//===--- ASTMatchersInternal.cpp - Structural query framework -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implements the base layer of the matcher framework. // //===----------------------------------------------------------------------===// #include "clang/ASTMatchers/ASTMatchers.h" #include "clang/ASTMatchers/ASTMatchersInternal.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/ManagedStatic.h" namespace clang { namespace ast_matchers { namespace internal { bool NotUnaryOperator(const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder, ArrayRef<DynTypedMatcher> InnerMatchers); bool AllOfVariadicOperator(const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder, ArrayRef<DynTypedMatcher> InnerMatchers); bool EachOfVariadicOperator(const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder, ArrayRef<DynTypedMatcher> InnerMatchers); bool AnyOfVariadicOperator(const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder, ArrayRef<DynTypedMatcher> InnerMatchers); void BoundNodesTreeBuilder::visitMatches(Visitor *ResultVisitor) { if (Bindings.empty()) Bindings.push_back(BoundNodesMap()); for (BoundNodesMap &Binding : Bindings) { ResultVisitor->visitMatch(BoundNodes(Binding)); } } namespace { typedef bool (*VariadicOperatorFunction)( const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder, ArrayRef<DynTypedMatcher> InnerMatchers); template <VariadicOperatorFunction Func> class VariadicMatcher : public DynMatcherInterface { public: VariadicMatcher(std::vector<DynTypedMatcher> InnerMatchers) : InnerMatchers(std::move(InnerMatchers)) {} bool dynMatches(const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder) const override { return Func(DynNode, Finder, Builder, InnerMatchers); } private: std::vector<DynTypedMatcher> InnerMatchers; }; class IdDynMatcher : public DynMatcherInterface { public: IdDynMatcher(StringRef ID, const IntrusiveRefCntPtr<DynMatcherInterface> &InnerMatcher) : ID(ID), InnerMatcher(InnerMatcher) {} bool dynMatches(const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder) const override { bool Result = InnerMatcher->dynMatches(DynNode, Finder, Builder); if (Result) Builder->setBinding(ID, DynNode); return Result; } private: const std::string ID; const IntrusiveRefCntPtr<DynMatcherInterface> InnerMatcher; }; /// \brief A matcher that always returns true. /// /// We only ever need one instance of this matcher, so we create a global one /// and reuse it to reduce the overhead of the matcher and increase the chance /// of cache hits. class TrueMatcherImpl : public DynMatcherInterface { public: TrueMatcherImpl() { Retain(); // Reference count will never become zero. } bool dynMatches(const ast_type_traits::DynTypedNode &, ASTMatchFinder *, BoundNodesTreeBuilder *) const override { return true; } }; static llvm::ManagedStatic<TrueMatcherImpl> TrueMatcherInstance; } // namespace DynTypedMatcher DynTypedMatcher::constructVariadic( DynTypedMatcher::VariadicOperator Op, ast_type_traits::ASTNodeKind SupportedKind, std::vector<DynTypedMatcher> InnerMatchers) { assert(InnerMatchers.size() > 0 && "Array must not be empty."); assert(std::all_of(InnerMatchers.begin(), InnerMatchers.end(), [SupportedKind](const DynTypedMatcher &M) { return M.canConvertTo(SupportedKind); }) && "InnerMatchers must be convertible to SupportedKind!"); // We must relax the restrict kind here. // The different operators might deal differently with a mismatch. // Make it the same as SupportedKind, since that is the broadest type we are // allowed to accept. auto RestrictKind = SupportedKind; switch (Op) { case VO_AllOf: // In the case of allOf() we must pass all the checks, so making // RestrictKind the most restrictive can save us time. This way we reject // invalid types earlier and we can elide the kind checks inside the // matcher. for (auto &IM : InnerMatchers) { RestrictKind = ast_type_traits::ASTNodeKind::getMostDerivedType( RestrictKind, IM.RestrictKind); } return DynTypedMatcher( SupportedKind, RestrictKind, new VariadicMatcher<AllOfVariadicOperator>(std::move(InnerMatchers))); case VO_AnyOf: return DynTypedMatcher( SupportedKind, RestrictKind, new VariadicMatcher<AnyOfVariadicOperator>(std::move(InnerMatchers))); case VO_EachOf: return DynTypedMatcher( SupportedKind, RestrictKind, new VariadicMatcher<EachOfVariadicOperator>(std::move(InnerMatchers))); case VO_UnaryNot: // FIXME: Implement the Not operator to take a single matcher instead of a // vector. return DynTypedMatcher( SupportedKind, RestrictKind, new VariadicMatcher<NotUnaryOperator>(std::move(InnerMatchers))); } llvm_unreachable("Invalid Op value."); } DynTypedMatcher DynTypedMatcher::trueMatcher( ast_type_traits::ASTNodeKind NodeKind) { return DynTypedMatcher(NodeKind, NodeKind, &*TrueMatcherInstance); } bool DynTypedMatcher::canMatchNodesOfKind( ast_type_traits::ASTNodeKind Kind) const { return RestrictKind.isBaseOf(Kind); } DynTypedMatcher DynTypedMatcher::dynCastTo( const ast_type_traits::ASTNodeKind Kind) const { auto Copy = *this; Copy.SupportedKind = Kind; Copy.RestrictKind = ast_type_traits::ASTNodeKind::getMostDerivedType(Kind, RestrictKind); return Copy; } bool DynTypedMatcher::matches(const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder) const { if (RestrictKind.isBaseOf(DynNode.getNodeKind()) && Implementation->dynMatches(DynNode, Finder, Builder)) { return true; } // Delete all bindings when a matcher does not match. // This prevents unexpected exposure of bound nodes in unmatches // branches of the match tree. Builder->removeBindings([](const BoundNodesMap &) { return true; }); return false; } bool DynTypedMatcher::matchesNoKindCheck( const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder) const { assert(RestrictKind.isBaseOf(DynNode.getNodeKind())); if (Implementation->dynMatches(DynNode, Finder, Builder)) { return true; } // Delete all bindings when a matcher does not match. // This prevents unexpected exposure of bound nodes in unmatches // branches of the match tree. Builder->removeBindings([](const BoundNodesMap &) { return true; }); return false; } llvm::Optional<DynTypedMatcher> DynTypedMatcher::tryBind(StringRef ID) const { if (!AllowBind) return llvm::None; auto Result = *this; Result.Implementation = new IdDynMatcher(ID, Result.Implementation); return Result; } bool DynTypedMatcher::canConvertTo(ast_type_traits::ASTNodeKind To) const { const auto From = getSupportedKind(); auto QualKind = ast_type_traits::ASTNodeKind::getFromNodeKind<QualType>(); auto TypeKind = ast_type_traits::ASTNodeKind::getFromNodeKind<Type>(); /// Mimic the implicit conversions of Matcher<>. /// - From Matcher<Type> to Matcher<QualType> if (From.isSame(TypeKind) && To.isSame(QualKind)) return true; /// - From Matcher<Base> to Matcher<Derived> return From.isBaseOf(To); } void BoundNodesTreeBuilder::addMatch(const BoundNodesTreeBuilder &Other) { Bindings.append(Other.Bindings.begin(), Other.Bindings.end()); } bool NotUnaryOperator(const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder, ArrayRef<DynTypedMatcher> InnerMatchers) { if (InnerMatchers.size() != 1) return false; // The 'unless' matcher will always discard the result: // If the inner matcher doesn't match, unless returns true, // but the inner matcher cannot have bound anything. // If the inner matcher matches, the result is false, and // any possible binding will be discarded. // We still need to hand in all the bound nodes up to this // point so the inner matcher can depend on bound nodes, // and we need to actively discard the bound nodes, otherwise // the inner matcher will reset the bound nodes if it doesn't // match, but this would be inversed by 'unless'. BoundNodesTreeBuilder Discard(*Builder); return !InnerMatchers[0].matches(DynNode, Finder, &Discard); } bool AllOfVariadicOperator(const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder, ArrayRef<DynTypedMatcher> InnerMatchers) { // allOf leads to one matcher for each alternative in the first // matcher combined with each alternative in the second matcher. // Thus, we can reuse the same Builder. for (const DynTypedMatcher &InnerMatcher : InnerMatchers) { if (!InnerMatcher.matchesNoKindCheck(DynNode, Finder, Builder)) return false; } return true; } bool EachOfVariadicOperator(const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder, ArrayRef<DynTypedMatcher> InnerMatchers) { BoundNodesTreeBuilder Result; bool Matched = false; for (const DynTypedMatcher &InnerMatcher : InnerMatchers) { BoundNodesTreeBuilder BuilderInner(*Builder); if (InnerMatcher.matches(DynNode, Finder, &BuilderInner)) { Matched = true; Result.addMatch(BuilderInner); } } *Builder = std::move(Result); return Matched; } bool AnyOfVariadicOperator(const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder, ArrayRef<DynTypedMatcher> InnerMatchers) { for (const DynTypedMatcher &InnerMatcher : InnerMatchers) { BoundNodesTreeBuilder Result = *Builder; if (InnerMatcher.matches(DynNode, Finder, &Result)) { *Builder = std::move(Result); return true; } } return false; } Matcher<NamedDecl> hasAnyNameFunc(ArrayRef<const StringRef *> NameRefs) { std::vector<std::string> Names; for (auto *Name : NameRefs) Names.emplace_back(*Name); return internal::Matcher<NamedDecl>( new internal::HasNameMatcher(std::move(Names))); } HasNameMatcher::HasNameMatcher(std::vector<std::string> N) : UseUnqualifiedMatch(std::all_of( N.begin(), N.end(), [](StringRef Name) { return Name.find("::") == Name.npos; })), Names(std::move(N)) { #ifndef NDEBUG for (StringRef Name : Names) assert(!Name.empty()); #endif } namespace { bool consumeNameSuffix(StringRef &FullName, StringRef Suffix) { StringRef Name = FullName; if (!Name.endswith(Suffix)) return false; Name = Name.drop_back(Suffix.size()); if (!Name.empty()) { if (!Name.endswith("::")) return false; Name = Name.drop_back(2); } FullName = Name; return true; } StringRef getNodeName(const NamedDecl &Node, llvm::SmallString<128> &Scratch) { // Simple name. if (Node.getIdentifier()) return Node.getName(); if (Node.getDeclName()) { // Name needs to be constructed. Scratch.clear(); llvm::raw_svector_ostream OS(Scratch); Node.printName(OS); return OS.str(); } return "(anonymous)"; } StringRef getNodeName(const RecordDecl &Node, llvm::SmallString<128> &Scratch) { if (Node.getIdentifier()) { return Node.getName(); } Scratch.clear(); return ("(anonymous " + Node.getKindName() + ")").toStringRef(Scratch); } StringRef getNodeName(const NamespaceDecl &Node, llvm::SmallString<128> &Scratch) { return Node.isAnonymousNamespace() ? "(anonymous namespace)" : Node.getName(); } class PatternSet { public: PatternSet(ArrayRef<std::string> Names) { for (StringRef Name : Names) Patterns.push_back({Name, Name.startswith("::")}); } /// Consumes the name suffix from each pattern in the set and removes the ones /// that didn't match. /// Return true if there are still any patterns left. bool consumeNameSuffix(StringRef NodeName, bool CanSkip) { for (size_t I = 0; I < Patterns.size();) { if (internal::consumeNameSuffix(Patterns[I].P, NodeName) || CanSkip) { ++I; } else { Patterns.erase(Patterns.begin() + I); } } return !Patterns.empty(); } /// Check if any of the patterns are a match. /// A match will be a pattern that was fully consumed, that also matches the /// 'fully qualified' requirement. bool foundMatch(bool AllowFullyQualified) const { for (auto& P: Patterns) if (P.P.empty() && (AllowFullyQualified || !P.IsFullyQualified)) return true; return false; } private: struct Pattern { StringRef P; bool IsFullyQualified; }; llvm::SmallVector<Pattern, 8> Patterns; }; } // namespace bool HasNameMatcher::matchesNodeUnqualified(const NamedDecl &Node) const { assert(UseUnqualifiedMatch); llvm::SmallString<128> Scratch; StringRef NodeName = getNodeName(Node, Scratch); return std::any_of(Names.begin(), Names.end(), [&](StringRef Name) { return consumeNameSuffix(Name, NodeName) && Name.empty(); }); } bool HasNameMatcher::matchesNodeFullFast(const NamedDecl &Node) const { PatternSet Patterns(Names); llvm::SmallString<128> Scratch; // This function is copied and adapted from NamedDecl::printQualifiedName() // By matching each part individually we optimize in a couple of ways: // - We can exit early on the first failure. // - We can skip inline/anonymous namespaces without another pass. // - We print one name at a time, reducing the chance of overflowing the // inlined space of the SmallString. // First, match the name. if (!Patterns.consumeNameSuffix(getNodeName(Node, Scratch), /*CanSkip=*/false)) return false; // Try to match each declaration context. // We are allowed to skip anonymous and inline namespaces if they don't match. const DeclContext *Ctx = Node.getDeclContext(); if (Ctx->isFunctionOrMethod()) return Patterns.foundMatch(/*AllowFullyQualified=*/false); for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) { if (Patterns.foundMatch(/*AllowFullyQualified=*/false)) return true; if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) { // If it matches (or we can skip it), continue. if (Patterns.consumeNameSuffix(getNodeName(*ND, Scratch), /*CanSkip=*/ND->isAnonymousNamespace() || ND->isInline())) continue; return false; } if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) { if (!isa<ClassTemplateSpecializationDecl>(Ctx)) { if (Patterns.consumeNameSuffix(getNodeName(*RD, Scratch), /*CanSkip=*/false)) continue; return false; } } // We don't know how to deal with this DeclContext. // Fallback to the slow version of the code. return matchesNodeFullSlow(Node); } return Patterns.foundMatch(/*AllowFullyQualified=*/true); } bool HasNameMatcher::matchesNodeFullSlow(const NamedDecl &Node) const { const bool SkipUnwrittenCases[] = {false, true}; for (bool SkipUnwritten : SkipUnwrittenCases) { llvm::SmallString<128> NodeName = StringRef("::"); llvm::raw_svector_ostream OS(NodeName); if (SkipUnwritten) { PrintingPolicy Policy = Node.getASTContext().getPrintingPolicy(); Policy.SuppressUnwrittenScope = true; Node.printQualifiedName(OS, Policy); } else { Node.printQualifiedName(OS); } const StringRef FullName = OS.str(); for (const StringRef Pattern : Names) { if (Pattern.startswith("::")) { if (FullName == Pattern) return true; } else if (FullName.endswith(Pattern) && FullName.drop_back(Pattern.size()).endswith("::")) { return true; } } } return false; } bool HasNameMatcher::matchesNode(const NamedDecl &Node) const { assert(matchesNodeFullFast(Node) == matchesNodeFullSlow(Node)); if (UseUnqualifiedMatch) { assert(matchesNodeUnqualified(Node) == matchesNodeFullFast(Node)); return matchesNodeUnqualified(Node); } return matchesNodeFullFast(Node); } } // end namespace internal } // end namespace ast_matchers } // end namespace clang