr && From->getInit()) return nullptr; if (From->isBaseInitializer()) { TypeSourceInfo *ToTInfo = Import(From->getTypeSourceInfo()); if (!ToTInfo && From->getTypeSourceInfo()) return nullptr; return new (ToContext) CXXCtorInitializer( ToContext, ToTInfo, From->isBaseVirtual(), Import(From->getLParenLoc()), ToExpr, Import(From->getRParenLoc()), From->isPackExpansion() ? Import(From->getEllipsisLoc()) : SourceLocation()); } else if (From->isMemberInitializer()) { FieldDecl *ToField = llvm::cast_or_null<FieldDecl>(Import(From->getMember())); if (!ToField && From->getMember()) return nullptr; return new (ToContext) CXXCtorInitializer( ToContext, ToField, Import(From->getMemberLocation()), Import(From->getLParenLoc()), ToExpr, Import(From->getRParenLoc())); } else if (From->isIndirectMemberInitializer()) { IndirectFieldDecl *ToIField = llvm::cast_or_null<IndirectFieldDecl>( Import(From->getIndirectMember())); if (!ToIField && From->getIndirectMember()) return nullptr; return new (ToContext) CXXCtorInitializer( ToContext, ToIField, Import(From->getMemberLocation()), Import(From->getLParenLoc()), ToExpr, Import(From->getRParenLoc())); } else if (From->isDelegatingInitializer()) { TypeSourceInfo *ToTInfo = Import(From->getTypeSourceInfo()); if (!ToTInfo && From->getTypeSourceInfo()) return nullptr; return new (ToContext) CXXCtorInitializer(ToContext, ToTInfo, Import(From->getLParenLoc()), ToExpr, Import(From->getRParenLoc())); } else if (unsigned NumArrayIndices = From->getNumArrayIndices()) { FieldDecl *ToField = llvm::cast_or_null<FieldDecl>(Import(From->getMember())); if (!ToField && From->getMember()) return nullptr; SmallVector<VarDecl *, 4> ToAIs(NumArrayIndices); for (unsigned AII = 0; AII < NumArrayIndices; ++AII) { VarDecl *ToArrayIndex = dyn_cast_or_null<VarDecl>(Import(From->getArrayIndex(AII))); if (!ToArrayIndex && From->getArrayIndex(AII)) return nullptr; } return CXXCtorInitializer::Create( ToContext, ToField, Import(From->getMemberLocation()), Import(From->getLParenLoc()), ToExpr, Import(From->getRParenLoc()), ToAIs.data(), NumArrayIndices); } else { return nullptr; } } void ASTImporter::ImportDefinition(Decl *From) { Decl *To = Import(From); if (!To) return; if (DeclContext *FromDC = cast<DeclContext>(From)) { ASTNodeImporter Importer(*this); if (RecordDecl *ToRecord = dyn_cast<RecordDecl>(To)) { if (!ToRecord->getDefinition()) { Importer.ImportDefinition(cast<RecordDecl>(FromDC), ToRecord, ASTNodeImporter::IDK_Everything); return; } } if (EnumDecl *ToEnum = dyn_cast<EnumDecl>(To)) { if (!ToEnum->getDefinition()) { Importer.ImportDefinition(cast<EnumDecl>(FromDC), ToEnum, ASTNodeImporter::IDK_Everything); return; } } if (ObjCInterfaceDecl *ToIFace = dyn_cast<ObjCInterfaceDecl>(To)) { if (!ToIFace->getDefinition()) { Importer.ImportDefinition(cast<ObjCInterfaceDecl>(FromDC), ToIFace, ASTNodeImporter::IDK_Everything); return; } } if (ObjCProtocolDecl *ToProto = dyn_cast<ObjCProtocolDecl>(To)) { if (!ToProto->getDefinition()) { Importer.ImportDefinition(cast<ObjCProtocolDecl>(FromDC), ToProto, ASTNodeImporter::IDK_Everything); return; } } Importer.ImportDeclContext(FromDC, true); } } DeclarationName ASTImporter::Import(DeclarationName FromName) { if (!FromName) return DeclarationName(); switch (FromName.getNameKind()) { case DeclarationName::Identifier: return Import(FromName.getAsIdentifierInfo()); case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: return Import(FromName.getObjCSelector()); case DeclarationName::CXXConstructorName: { QualType T = Import(FromName.getCXXNameType()); if (T.isNull()) return DeclarationName(); return ToContext.DeclarationNames.getCXXConstructorName( ToContext.getCanonicalType(T)); } case DeclarationName::CXXDestructorName: { QualType T = Import(FromName.getCXXNameType()); if (T.isNull()) return DeclarationName(); return ToContext.DeclarationNames.getCXXDestructorName( ToContext.getCanonicalType(T)); } case DeclarationName::CXXConversionFunctionName: { QualType T = Import(FromName.getCXXNameType()); if (T.isNull()) return DeclarationName(); return ToContext.DeclarationNames.getCXXConversionFunctionName( ToContext.getCanonicalType(T)); } case DeclarationName::CXXOperatorName: return ToContext.DeclarationNames.getCXXOperatorName( FromName.getCXXOverloadedOperator()); case DeclarationName::CXXLiteralOperatorName: return ToContext.DeclarationNames.getCXXLiteralOperatorName( Import(FromName.getCXXLiteralIdentifier())); case DeclarationName::CXXUsingDirective: // FIXME: STATICS! return DeclarationName::getUsingDirectiveName(); } llvm_unreachable("Invalid DeclarationName Kind!"); } IdentifierInfo *ASTImporter::Import(const IdentifierInfo *FromId) { if (!FromId) return nullptr; IdentifierInfo *ToId = &ToContext.Idents.get(FromId->getName()); if (!ToId->getBuiltinID() && FromId->getBuiltinID()) ToId->setBuiltinID(FromId->getBuiltinID()); return ToId; } Selector ASTImporter::Import(Selector FromSel) { if (FromSel.isNull()) return Selector(); SmallVector<IdentifierInfo *, 4> Idents; Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(0))); for (unsigned I = 1, N = FromSel.getNumArgs(); I < N; ++I) Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(I))); return ToContext.Selectors.getSelector(FromSel.getNumArgs(), Idents.data()); } DeclarationName ASTImporter::HandleNameConflict(DeclarationName Name, DeclContext *DC, unsigned IDNS, NamedDecl **Decls, unsigned NumDecls) { return Name; } DiagnosticBuilder ASTImporter::ToDiag(SourceLocation Loc, unsigned DiagID) { if (LastDiagFromFrom) ToContext.getDiagnostics().notePriorDiagnosticFrom( FromContext.getDiagnostics()); LastDiagFromFrom = false; return ToContext.getDiagnostics().Report(Loc, DiagID); } DiagnosticBuilder ASTImporter::FromDiag(SourceLocation Loc, unsigned DiagID) { if (!LastDiagFromFrom) FromContext.getDiagnostics().notePriorDiagnosticFrom( ToContext.getDiagnostics()); LastDiagFromFrom = true; return FromContext.getDiagnostics().Report(Loc, DiagID); } void ASTImporter::CompleteDecl (Decl *D) { if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) { if (!ID->getDefinition()) ID->startDefinition(); } else if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) { if (!PD->getDefinition()) PD->startDefinition(); } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { if (!TD->getDefinition() && !TD->isBeingDefined()) { TD->startDefinition(); TD->setCompleteDefinition(true); } } else { assert (0 && "CompleteDecl called on a Decl that can't be completed"); } } Decl *ASTImporter::Imported(Decl *From, Decl *To) { if (From->hasAttrs()) { for (Attr *FromAttr : From->getAttrs()) To->addAttr(FromAttr->clone(To->getASTContext())); } if (From->isUsed()) { To->setIsUsed(); } if (From->isImplicit()) { To->setImplicit(); } ImportedDecls[From] = To; return To; } bool ASTImporter::IsStructurallyEquivalent(QualType From, QualType To, bool Complain) { llvm::DenseMap<const Type *, const Type *>::iterator Pos = ImportedTypes.find(From.getTypePtr()); if (Pos != ImportedTypes.end() && ToContext.hasSameType(Import(From), To)) return true; StructuralEquivalenceContext Ctx(FromContext, ToContext, NonEquivalentDecls, false, Complain); return Ctx.IsStructurallyEquivalent(From, To); }