//===--- CGDebugInfo.cpp - Emit Debug Information for a Module ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This coordinates the debug information generation while generating code. // //===----------------------------------------------------------------------===// #include "CGDebugInfo.h" #include "CGBlocks.h" #include "CGRecordLayout.h" #include "CGCXXABI.h" #include "CGObjCRuntime.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/RecordLayout.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/Version.h" #include "clang/Frontend/CodeGenOptions.h" #include "clang/Lex/HeaderSearchOptions.h" #include "clang/Lex/ModuleMap.h" #include "clang/Lex/PreprocessorOptions.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" using namespace clang; using namespace clang::CodeGen; CGDebugInfo::CGDebugInfo(CodeGenModule &CGM) : CGM(CGM), DebugKind(CGM.getCodeGenOpts().getDebugInfo()), DebugTypeExtRefs(CGM.getCodeGenOpts().DebugTypeExtRefs), DBuilder(CGM.getModule()) { for (const auto &KV : CGM.getCodeGenOpts().DebugPrefixMap) DebugPrefixMap[KV.first] = KV.second; CreateCompileUnit(); } CGDebugInfo::~CGDebugInfo() { assert(LexicalBlockStack.empty() && "Region stack mismatch, stack not empty!"); } ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, SourceLocation TemporaryLocation) : CGF(&CGF) { init(TemporaryLocation); } ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, bool DefaultToEmpty, SourceLocation TemporaryLocation) : CGF(&CGF) { init(TemporaryLocation, DefaultToEmpty); } void ApplyDebugLocation::init(SourceLocation TemporaryLocation, bool DefaultToEmpty) { auto *DI = CGF->getDebugInfo(); if (!DI) { CGF = nullptr; return; } OriginalLocation = CGF->Builder.getCurrentDebugLocation(); if (TemporaryLocation.isValid()) { DI->EmitLocation(CGF->Builder, TemporaryLocation); return; } if (DefaultToEmpty) { CGF->Builder.SetCurrentDebugLocation(llvm::DebugLoc()); return; } // Construct a location that has a valid scope, but no line info. assert(!DI->LexicalBlockStack.empty()); CGF->Builder.SetCurrentDebugLocation( llvm::DebugLoc::get(0, 0, DI->LexicalBlockStack.back())); } ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, const Expr *E) : CGF(&CGF) { init(E->getExprLoc()); } ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, llvm::DebugLoc Loc) : CGF(&CGF) { if (!CGF.getDebugInfo()) { this->CGF = nullptr; return; } OriginalLocation = CGF.Builder.getCurrentDebugLocation(); if (Loc) CGF.Builder.SetCurrentDebugLocation(std::move(Loc)); } ApplyDebugLocation::~ApplyDebugLocation() { // Query CGF so the location isn't overwritten when location updates are // temporarily disabled (for C++ default function arguments) if (CGF) CGF->Builder.SetCurrentDebugLocation(std::move(OriginalLocation)); } void CGDebugInfo::setLocation(SourceLocation Loc) { // If the new location isn't valid return. if (Loc.isInvalid()) return; CurLoc = CGM.getContext().getSourceManager().getExpansionLoc(Loc); // If we've changed files in the middle of a lexical scope go ahead // and create a new lexical scope with file node if it's different // from the one in the scope. if (LexicalBlockStack.empty()) return; SourceManager &SM = CGM.getContext().getSourceManager(); auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); PresumedLoc PCLoc = SM.getPresumedLoc(CurLoc); if (PCLoc.isInvalid() || Scope->getFilename() == PCLoc.getFilename()) return; if (auto *LBF = dyn_cast<llvm::DILexicalBlockFile>(Scope)) { LexicalBlockStack.pop_back(); LexicalBlockStack.emplace_back(DBuilder.createLexicalBlockFile( LBF->getScope(), getOrCreateFile(CurLoc))); } else if (isa<llvm::DILexicalBlock>(Scope) || isa<llvm::DISubprogram>(Scope)) { LexicalBlockStack.pop_back(); LexicalBlockStack.emplace_back( DBuilder.createLexicalBlockFile(Scope, getOrCreateFile(CurLoc))); } } llvm::DIScope *CGDebugInfo::getDeclContextDescriptor(const Decl *D) { llvm::DIScope *Mod = getParentModuleOrNull(D); return getContextDescriptor(cast<Decl>(D->getDeclContext()), Mod ? Mod : TheCU); } llvm::DIScope *CGDebugInfo::getContextDescriptor(const Decl *Context, llvm::DIScope *Default) { if (!Context) return Default; auto I = RegionMap.find(Context); if (I != RegionMap.end()) { llvm::Metadata *V = I->second; return dyn_cast_or_null<llvm::DIScope>(V); } // Check namespace. if (const NamespaceDecl *NSDecl = dyn_cast<NamespaceDecl>(Context)) return getOrCreateNameSpace(NSDecl); if (const RecordDecl *RDecl = dyn_cast<RecordDecl>(Context)) if (!RDecl->isDependentType()) return getOrCreateType(CGM.getContext().getTypeDeclType(RDecl), getOrCreateMainFile()); return Default; } StringRef CGDebugInfo::getFunctionName(const FunctionDecl *FD) { assert(FD && "Invalid FunctionDecl!"); IdentifierInfo *FII = FD->getIdentifier(); FunctionTemplateSpecializationInfo *Info = FD->getTemplateSpecializationInfo(); // Emit the unqualified name in normal operation. LLVM and the debugger can // compute the fully qualified name from the scope chain. If we're only // emitting line table info, there won't be any scope chains, so emit the // fully qualified name here so that stack traces are more accurate. // FIXME: Do this when emitting DWARF as well as when emitting CodeView after // evaluating the size impact. bool UseQualifiedName = DebugKind == codegenoptions::DebugLineTablesOnly && CGM.getCodeGenOpts().EmitCodeView; if (!Info && FII && !UseQualifiedName) return FII->getName(); SmallString<128> NS; llvm::raw_svector_ostream OS(NS); PrintingPolicy Policy(CGM.getLangOpts()); Policy.MSVCFormatting = CGM.getCodeGenOpts().EmitCodeView; if (!UseQualifiedName) FD->printName(OS); else FD->printQualifiedName(OS, Policy); // Add any template specialization args. if (Info) { const TemplateArgumentList *TArgs = Info->TemplateArguments; TemplateSpecializationType::PrintTemplateArgumentList(OS, TArgs->asArray(), Policy); } // Copy this name on the side and use its reference. return internString(OS.str()); } StringRef CGDebugInfo::getObjCMethodName(const ObjCMethodDecl *OMD) { SmallString<256> MethodName; llvm::raw_svector_ostream OS(MethodName); OS << (OMD->isInstanceMethod() ? '-' : '+') << '['; const DeclContext *DC = OMD->getDeclContext(); if (const ObjCImplementationDecl *OID = dyn_cast<const ObjCImplementationDecl>(DC)) { OS << OID->getName(); } else if (const ObjCInterfaceDecl *OID = dyn_cast<const ObjCInterfaceDecl>(DC)) { OS << OID->getName(); } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(DC)) { if (OC->IsClassExtension()) { OS << OC->getClassInterface()->getName(); } else { OS << ((const NamedDecl *)OC)->getIdentifier()->getNameStart() << '(' << OC->getIdentifier()->getNameStart() << ')'; } } else if (const ObjCCategoryImplDecl *OCD = dyn_cast<const ObjCCategoryImplDecl>(DC)) { OS << ((const NamedDecl *)OCD)->getIdentifier()->getNameStart() << '(' << OCD->getIdentifier()->getNameStart() << ')'; } else if (isa<ObjCProtocolDecl>(DC)) { // We can extract the type of the class from the self pointer. if (ImplicitParamDecl *SelfDecl = OMD->getSelfDecl()) { QualType ClassTy = cast<ObjCObjectPointerType>(SelfDecl->getType())->getPointeeType(); ClassTy.print(OS, PrintingPolicy(LangOptions())); } } OS << ' ' << OMD->getSelector().getAsString() << ']'; return internString(OS.str()); } StringRef CGDebugInfo::getSelectorName(Selector S) { return internString(S.getAsString()); } StringRef CGDebugInfo::getClassName(const RecordDecl *RD) { if (isa<ClassTemplateSpecializationDecl>(RD)) { SmallString<128> Name; llvm::raw_svector_ostream OS(Name); RD->getNameForDiagnostic(OS, CGM.getContext().getPrintingPolicy(), /*Qualified*/ false); // Copy this name on the side and use its reference. return internString(Name); } // quick optimization to avoid having to intern strings that are already // stored reliably elsewhere if (const IdentifierInfo *II = RD->getIdentifier()) return II->getName(); // The CodeView printer in LLVM wants to see the names of unnamed types: it is // used to reconstruct the fully qualified type names. if (CGM.getCodeGenOpts().EmitCodeView) { if (const TypedefNameDecl *D = RD->getTypedefNameForAnonDecl()) { assert(RD->getDeclContext() == D->getDeclContext() && "Typedef should not be in another decl context!"); assert(D->getDeclName().getAsIdentifierInfo() && "Typedef was not named!"); return D->getDeclName().getAsIdentifierInfo()->getName(); } if (CGM.getLangOpts().CPlusPlus) { StringRef Name; ASTContext &Context = CGM.getContext(); if (const DeclaratorDecl *DD = Context.getDeclaratorForUnnamedTagDecl(RD)) // Anonymous types without a name for linkage purposes have their // declarator mangled in if they have one. Name = DD->getName(); else if (const TypedefNameDecl *TND = Context.getTypedefNameForUnnamedTagDecl(RD)) // Anonymous types without a name for linkage purposes have their // associate typedef mangled in if they have one. Name = TND->getName(); if (!Name.empty()) { SmallString<256> UnnamedType("<unnamed-type-"); UnnamedType += Name; UnnamedType += '>'; return internString(UnnamedType); } } } return StringRef(); } llvm::DIFile *CGDebugInfo::getOrCreateFile(SourceLocation Loc) { if (!Loc.isValid()) // If Location is not valid then use main input file. return DBuilder.createFile(remapDIPath(TheCU->getFilename()), remapDIPath(TheCU->getDirectory())); SourceManager &SM = CGM.getContext().getSourceManager(); PresumedLoc PLoc = SM.getPresumedLoc(Loc); if (PLoc.isInvalid() || StringRef(PLoc.getFilename()).empty()) // If the location is not valid then use main input file. return DBuilder.createFile(remapDIPath(TheCU->getFilename()), remapDIPath(TheCU->getDirectory())); // Cache the results. const char *fname = PLoc.getFilename(); auto it = DIFileCache.find(fname); if (it != DIFileCache.end()) { // Verify that the information still exists. if (llvm::Metadata *V = it->second) return cast<llvm::DIFile>(V); } llvm::DIFile *F = DBuilder.createFile(remapDIPath(PLoc.getFilename()), remapDIPath(getCurrentDirname())); DIFileCache[fname].reset(F); return F; } llvm::DIFile *CGDebugInfo::getOrCreateMainFile() { return DBuilder.createFile(remapDIPath(TheCU->getFilename()), remapDIPath(TheCU->getDirectory())); } std::string CGDebugInfo::remapDIPath(StringRef Path) const { for (const auto &Entry : DebugPrefixMap) if (Path.startswith(Entry.first)) return (Twine(Entry.second) + Path.substr(Entry.first.size())).str(); return Path.str(); } unsigned CGDebugInfo::getLineNumber(SourceLocation Loc) { if (Loc.isInvalid() && CurLoc.isInvalid()) return 0; SourceManager &SM = CGM.getContext().getSourceManager(); PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc); return PLoc.isValid() ? PLoc.getLine() : 0; } unsigned CGDebugInfo::getColumnNumber(SourceLocation Loc, bool Force) { // We may not want column information at all. if (!Force && !CGM.getCodeGenOpts().DebugColumnInfo) return 0; // If the location is invalid then use the current column. if (Loc.isInvalid() && CurLoc.isInvalid()) return 0; SourceManager &SM = CGM.getContext().getSourceManager(); PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc); return PLoc.isValid() ? PLoc.getColumn() : 0; } StringRef CGDebugInfo::getCurrentDirname() { if (!CGM.getCodeGenOpts().DebugCompilationDir.empty()) return CGM.getCodeGenOpts().DebugCompilationDir; if (!CWDName.empty()) return CWDName; SmallString<256> CWD; llvm::sys::fs::current_path(CWD); return CWDName = internString(CWD); } void CGDebugInfo::CreateCompileUnit() { // Should we be asking the SourceManager for the main file name, instead of // accepting it as an argument? This just causes the main file name to // mismatch with source locations and create extra lexical scopes or // mismatched debug info (a CU with a DW_AT_file of "-", because that's what // the driver passed, but functions/other things have DW_AT_file of "<stdin>" // because that's what the SourceManager says) // Get absolute path name. SourceManager &SM = CGM.getContext().getSourceManager(); std::string MainFileName = CGM.getCodeGenOpts().MainFileName; if (MainFileName.empty()) MainFileName = "<stdin>"; // The main file name provided via the "-main-file-name" option contains just // the file name itself with no path information. This file name may have had // a relative path, so we look into the actual file entry for the main // file to determine the real absolute path for the file. std::string MainFileDir; if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { MainFileDir = remapDIPath(MainFile->getDir()->getName()); if (MainFileDir != ".") { llvm::SmallString<1024> MainFileDirSS(MainFileDir); llvm::sys::path::append(MainFileDirSS, MainFileName); MainFileName = MainFileDirSS.str(); } } llvm::dwarf::SourceLanguage LangTag; const LangOptions &LO = CGM.getLangOpts(); if (LO.CPlusPlus) { if (LO.ObjC1) LangTag = llvm::dwarf::DW_LANG_ObjC_plus_plus; else LangTag = llvm::dwarf::DW_LANG_C_plus_plus; } else if (LO.ObjC1) { LangTag = llvm::dwarf::DW_LANG_ObjC; } else if (LO.RenderScript) { LangTag = llvm::dwarf::DW_LANG_GOOGLE_RenderScript; } else if (LO.C99) { LangTag = llvm::dwarf::DW_LANG_C99; } else { LangTag = llvm::dwarf::DW_LANG_C89; } std::string Producer = getClangFullVersion(); // Figure out which version of the ObjC runtime we have. unsigned RuntimeVers = 0; if (LO.ObjC1) RuntimeVers = LO.ObjCRuntime.isNonFragile() ? 2 : 1; llvm::DICompileUnit::DebugEmissionKind EmissionKind; switch (DebugKind) { case codegenoptions::NoDebugInfo: case codegenoptions::LocTrackingOnly: EmissionKind = llvm::DICompileUnit::NoDebug; break; case codegenoptions::DebugLineTablesOnly: EmissionKind = llvm::DICompileUnit::LineTablesOnly; break; case codegenoptions::LimitedDebugInfo: case codegenoptions::FullDebugInfo: EmissionKind = llvm::DICompileUnit::FullDebug; break; } // Create new compile unit. // FIXME - Eliminate TheCU. TheCU = DBuilder.createCompileUnit( LangTag, remapDIPath(MainFileName), remapDIPath(getCurrentDirname()), Producer, LO.Optimize, CGM.getCodeGenOpts().DwarfDebugFlags, RuntimeVers, CGM.getCodeGenOpts().SplitDwarfFile, EmissionKind, 0 /* DWOid */); } llvm::DIType *CGDebugInfo::CreateType(const BuiltinType *BT) { llvm::dwarf::TypeKind Encoding; StringRef BTName; switch (BT->getKind()) { #define BUILTIN_TYPE(Id, SingletonId) #define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id: #include "clang/AST/BuiltinTypes.def" case BuiltinType::Dependent: llvm_unreachable("Unexpected builtin type"); case BuiltinType::NullPtr: return DBuilder.createNullPtrType(); case BuiltinType::Void: return nullptr; case BuiltinType::ObjCClass: if (!ClassTy) ClassTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, "objc_class", TheCU, getOrCreateMainFile(), 0); return ClassTy; case BuiltinType::ObjCId: { // typedef struct objc_class *Class; // typedef struct objc_object { // Class isa; // } *id; if (ObjTy) return ObjTy; if (!ClassTy) ClassTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, "objc_class", TheCU, getOrCreateMainFile(), 0); unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); auto *ISATy = DBuilder.createPointerType(ClassTy, Size); ObjTy = DBuilder.createStructType(TheCU, "objc_object", getOrCreateMainFile(), 0, 0, 0, 0, nullptr, llvm::DINodeArray()); DBuilder.replaceArrays( ObjTy, DBuilder.getOrCreateArray(&*DBuilder.createMemberType( ObjTy, "isa", getOrCreateMainFile(), 0, Size, 0, 0, 0, ISATy))); return ObjTy; } case BuiltinType::ObjCSel: { if (!SelTy) SelTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, "objc_selector", TheCU, getOrCreateMainFile(), 0); return SelTy; } #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ case BuiltinType::Id: \ return getOrCreateStructPtrType("opencl_" #ImgType "_" #Suffix "_t", \ SingletonId); #include "clang/Basic/OpenCLImageTypes.def" case BuiltinType::OCLSampler: return DBuilder.createBasicType( "opencl_sampler_t", CGM.getContext().getTypeSize(BT), CGM.getContext().getTypeAlign(BT), llvm::dwarf::DW_ATE_unsigned); case BuiltinType::OCLEvent: return getOrCreateStructPtrType("opencl_event_t", OCLEventDITy); case BuiltinType::OCLClkEvent: return getOrCreateStructPtrType("opencl_clk_event_t", OCLClkEventDITy); case BuiltinType::OCLQueue: return getOrCreateStructPtrType("opencl_queue_t", OCLQueueDITy); case BuiltinType::OCLNDRange: return getOrCreateStructPtrType("opencl_ndrange_t", OCLNDRangeDITy); case BuiltinType::OCLReserveID: return getOrCreateStructPtrType("opencl_reserve_id_t", OCLReserveIDDITy); case BuiltinType::UChar: case BuiltinType::Char_U: Encoding = llvm::dwarf::DW_ATE_unsigned_char; break; case BuiltinType::Char_S: case BuiltinType::SChar: Encoding = llvm::dwarf::DW_ATE_signed_char; break; case BuiltinType::Char16: case BuiltinType::Char32: Encoding = llvm::dwarf::DW_ATE_UTF; break; case BuiltinType::UShort: case BuiltinType::UInt: case BuiltinType::UInt128: case BuiltinType::ULong: case BuiltinType::WChar_U: case BuiltinType::ULongLong: Encoding = llvm::dwarf::DW_ATE_unsigned; break; case BuiltinType::Short: case BuiltinType::Int: case BuiltinType::Int128: case BuiltinType::Long: case BuiltinType::WChar_S: case BuiltinType::LongLong: Encoding = llvm::dwarf::DW_ATE_signed; break; case BuiltinType::Bool: Encoding = llvm::dwarf::DW_ATE_boolean; break; case BuiltinType::Half: case BuiltinType::Float: case BuiltinType::LongDouble: case BuiltinType::Float128: case BuiltinType::Double: // FIXME: For targets where long double and __float128 have the same size, // they are currently indistinguishable in the debugger without some // special treatment. However, there is currently no consensus on encoding // and this should be updated once a DWARF encoding exists for distinct // floating point types of the same size. Encoding = llvm::dwarf::DW_ATE_float; break; } switch (BT->getKind()) { case BuiltinType::Long: BTName = "long int"; break; case BuiltinType::LongLong: BTName = "long long int"; break; case BuiltinType::ULong: BTName = "long unsigned int"; break; case BuiltinType::ULongLong: BTName = "long long unsigned int"; break; default: BTName = BT->getName(CGM.getLangOpts()); break; } // Bit size, align and offset of the type. uint64_t Size = CGM.getContext().getTypeSize(BT); uint64_t Align = CGM.getContext().getTypeAlign(BT); return DBuilder.createBasicType(BTName, Size, Align, Encoding); } llvm::DIType *CGDebugInfo::CreateType(const ComplexType *Ty) { // Bit size, align and offset of the type. llvm::dwarf::TypeKind Encoding = llvm::dwarf::DW_ATE_complex_float; if (Ty->isComplexIntegerType()) Encoding = llvm::dwarf::DW_ATE_lo_user; uint64_t Size = CGM.getContext().getTypeSize(Ty); uint64_t Align = CGM.getContext().getTypeAlign(Ty); return DBuilder.createBasicType("complex", Size, Align, Encoding); } llvm::DIType *CGDebugInfo::CreateQualifiedType(QualType Ty, llvm::DIFile *Unit) { QualifierCollector Qc; const Type *T = Qc.strip(Ty); // Ignore these qualifiers for now. Qc.removeObjCGCAttr(); Qc.removeAddressSpace(); Qc.removeObjCLifetime(); // We will create one Derived type for one qualifier and recurse to handle any // additional ones. llvm::dwarf::Tag Tag; if (Qc.hasConst()) { Tag = llvm::dwarf::DW_TAG_const_type; Qc.removeConst(); } else if (Qc.hasVolatile()) { Tag = llvm::dwarf::DW_TAG_volatile_type; Qc.removeVolatile(); } else if (Qc.hasRestrict()) { Tag = llvm::dwarf::DW_TAG_restrict_type; Qc.removeRestrict(); } else { assert(Qc.empty() && "Unknown type qualifier for debug info"); return getOrCreateType(QualType(T, 0), Unit); } auto *FromTy = getOrCreateType(Qc.apply(CGM.getContext(), T), Unit); // No need to fill in the Name, Line, Size, Alignment, Offset in case of // CVR derived types. return DBuilder.createQualifiedType(Tag, FromTy); } llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectPointerType *Ty, llvm::DIFile *Unit) { // The frontend treats 'id' as a typedef to an ObjCObjectType, // whereas 'id<protocol>' is treated as an ObjCPointerType. For the // debug info, we want to emit 'id' in both cases. if (Ty->isObjCQualifiedIdType()) return getOrCreateType(CGM.getContext().getObjCIdType(), Unit); return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty, Ty->getPointeeType(), Unit); } llvm::DIType *CGDebugInfo::CreateType(const PointerType *Ty, llvm::DIFile *Unit) { return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty, Ty->getPointeeType(), Unit); } /// \return whether a C++ mangling exists for the type defined by TD. static bool hasCXXMangling(const TagDecl *TD, llvm::DICompileUnit *TheCU) { switch (TheCU->getSourceLanguage()) { case llvm::dwarf::DW_LANG_C_plus_plus: return true; case llvm::dwarf::DW_LANG_ObjC_plus_plus: return isa<CXXRecordDecl>(TD) || isa<EnumDecl>(TD); default: return false; } } /// In C++ mode, types have linkage, so we can rely on the ODR and /// on their mangled names, if they're external. static SmallString<256> getUniqueTagTypeName(const TagType *Ty, CodeGenModule &CGM, llvm::DICompileUnit *TheCU) { SmallString<256> FullName; const TagDecl *TD = Ty->getDecl(); if (!hasCXXMangling(TD, TheCU) || !TD->isExternallyVisible()) return FullName; // TODO: This is using the RTTI name. Is there a better way to get // a unique string for a type? llvm::raw_svector_ostream Out(FullName); CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(QualType(Ty, 0), Out); return FullName; } /// \return the approproate DWARF tag for a composite type. static llvm::dwarf::Tag getTagForRecord(const RecordDecl *RD) { llvm::dwarf::Tag Tag; if (RD->isStruct() || RD->isInterface()) Tag = llvm::dwarf::DW_TAG_structure_type; else if (RD->isUnion()) Tag = llvm::dwarf::DW_TAG_union_type; else { // FIXME: This could be a struct type giving a default visibility different // than C++ class type, but needs llvm metadata changes first. assert(RD->isClass()); Tag = llvm::dwarf::DW_TAG_class_type; } return Tag; } llvm::DICompositeType * CGDebugInfo::getOrCreateRecordFwdDecl(const RecordType *Ty, llvm::DIScope *Ctx) { const RecordDecl *RD = Ty->getDecl(); if (llvm::DIType *T = getTypeOrNull(CGM.getContext().getRecordType(RD))) return cast<llvm::DICompositeType>(T); llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); unsigned Line = getLineNumber(RD->getLocation()); StringRef RDName = getClassName(RD); uint64_t Size = 0; uint64_t Align = 0; const RecordDecl *D = RD->getDefinition(); if (D && D->isCompleteDefinition()) { Size = CGM.getContext().getTypeSize(Ty); Align = CGM.getContext().getTypeAlign(Ty); } // Create the type. SmallString<256> FullName = getUniqueTagTypeName(Ty, CGM, TheCU); llvm::DICompositeType *RetTy = DBuilder.createReplaceableCompositeType( getTagForRecord(RD), RDName, Ctx, DefUnit, Line, 0, Size, Align, llvm::DINode::FlagFwdDecl, FullName); ReplaceMap.emplace_back( std::piecewise_construct, std::make_tuple(Ty), std::make_tuple(static_cast<llvm::Metadata *>(RetTy))); return RetTy; } llvm::DIType *CGDebugInfo::CreatePointerLikeType(llvm::dwarf::Tag Tag, const Type *Ty, QualType PointeeTy, llvm::DIFile *Unit) { // Bit size, align and offset of the type. // Size is always the size of a pointer. We can't use getTypeSize here // because that does not return the correct value for references. unsigned AS = CGM.getContext().getTargetAddressSpace(PointeeTy); uint64_t Size = CGM.getTarget().getPointerWidth(AS); uint64_t Align = CGM.getContext().getTypeAlign(Ty); if (Tag == llvm::dwarf::DW_TAG_reference_type || Tag == llvm::dwarf::DW_TAG_rvalue_reference_type) return DBuilder.createReferenceType(Tag, getOrCreateType(PointeeTy, Unit), Size, Align); else return DBuilder.createPointerType(getOrCreateType(PointeeTy, Unit), Size, Align); } llvm::DIType *CGDebugInfo::getOrCreateStructPtrType(StringRef Name, llvm::DIType *&Cache) { if (Cache) return Cache; Cache = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, Name, TheCU, getOrCreateMainFile(), 0); unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); Cache = DBuilder.createPointerType(Cache, Size); return Cache; } llvm::DIType *CGDebugInfo::CreateType(const BlockPointerType *Ty, llvm::DIFile *Unit) { SmallVector<llvm::Metadata *, 8> EltTys; QualType FType; uint64_t FieldSize, FieldOffset; unsigned FieldAlign; llvm::DINodeArray Elements; FieldOffset = 0; FType = CGM.getContext().UnsignedLongTy; EltTys.push_back(CreateMemberType(Unit, FType, "reserved", &FieldOffset)); EltTys.push_back(CreateMemberType(Unit, FType, "Size", &FieldOffset)); Elements = DBuilder.getOrCreateArray(EltTys); EltTys.clear(); unsigned Flags = llvm::DINode::FlagAppleBlock; unsigned LineNo = 0; auto *EltTy = DBuilder.createStructType(Unit, "__block_descriptor", nullptr, LineNo, FieldOffset, 0, Flags, nullptr, Elements); // Bit size, align and offset of the type. uint64_t Size = CGM.getContext().getTypeSize(Ty); auto *DescTy = DBuilder.createPointerType(EltTy, Size); FieldOffset = 0; FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset)); FType = CGM.getContext().IntTy; EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset)); EltTys.push_back(CreateMemberType(Unit, FType, "__reserved", &FieldOffset)); FType = CGM.getContext().getPointerType(Ty->getPointeeType()); EltTys.push_back(CreateMemberType(Unit, FType, "__FuncPtr", &FieldOffset)); FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); FieldSize = CGM.getContext().getTypeSize(Ty); FieldAlign = CGM.getContext().getTypeAlign(Ty); EltTys.push_back(DBuilder.createMemberType(Unit, "__descriptor", nullptr, LineNo, FieldSize, FieldAlign, FieldOffset, 0, DescTy)); FieldOffset += FieldSize; Elements = DBuilder.getOrCreateArray(EltTys); // The __block_literal_generic structs are marked with a special // DW_AT_APPLE_BLOCK attribute and are an implementation detail only // the debugger needs to know about. To allow type uniquing, emit // them without a name or a location. EltTy = DBuilder.createStructType(Unit, "", nullptr, LineNo, FieldOffset, 0, Flags, nullptr, Elements); return DBuilder.createPointerType(EltTy, Size); } llvm::DIType *CGDebugInfo::CreateType(const TemplateSpecializationType *Ty, llvm::DIFile *Unit) { assert(Ty->isTypeAlias()); llvm::DIType *Src = getOrCreateType(Ty->getAliasedType(), Unit); SmallString<128> NS; llvm::raw_svector_ostream OS(NS); Ty->getTemplateName().print(OS, CGM.getContext().getPrintingPolicy(), /*qualified*/ false); TemplateSpecializationType::PrintTemplateArgumentList( OS, Ty->template_arguments(), CGM.getContext().getPrintingPolicy()); TypeAliasDecl *AliasDecl = cast<TypeAliasTemplateDecl>( Ty->getTemplateName().getAsTemplateDecl())->getTemplatedDecl(); SourceLocation Loc = AliasDecl->getLocation(); return DBuilder.createTypedef(Src, OS.str(), getOrCreateFile(Loc), getLineNumber(Loc), getDeclContextDescriptor(AliasDecl)); } llvm::DIType *CGDebugInfo::CreateType(const TypedefType *Ty, llvm::DIFile *Unit) { // We don't set size information, but do specify where the typedef was // declared. SourceLocation Loc = Ty->getDecl()->getLocation(); // Typedefs are derived from some other type. return DBuilder.createTypedef( getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit), Ty->getDecl()->getName(), getOrCreateFile(Loc), getLineNumber(Loc), getDeclContextDescriptor(Ty->getDecl())); } static unsigned getDwarfCC(CallingConv CC) { switch (CC) { case CC_C: // Avoid emitting DW_AT_calling_convention if the C convention was used. return 0; case CC_X86StdCall: return llvm::dwarf::DW_CC_BORLAND_stdcall; case CC_X86FastCall: return llvm::dwarf::DW_CC_BORLAND_msfastcall; case CC_X86ThisCall: return llvm::dwarf::DW_CC_BORLAND_thiscall; case CC_X86VectorCall: return llvm::dwarf::DW_CC_LLVM_vectorcall; case CC_X86Pascal: return llvm::dwarf::DW_CC_BORLAND_pascal; // FIXME: Create new DW_CC_ codes for these calling conventions. case CC_X86_64Win64: case CC_X86_64SysV: case CC_AAPCS: case CC_AAPCS_VFP: case CC_IntelOclBicc: case CC_SpirFunction: case CC_OpenCLKernel: case CC_Swift: case CC_PreserveMost: case CC_PreserveAll: return 0; } return 0; } llvm::DIType *CGDebugInfo::CreateType(const FunctionType *Ty, llvm::DIFile *Unit) { SmallVector<llvm::Metadata *, 16> EltTys; // Add the result type at least. EltTys.push_back(getOrCreateType(Ty->getReturnType(), Unit)); // Set up remainder of arguments if there is a prototype. // otherwise emit it as a variadic function. if (isa<FunctionNoProtoType>(Ty)) EltTys.push_back(DBuilder.createUnspecifiedParameter()); else if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Ty)) { for (unsigned i = 0, e = FPT->getNumParams(); i != e; ++i) EltTys.push_back(getOrCreateType(FPT->getParamType(i), Unit)); if (FPT->isVariadic()) EltTys.push_back(DBuilder.createUnspecifiedParameter()); } llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys); return DBuilder.createSubroutineType(EltTypeArray, 0, getDwarfCC(Ty->getCallConv())); } /// Convert an AccessSpecifier into the corresponding DINode flag. /// As an optimization, return 0 if the access specifier equals the /// default for the containing type. static unsigned getAccessFlag(AccessSpecifier Access, const RecordDecl *RD) { AccessSpecifier Default = clang::AS_none; if (RD && RD->isClass()) Default = clang::AS_private; else if (RD && (RD->isStruct() || RD->isUnion())) Default = clang::AS_public; if (Access == Default) return 0; switch (Access) { case clang::AS_private: return llvm::DINode::FlagPrivate; case clang::AS_protected: return llvm::DINode::FlagProtected; case clang::AS_public: return llvm::DINode::FlagPublic; case clang::AS_none: return 0; } llvm_unreachable("unexpected access enumerator"); } llvm::DIType *CGDebugInfo::createBitFieldType(const FieldDecl *BitFieldDecl, llvm::DIScope *RecordTy, const RecordDecl *RD) { StringRef Name = BitFieldDecl->getName(); QualType Ty = BitFieldDecl->getType(); SourceLocation Loc = BitFieldDecl->getLocation(); llvm::DIFile *VUnit = getOrCreateFile(Loc); llvm::DIType *DebugType = getOrCreateType(Ty, VUnit); // Get the location for the field. llvm::DIFile *File = getOrCreateFile(Loc); unsigned Line = getLineNumber(Loc); const CGBitFieldInfo &BitFieldInfo = CGM.getTypes().getCGRecordLayout(RD).getBitFieldInfo(BitFieldDecl); uint64_t SizeInBits = BitFieldInfo.Size; assert(SizeInBits > 0 && "found named 0-width bitfield"); unsigned AlignInBits = CGM.getContext().getTypeAlign(Ty); uint64_t StorageOffsetInBits = CGM.getContext().toBits(BitFieldInfo.StorageOffset); uint64_t OffsetInBits = StorageOffsetInBits + BitFieldInfo.Offset; unsigned Flags = getAccessFlag(BitFieldDecl->getAccess(), RD); return DBuilder.createBitFieldMemberType( RecordTy, Name, File, Line, SizeInBits, AlignInBits, OffsetInBits, StorageOffsetInBits, Flags, DebugType); } llvm::DIType * CGDebugInfo::createFieldType(StringRef name, QualType type, SourceLocation loc, AccessSpecifier AS, uint64_t offsetInBits, llvm::DIFile *tunit, llvm::DIScope *scope, const RecordDecl *RD) { llvm::DIType *debugType = getOrCreateType(type, tunit); // Get the location for the field. llvm::DIFile *file = getOrCreateFile(loc); unsigned line = getLineNumber(loc); uint64_t SizeInBits = 0; unsigned AlignInBits = 0; if (!type->isIncompleteArrayType()) { TypeInfo TI = CGM.getContext().getTypeInfo(type); SizeInBits = TI.Width; AlignInBits = TI.Align; } unsigned flags = getAccessFlag(AS, RD); return DBuilder.createMemberType(scope, name, file, line, SizeInBits, AlignInBits, offsetInBits, flags, debugType); } void CGDebugInfo::CollectRecordLambdaFields( const CXXRecordDecl *CXXDecl, SmallVectorImpl<llvm::Metadata *> &elements, llvm::DIType *RecordTy) { // For C++11 Lambdas a Field will be the same as a Capture, but the Capture // has the name and the location of the variable so we should iterate over // both concurrently. const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(CXXDecl); RecordDecl::field_iterator Field = CXXDecl->field_begin(); unsigned fieldno = 0; for (CXXRecordDecl::capture_const_iterator I = CXXDecl->captures_begin(), E = CXXDecl->captures_end(); I != E; ++I, ++Field, ++fieldno) { const LambdaCapture &C = *I; if (C.capturesVariable()) { SourceLocation Loc = C.getLocation(); assert(!Field->isBitField() && "lambdas don't have bitfield members!"); VarDecl *V = C.getCapturedVar(); StringRef VName = V->getName(); llvm::DIFile *VUnit = getOrCreateFile(Loc); llvm::DIType *FieldType = createFieldType( VName, Field->getType(), Loc, Field->getAccess(), layout.getFieldOffset(fieldno), VUnit, RecordTy, CXXDecl); elements.push_back(FieldType); } else if (C.capturesThis()) { // TODO: Need to handle 'this' in some way by probably renaming the // this of the lambda class and having a field member of 'this' or // by using AT_object_pointer for the function and having that be // used as 'this' for semantic references. FieldDecl *f = *Field; llvm::DIFile *VUnit = getOrCreateFile(f->getLocation()); QualType type = f->getType(); llvm::DIType *fieldType = createFieldType( "this", type, f->getLocation(), f->getAccess(), layout.getFieldOffset(fieldno), VUnit, RecordTy, CXXDecl); elements.push_back(fieldType); } } } llvm::DIDerivedType * CGDebugInfo::CreateRecordStaticField(const VarDecl *Var, llvm::DIType *RecordTy, const RecordDecl *RD) { // Create the descriptor for the static variable, with or without // constant initializers. Var = Var->getCanonicalDecl(); llvm::DIFile *VUnit = getOrCreateFile(Var->getLocation()); llvm::DIType *VTy = getOrCreateType(Var->getType(), VUnit); unsigned LineNumber = getLineNumber(Var->getLocation()); StringRef VName = Var->getName(); llvm::Constant *C = nullptr; if (Var->getInit()) { const APValue *Value = Var->evaluateValue(); if (Value) { if (Value->isInt()) C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value->getInt()); if (Value->isFloat()) C = llvm::ConstantFP::get(CGM.getLLVMContext(), Value->getFloat()); } } unsigned Flags = getAccessFlag(Var->getAccess(), RD); llvm::DIDerivedType *GV = DBuilder.createStaticMemberType( RecordTy, VName, VUnit, LineNumber, VTy, Flags, C); StaticDataMemberCache[Var->getCanonicalDecl()].reset(GV); return GV; } void CGDebugInfo::CollectRecordNormalField( const FieldDecl *field, uint64_t OffsetInBits, llvm::DIFile *tunit, SmallVectorImpl<llvm::Metadata *> &elements, llvm::DIType *RecordTy, const RecordDecl *RD) { StringRef name = field->getName(); QualType type = field->getType(); // Ignore unnamed fields unless they're anonymous structs/unions. if (name.empty() && !type->isRecordType()) return; llvm::DIType *FieldType; if (field->isBitField()) { FieldType = createBitFieldType(field, RecordTy, RD); } else { FieldType = createFieldType(name, type, field->getLocation(), field->getAccess(), OffsetInBits, tunit, RecordTy, RD); } elements.push_back(FieldType); } void CGDebugInfo::CollectRecordFields( const RecordDecl *record, llvm::DIFile *tunit, SmallVectorImpl<llvm::Metadata *> &elements, llvm::DICompositeType *RecordTy) { const CXXRecordDecl *CXXDecl = dyn_cast<CXXRecordDecl>(record); if (CXXDecl && CXXDecl->isLambda()) CollectRecordLambdaFields(CXXDecl, elements, RecordTy); else { const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(record); // Field number for non-static fields. unsigned fieldNo = 0; // Static and non-static members should appear in the same order as // the corresponding declarations in the source program. for (const auto *I : record->decls()) if (const auto *V = dyn_cast<VarDecl>(I)) { if (V->hasAttr<NoDebugAttr>()) continue; // Reuse the existing static member declaration if one exists auto MI = StaticDataMemberCache.find(V->getCanonicalDecl()); if (MI != StaticDataMemberCache.end()) { assert(MI->second && "Static data member declaration should still exist"); elements.push_back(MI->second); } else { auto Field = CreateRecordStaticField(V, RecordTy, record); elements.push_back(Field); } } else if (const auto *field = dyn_cast<FieldDecl>(I)) { CollectRecordNormalField(field, layout.getFieldOffset(fieldNo), tunit, elements, RecordTy, record); // Bump field number for next field. ++fieldNo; } } } llvm::DISubroutineType * CGDebugInfo::getOrCreateMethodType(const CXXMethodDecl *Method, llvm::DIFile *Unit) { const FunctionProtoType *Func = Method->getType()->getAs<FunctionProtoType>(); if (Method->isStatic()) return cast_or_null<llvm::DISubroutineType>( getOrCreateType(QualType(Func, 0), Unit)); return getOrCreateInstanceMethodType(Method->getThisType(CGM.getContext()), Func, Unit); } llvm::DISubroutineType *CGDebugInfo::getOrCreateInstanceMethodType( QualType ThisPtr, const FunctionProtoType *Func, llvm::DIFile *Unit) { // Add "this" pointer. llvm::DITypeRefArray Args( cast<llvm::DISubroutineType>(getOrCreateType(QualType(Func, 0), Unit)) ->getTypeArray()); assert(Args.size() && "Invalid number of arguments!"); SmallVector<llvm::Metadata *, 16> Elts; // First element is always return type. For 'void' functions it is NULL. Elts.push_back(Args[0]); // "this" pointer is always first argument. const CXXRecordDecl *RD = ThisPtr->getPointeeCXXRecordDecl(); if (isa<ClassTemplateSpecializationDecl>(RD)) { // Create pointer type directly in this case. const PointerType *ThisPtrTy = cast<PointerType>(ThisPtr); QualType PointeeTy = ThisPtrTy->getPointeeType(); unsigned AS = CGM.getContext().getTargetAddressSpace(PointeeTy); uint64_t Size = CGM.getTarget().getPointerWidth(AS); uint64_t Align = CGM.getContext().getTypeAlign(ThisPtrTy); llvm::DIType *PointeeType = getOrCreateType(PointeeTy, Unit); llvm::DIType *ThisPtrType = DBuilder.createPointerType(PointeeType, Size, Align); TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType); // TODO: This and the artificial type below are misleading, the // types aren't artificial the argument is, but the current // metadata doesn't represent that. ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType); Elts.push_back(ThisPtrType); } else { llvm::DIType *ThisPtrType = getOrCreateType(ThisPtr, Unit); TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType); ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType); Elts.push_back(ThisPtrType); } // Copy rest of the arguments. for (unsigned i = 1, e = Args.size(); i != e; ++i) Elts.push_back(Args[i]); llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts); unsigned Flags = 0; if (Func->getExtProtoInfo().RefQualifier == RQ_LValue) Flags |= llvm::DINode::FlagLValueReference; if (Func->getExtProtoInfo().RefQualifier == RQ_RValue) Flags |= llvm::DINode::FlagRValueReference; return DBuilder.createSubroutineType(EltTypeArray, Flags, getDwarfCC(Func->getCallConv())); } /// isFunctionLocalClass - Return true if CXXRecordDecl is defined /// inside a function. static bool isFunctionLocalClass(const CXXRecordDecl *RD) { if (const CXXRecordDecl *NRD = dyn_cast<CXXRecordDecl>(RD->getDeclContext())) return isFunctionLocalClass(NRD); if (isa<FunctionDecl>(RD->getDeclContext())) return true; return false; } llvm::DISubprogram *CGDebugInfo::CreateCXXMemberFunction( const CXXMethodDecl *Method, llvm::DIFile *Unit, llvm::DIType *RecordTy) { bool IsCtorOrDtor = isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method); StringRef MethodName = getFunctionName(Method); llvm::DISubroutineType *MethodTy = getOrCreateMethodType(Method, Unit); // Since a single ctor/dtor corresponds to multiple functions, it doesn't // make sense to give a single ctor/dtor a linkage name. StringRef MethodLinkageName; // FIXME: 'isFunctionLocalClass' seems like an arbitrary/unintentional // property to use here. It may've been intended to model "is non-external // type" but misses cases of non-function-local but non-external classes such // as those in anonymous namespaces as well as the reverse - external types // that are function local, such as those in (non-local) inline functions. if (!IsCtorOrDtor && !isFunctionLocalClass(Method->getParent())) MethodLinkageName = CGM.getMangledName(Method); // Get the location for the method. llvm::DIFile *MethodDefUnit = nullptr; unsigned MethodLine = 0; if (!Method->isImplicit()) { MethodDefUnit = getOrCreateFile(Method->getLocation()); MethodLine = getLineNumber(Method->getLocation()); } // Collect virtual method info. llvm::DIType *ContainingType = nullptr; unsigned Virtuality = 0; unsigned VIndex = 0; unsigned Flags = 0; int ThisAdjustment = 0; if (Method->isVirtual()) { if (Method->isPure()) Virtuality = llvm::dwarf::DW_VIRTUALITY_pure_virtual; else Virtuality = llvm::dwarf::DW_VIRTUALITY_virtual; if (CGM.getTarget().getCXXABI().isItaniumFamily()) { // It doesn't make sense to give a virtual destructor a vtable index, // since a single destructor has two entries in the vtable. if (!isa<CXXDestructorDecl>(Method)) VIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(Method); } else { // Emit MS ABI vftable information. There is only one entry for the // deleting dtor. const auto *DD = dyn_cast<CXXDestructorDecl>(Method); GlobalDecl GD = DD ? GlobalDecl(DD, Dtor_Deleting) : GlobalDecl(Method); MicrosoftVTableContext::MethodVFTableLocation ML = CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); VIndex = ML.Index; // CodeView only records the vftable offset in the class that introduces // the virtual method. This is possible because, unlike Itanium, the MS // C++ ABI does not include all virtual methods from non-primary bases in // the vtable for the most derived class. For example, if C inherits from // A and B, C's primary vftable will not include B's virtual methods. if (Method->begin_overridden_methods() == Method->end_overridden_methods()) Flags |= llvm::DINode::FlagIntroducedVirtual; // The 'this' adjustment accounts for both the virtual and non-virtual // portions of the adjustment. Presumably the debugger only uses it when // it knows the dynamic type of an object. ThisAdjustment = CGM.getCXXABI() .getVirtualFunctionPrologueThisAdjustment(GD) .getQuantity(); } ContainingType = RecordTy; } if (Method->isImplicit()) Flags |= llvm::DINode::FlagArtificial; Flags |= getAccessFlag(Method->getAccess(), Method->getParent()); if (const CXXConstructorDecl *CXXC = dyn_cast<CXXConstructorDecl>(Method)) { if (CXXC->isExplicit()) Flags |= llvm::DINode::FlagExplicit; } else if (const CXXConversionDecl *CXXC = dyn_cast<CXXConversionDecl>(Method)) { if (CXXC->isExplicit()) Flags |= llvm::DINode::FlagExplicit; } if (Method->hasPrototype()) Flags |= llvm::DINode::FlagPrototyped; if (Method->getRefQualifier() == RQ_LValue) Flags |= llvm::DINode::FlagLValueReference; if (Method->getRefQualifier() == RQ_RValue) Flags |= llvm::DINode::FlagRValueReference; llvm::DINodeArray TParamsArray = CollectFunctionTemplateParams(Method, Unit); llvm::DISubprogram *SP = DBuilder.createMethod( RecordTy, MethodName, MethodLinkageName, MethodDefUnit, MethodLine, MethodTy, /*isLocalToUnit=*/false, /*isDefinition=*/false, Virtuality, VIndex, ThisAdjustment, ContainingType, Flags, CGM.getLangOpts().Optimize, TParamsArray.get()); SPCache[Method->getCanonicalDecl()].reset(SP); return SP; } void CGDebugInfo::CollectCXXMemberFunctions( const CXXRecordDecl *RD, llvm::DIFile *Unit, SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy) { // Since we want more than just the individual member decls if we // have templated functions iterate over every declaration to gather // the functions. for (const auto *I : RD->decls()) { const auto *Method = dyn_cast<CXXMethodDecl>(I); // If the member is implicit, don't add it to the member list. This avoids // the member being added to type units by LLVM, while still allowing it // to be emitted into the type declaration/reference inside the compile // unit. // Ditto 'nodebug' methods, for consistency with CodeGenFunction.cpp. // FIXME: Handle Using(Shadow?)Decls here to create // DW_TAG_imported_declarations inside the class for base decls brought into // derived classes. GDB doesn't seem to notice/leverage these when I tried // it, so I'm not rushing to fix this. (GCC seems to produce them, if // referenced) if (!Method || Method->isImplicit() || Method->hasAttr<NoDebugAttr>()) continue; if (Method->getType()->getAs<FunctionProtoType>()->getContainedAutoType()) continue; // Reuse the existing member function declaration if it exists. // It may be associated with the declaration of the type & should be // reused as we're building the definition. // // This situation can arise in the vtable-based debug info reduction where // implicit members are emitted in a non-vtable TU. auto MI = SPCache.find(Method->getCanonicalDecl()); EltTys.push_back(MI == SPCache.end() ? CreateCXXMemberFunction(Method, Unit, RecordTy) : static_cast<llvm::Metadata *>(MI->second)); } } void CGDebugInfo::CollectCXXBases(const CXXRecordDecl *RD, llvm::DIFile *Unit, SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy) { const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); for (const auto &BI : RD->bases()) { unsigned BFlags = 0; uint64_t BaseOffset; const CXXRecordDecl *Base = cast<CXXRecordDecl>(BI.getType()->getAs<RecordType>()->getDecl()); if (BI.isVirtual()) { if (CGM.getTarget().getCXXABI().isItaniumFamily()) { // virtual base offset offset is -ve. The code generator emits dwarf // expression where it expects +ve number. BaseOffset = 0 - CGM.getItaniumVTableContext() .getVirtualBaseOffsetOffset(RD, Base) .getQuantity(); } else { // In the MS ABI, store the vbtable offset, which is analogous to the // vbase offset offset in Itanium. BaseOffset = 4 * CGM.getMicrosoftVTableContext().getVBTableIndex(RD, Base); } BFlags = llvm::DINode::FlagVirtual; } else BaseOffset = CGM.getContext().toBits(RL.getBaseClassOffset(Base)); // FIXME: Inconsistent units for BaseOffset. It is in bytes when // BI->isVirtual() and bits when not. BFlags |= getAccessFlag(BI.getAccessSpecifier(), RD); llvm::DIType *DTy = DBuilder.createInheritance( RecordTy, getOrCreateType(BI.getType(), Unit), BaseOffset, BFlags); EltTys.push_back(DTy); } } llvm::DINodeArray CGDebugInfo::CollectTemplateParams(const TemplateParameterList *TPList, ArrayRef<TemplateArgument> TAList, llvm::DIFile *Unit) { SmallVector<llvm::Metadata *, 16> TemplateParams; for (unsigned i = 0, e = TAList.size(); i != e; ++i) { const TemplateArgument &TA = TAList[i]; StringRef Name; if (TPList) Name = TPList->getParam(i)->getName(); switch (TA.getKind()) { case TemplateArgument::Type: { llvm::DIType *TTy = getOrCreateType(TA.getAsType(), Unit); TemplateParams.push_back( DBuilder.createTemplateTypeParameter(TheCU, Name, TTy)); } break; case TemplateArgument::Integral: { llvm::DIType *TTy = getOrCreateType(TA.getIntegralType(), Unit); TemplateParams.push_back(DBuilder.createTemplateValueParameter( TheCU, Name, TTy, llvm::ConstantInt::get(CGM.getLLVMContext(), TA.getAsIntegral()))); } break; case TemplateArgument::Declaration: { const ValueDecl *D = TA.getAsDecl(); QualType T = TA.getParamTypeForDecl().getDesugaredType(CGM.getContext()); llvm::DIType *TTy = getOrCreateType(T, Unit); llvm::Constant *V = nullptr; const CXXMethodDecl *MD; // Variable pointer template parameters have a value that is the address // of the variable. if (const auto *VD = dyn_cast<VarDecl>(D)) V = CGM.GetAddrOfGlobalVar(VD); // Member function pointers have special support for building them, though // this is currently unsupported in LLVM CodeGen. else if ((MD = dyn_cast<CXXMethodDecl>(D)) && MD->isInstance()) V = CGM.getCXXABI().EmitMemberFunctionPointer(MD); else if (const auto *FD = dyn_cast<FunctionDecl>(D)) V = CGM.GetAddrOfFunction(FD); // Member data pointers have special handling too to compute the fixed // offset within the object. else if (const auto *MPT = dyn_cast<MemberPointerType>(T.getTypePtr())) { // These five lines (& possibly the above member function pointer // handling) might be able to be refactored to use similar code in // CodeGenModule::getMemberPointerConstant uint64_t fieldOffset = CGM.getContext().getFieldOffset(D); CharUnits chars = CGM.getContext().toCharUnitsFromBits((int64_t)fieldOffset); V = CGM.getCXXABI().EmitMemberDataPointer(MPT, chars); } TemplateParams.push_back(DBuilder.createTemplateValueParameter( TheCU, Name, TTy, cast_or_null<llvm::Constant>(V->stripPointerCasts()))); } break; case TemplateArgument::NullPtr: { QualType T = TA.getNullPtrType(); llvm::DIType *TTy = getOrCreateType(T, Unit); llvm::Constant *V = nullptr; // Special case member data pointer null values since they're actually -1 // instead of zero. if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(T.getTypePtr())) // But treat member function pointers as simple zero integers because // it's easier than having a special case in LLVM's CodeGen. If LLVM // CodeGen grows handling for values of non-null member function // pointers then perhaps we could remove this special case and rely on // EmitNullMemberPointer for member function pointers. if (MPT->isMemberDataPointer()) V = CGM.getCXXABI().EmitNullMemberPointer(MPT); if (!V) V = llvm::ConstantInt::get(CGM.Int8Ty, 0); TemplateParams.push_back(DBuilder.createTemplateValueParameter( TheCU, Name, TTy, cast<llvm::Constant>(V))); } break; case TemplateArgument::Template: TemplateParams.push_back(DBuilder.createTemplateTemplateParameter( TheCU, Name, nullptr, TA.getAsTemplate().getAsTemplateDecl()->getQualifiedNameAsString())); break; case TemplateArgument::Pack: TemplateParams.push_back(DBuilder.createTemplateParameterPack( TheCU, Name, nullptr, CollectTemplateParams(nullptr, TA.getPackAsArray(), Unit))); break; case TemplateArgument::Expression: { const Expr *E = TA.getAsExpr(); QualType T = E->getType(); if (E->isGLValue()) T = CGM.getContext().getLValueReferenceType(T); llvm::Constant *V = CGM.EmitConstantExpr(E, T); assert(V && "Expression in template argument isn't constant"); llvm::DIType *TTy = getOrCreateType(T, Unit); TemplateParams.push_back(DBuilder.createTemplateValueParameter( TheCU, Name, TTy, cast<llvm::Constant>(V->stripPointerCasts()))); } break; // And the following should never occur: case TemplateArgument::TemplateExpansion: case TemplateArgument::Null: llvm_unreachable( "These argument types shouldn't exist in concrete types"); } } return DBuilder.getOrCreateArray(TemplateParams); } llvm::DINodeArray CGDebugInfo::CollectFunctionTemplateParams(const FunctionDecl *FD, llvm::DIFile *Unit) { if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplateSpecialization) { const TemplateParameterList *TList = FD->getTemplateSpecializationInfo() ->getTemplate() ->getTemplateParameters(); return CollectTemplateParams( TList, FD->getTemplateSpecializationArgs()->asArray(), Unit); } return llvm::DINodeArray(); } llvm::DINodeArray CGDebugInfo::CollectCXXTemplateParams( const ClassTemplateSpecializationDecl *TSpecial, llvm::DIFile *Unit) { // Always get the full list of parameters, not just the ones from // the specialization. TemplateParameterList *TPList = TSpecial->getSpecializedTemplate()->getTemplateParameters(); const TemplateArgumentList &TAList = TSpecial->getTemplateArgs(); return CollectTemplateParams(TPList, TAList.asArray(), Unit); } llvm::DIType *CGDebugInfo::getOrCreateVTablePtrType(llvm::DIFile *Unit) { if (VTablePtrType) return VTablePtrType; ASTContext &Context = CGM.getContext(); /* Function type */ llvm::Metadata *STy = getOrCreateType(Context.IntTy, Unit); llvm::DITypeRefArray SElements = DBuilder.getOrCreateTypeArray(STy); llvm::DIType *SubTy = DBuilder.createSubroutineType(SElements); unsigned Size = Context.getTypeSize(Context.VoidPtrTy); llvm::DIType *vtbl_ptr_type = DBuilder.createPointerType(SubTy, Size, 0, "__vtbl_ptr_type"); VTablePtrType = DBuilder.createPointerType(vtbl_ptr_type, Size); return VTablePtrType; } StringRef CGDebugInfo::getVTableName(const CXXRecordDecl *RD) { // Copy the gdb compatible name on the side and use its reference. return internString("_vptr$", RD->getNameAsString()); } void CGDebugInfo::CollectVTableInfo(const CXXRecordDecl *RD, llvm::DIFile *Unit, SmallVectorImpl<llvm::Metadata *> &EltTys) { const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); // If there is a primary base then it will hold vtable info. if (RL.getPrimaryBase()) return; // If this class is not dynamic then there is not any vtable info to collect. if (!RD->isDynamicClass()) return; unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); llvm::DIType *VPTR = DBuilder.createMemberType( Unit, getVTableName(RD), Unit, 0, Size, 0, 0, llvm::DINode::FlagArtificial, getOrCreateVTablePtrType(Unit)); EltTys.push_back(VPTR); } llvm::DIType *CGDebugInfo::getOrCreateRecordType(QualType RTy, SourceLocation Loc) { assert(DebugKind >= codegenoptions::LimitedDebugInfo); llvm::DIType *T = getOrCreateType(RTy, getOrCreateFile(Loc)); return T; } llvm::DIType *CGDebugInfo::getOrCreateInterfaceType(QualType D, SourceLocation Loc) { return getOrCreateStandaloneType(D, Loc); } llvm::DIType *CGDebugInfo::getOrCreateStandaloneType(QualType D, SourceLocation Loc) { assert(DebugKind >= codegenoptions::LimitedDebugInfo); assert(!D.isNull() && "null type"); llvm::DIType *T = getOrCreateType(D, getOrCreateFile(Loc)); assert(T && "could not create debug info for type"); RetainedTypes.push_back(D.getAsOpaquePtr()); return T; } void CGDebugInfo::completeType(const EnumDecl *ED) { if (DebugKind <= codegenoptions::DebugLineTablesOnly) return; QualType Ty = CGM.getContext().getEnumType(ED); void *TyPtr = Ty.getAsOpaquePtr(); auto I = TypeCache.find(TyPtr); if (I == TypeCache.end() || !cast<llvm::DIType>(I->second)->isForwardDecl()) return; llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<EnumType>()); assert(!Res->isForwardDecl()); TypeCache[TyPtr].reset(Res); } void CGDebugInfo::completeType(const RecordDecl *RD) { if (DebugKind > codegenoptions::LimitedDebugInfo || !CGM.getLangOpts().CPlusPlus) completeRequiredType(RD); } void CGDebugInfo::completeRequiredType(const RecordDecl *RD) { if (DebugKind <= codegenoptions::DebugLineTablesOnly) return; if (const CXXRecordDecl *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) if (CXXDecl->isDynamicClass()) return; if (DebugTypeExtRefs && RD->isFromASTFile()) return; QualType Ty = CGM.getContext().getRecordType(RD); llvm::DIType *T = getTypeOrNull(Ty); if (T && T->isForwardDecl()) completeClassData(RD); } void CGDebugInfo::completeClassData(const RecordDecl *RD) { if (DebugKind <= codegenoptions::DebugLineTablesOnly) return; QualType Ty = CGM.getContext().getRecordType(RD); void *TyPtr = Ty.getAsOpaquePtr(); auto I = TypeCache.find(TyPtr); if (I != TypeCache.end() && !cast<llvm::DIType>(I->second)->isForwardDecl()) return; llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<RecordType>()); assert(!Res->isForwardDecl()); TypeCache[TyPtr].reset(Res); } static bool hasExplicitMemberDefinition(CXXRecordDecl::method_iterator I, CXXRecordDecl::method_iterator End) { for (; I != End; ++I) if (FunctionDecl *Tmpl = I->getInstantiatedFromMemberFunction()) if (!Tmpl->isImplicit() && Tmpl->isThisDeclarationADefinition() && !I->getMemberSpecializationInfo()->isExplicitSpecialization()) return true; return false; } /// Does a type definition exist in an imported clang module? static bool isDefinedInClangModule(const RecordDecl *RD) { if (!RD || !RD->isFromASTFile()) return false; if (!RD->isExternallyVisible() && RD->getName().empty()) return false; if (auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) { assert(CXXDecl->isCompleteDefinition() && "incomplete record definition"); if (CXXDecl->getTemplateSpecializationKind() != TSK_Undeclared) // Make sure the instantiation is actually in a module. if (CXXDecl->field_begin() != CXXDecl->field_end()) return CXXDecl->field_begin()->isFromASTFile(); } return true; } static bool shouldOmitDefinition(codegenoptions::DebugInfoKind DebugKind, bool DebugTypeExtRefs, const RecordDecl *RD, const LangOptions &LangOpts) { if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition())) return true; if (DebugKind > codegenoptions::LimitedDebugInfo) return false; if (!LangOpts.CPlusPlus) return false; if (!RD->isCompleteDefinitionRequired()) return true; const CXXRecordDecl *CXXDecl = dyn_cast<CXXRecordDecl>(RD); if (!CXXDecl) return false; if (CXXDecl->hasDefinition() && CXXDecl->isDynamicClass()) return true; TemplateSpecializationKind Spec = TSK_Undeclared; if (const ClassTemplateSpecializationDecl *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) Spec = SD->getSpecializationKind(); if (Spec == TSK_ExplicitInstantiationDeclaration && hasExplicitMemberDefinition(CXXDecl->method_begin(), CXXDecl->method_end())) return true; return false; } llvm::DIType *CGDebugInfo::CreateType(const RecordType *Ty) { RecordDecl *RD = Ty->getDecl(); llvm::DIType *T = cast_or_null<llvm::DIType>(getTypeOrNull(QualType(Ty, 0))); if (T || shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, CGM.getLangOpts())) { if (!T) T = getOrCreateRecordFwdDecl(Ty, getDeclContextDescriptor(RD)); return T; } return CreateTypeDefinition(Ty); } llvm::DIType *CGDebugInfo::CreateTypeDefinition(const RecordType *Ty) { RecordDecl *RD = Ty->getDecl(); // Get overall information about the record type for the debug info. llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); // Records and classes and unions can all be recursive. To handle them, we // first generate a debug descriptor for the struct as a forward declaration. // Then (if it is a definition) we go through and get debug info for all of // its members. Finally, we create a descriptor for the complete type (which // may refer to the forward decl if the struct is recursive) and replace all // uses of the forward declaration with the final definition. llvm::DICompositeType *FwdDecl = getOrCreateLimitedType(Ty, DefUnit); const RecordDecl *D = RD->getDefinition(); if (!D || !D->isCompleteDefinition()) return FwdDecl; if (const CXXRecordDecl *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) CollectContainingType(CXXDecl, FwdDecl); // Push the struct on region stack. LexicalBlockStack.emplace_back(&*FwdDecl); RegionMap[Ty->getDecl()].reset(FwdDecl); // Convert all the elements. SmallVector<llvm::Metadata *, 16> EltTys; // what about nested types? // Note: The split of CXXDecl information here is intentional, the // gdb tests will depend on a certain ordering at printout. The debug // information offsets are still correct if we merge them all together // though. const CXXRecordDecl *CXXDecl = dyn_cast<CXXRecordDecl>(RD); if (CXXDecl) { CollectCXXBases(CXXDecl, DefUnit, EltTys, FwdDecl); CollectVTableInfo(CXXDecl, DefUnit, EltTys); } // Collect data fields (including static variables and any initializers). CollectRecordFields(RD, DefUnit, EltTys, FwdDecl); if (CXXDecl) CollectCXXMemberFunctions(CXXDecl, DefUnit, EltTys, FwdDecl); LexicalBlockStack.pop_back(); RegionMap.erase(Ty->getDecl()); llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); DBuilder.replaceArrays(FwdDecl, Elements); if (FwdDecl->isTemporary()) FwdDecl = llvm::MDNode::replaceWithPermanent(llvm::TempDICompositeType(FwdDecl)); RegionMap[Ty->getDecl()].reset(FwdDecl); return FwdDecl; } llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectType *Ty, llvm::DIFile *Unit) { // Ignore protocols. return getOrCreateType(Ty->getBaseType(), Unit); } /// \return true if Getter has the default name for the property PD. static bool hasDefaultGetterName(const ObjCPropertyDecl *PD, const ObjCMethodDecl *Getter) { assert(PD); if (!Getter) return true; assert(Getter->getDeclName().isObjCZeroArgSelector()); return PD->getName() == Getter->getDeclName().getObjCSelector().getNameForSlot(0); } /// \return true if Setter has the default name for the property PD. static bool hasDefaultSetterName(const ObjCPropertyDecl *PD, const ObjCMethodDecl *Setter) { assert(PD); if (!Setter) return true; assert(Setter->getDeclName().isObjCOneArgSelector()); return SelectorTable::constructSetterName(PD->getName()) == Setter->getDeclName().getObjCSelector().getNameForSlot(0); } llvm::DIType *CGDebugInfo::CreateType(const ObjCInterfaceType *Ty, llvm::DIFile *Unit) { ObjCInterfaceDecl *ID = Ty->getDecl(); if (!ID) return nullptr; // Return a forward declaration if this type was imported from a clang module, // and this is not the compile unit with the implementation of the type (which // may contain hidden ivars). if (DebugTypeExtRefs && ID->isFromASTFile() && ID->getDefinition() && !ID->getImplementation()) return DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, ID->getName(), getDeclContextDescriptor(ID), Unit, 0); // Get overall information about the record type for the debug info. llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation()); unsigned Line = getLineNumber(ID->getLocation()); auto RuntimeLang = static_cast<llvm::dwarf::SourceLanguage>(TheCU->getSourceLanguage()); // If this is just a forward declaration return a special forward-declaration // debug type since we won't be able to lay out the entire type. ObjCInterfaceDecl *Def = ID->getDefinition(); if (!Def || !Def->getImplementation()) { llvm::DIScope *Mod = getParentModuleOrNull(ID); llvm::DIType *FwdDecl = DBuilder.createReplaceableCompositeType( llvm::dwarf::DW_TAG_structure_type, ID->getName(), Mod ? Mod : TheCU, DefUnit, Line, RuntimeLang); ObjCInterfaceCache.push_back(ObjCInterfaceCacheEntry(Ty, FwdDecl, Unit)); return FwdDecl; } return CreateTypeDefinition(Ty, Unit); } llvm::DIModule * CGDebugInfo::getOrCreateModuleRef(ExternalASTSource::ASTSourceDescriptor Mod, bool CreateSkeletonCU) { // Use the Module pointer as the key into the cache. This is a // nullptr if the "Module" is a PCH, which is safe because we don't // support chained PCH debug info, so there can only be a single PCH. const Module *M = Mod.getModuleOrNull(); auto ModRef = ModuleCache.find(M); if (ModRef != ModuleCache.end()) return cast<llvm::DIModule>(ModRef->second); // Macro definitions that were defined with "-D" on the command line. SmallString<128> ConfigMacros; { llvm::raw_svector_ostream OS(ConfigMacros); const auto &PPOpts = CGM.getPreprocessorOpts(); unsigned I = 0; // Translate the macro definitions back into a commmand line. for (auto &M : PPOpts.Macros) { if (++I > 1) OS << " "; const std::string &Macro = M.first; bool Undef = M.second; OS << "\"-" << (Undef ? 'U' : 'D'); for (char c : Macro) switch (c) { case '\\' : OS << "\\\\"; break; case '"' : OS << "\\\""; break; default: OS << c; } OS << '\"'; } } bool IsRootModule = M ? !M->Parent : true; if (CreateSkeletonCU && IsRootModule) { // PCH files don't have a signature field in the control block, // but LLVM detects skeleton CUs by looking for a non-zero DWO id. uint64_t Signature = Mod.getSignature() ? Mod.getSignature() : ~1ULL; llvm::DIBuilder DIB(CGM.getModule()); DIB.createCompileUnit(TheCU->getSourceLanguage(), Mod.getModuleName(), Mod.getPath(), TheCU->getProducer(), true, StringRef(), 0, Mod.getASTFile(), llvm::DICompileUnit::FullDebug, Signature); DIB.finalize(); } llvm::DIModule *Parent = IsRootModule ? nullptr : getOrCreateModuleRef( ExternalASTSource::ASTSourceDescriptor(*M->Parent), CreateSkeletonCU); llvm::DIModule *DIMod = DBuilder.createModule(Parent, Mod.getModuleName(), ConfigMacros, Mod.getPath(), CGM.getHeaderSearchOpts().Sysroot); ModuleCache[M].reset(DIMod); return DIMod; } llvm::DIType *CGDebugInfo::CreateTypeDefinition(const ObjCInterfaceType *Ty, llvm::DIFile *Unit) { ObjCInterfaceDecl *ID = Ty->getDecl(); llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation()); unsigned Line = getLineNumber(ID->getLocation()); unsigned RuntimeLang = TheCU->getSourceLanguage(); // Bit size, align and offset of the type. uint64_t Size = CGM.getContext().getTypeSize(Ty); uint64_t Align = CGM.getContext().getTypeAlign(Ty); unsigned Flags = 0; if (ID->getImplementation()) Flags |= llvm::DINode::FlagObjcClassComplete; llvm::DIScope *Mod = getParentModuleOrNull(ID); llvm::DICompositeType *RealDecl = DBuilder.createStructType( Mod ? Mod : Unit, ID->getName(), DefUnit, Line, Size, Align, Flags, nullptr, llvm::DINodeArray(), RuntimeLang); QualType QTy(Ty, 0); TypeCache[QTy.getAsOpaquePtr()].reset(RealDecl); // Push the struct on region stack. LexicalBlockStack.emplace_back(RealDecl); RegionMap[Ty->getDecl()].reset(RealDecl); // Convert all the elements. SmallVector<llvm::Metadata *, 16> EltTys; ObjCInterfaceDecl *SClass = ID->getSuperClass(); if (SClass) { llvm::DIType *SClassTy = getOrCreateType(CGM.getContext().getObjCInterfaceType(SClass), Unit); if (!SClassTy) return nullptr; llvm::DIType *InhTag = DBuilder.createInheritance(RealDecl, SClassTy, 0, 0); EltTys.push_back(InhTag); } // Create entries for all of the properties. auto AddProperty = [&](const ObjCPropertyDecl *PD) { SourceLocation Loc = PD->getLocation(); llvm::DIFile *PUnit = getOrCreateFile(Loc); unsigned PLine = getLineNumber(Loc); ObjCMethodDecl *Getter = PD->getGetterMethodDecl(); ObjCMethodDecl *Setter = PD->getSetterMethodDecl(); llvm::MDNode *PropertyNode = DBuilder.createObjCProperty( PD->getName(), PUnit, PLine, hasDefaultGetterName(PD, Getter) ? "" : getSelectorName(PD->getGetterName()), hasDefaultSetterName(PD, Setter) ? "" : getSelectorName(PD->getSetterName()), PD->getPropertyAttributes(), getOrCreateType(PD->getType(), PUnit)); EltTys.push_back(PropertyNode); }; { llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; for (const ObjCCategoryDecl *ClassExt : ID->known_extensions()) for (auto *PD : ClassExt->properties()) { PropertySet.insert(PD->getIdentifier()); AddProperty(PD); } for (const auto *PD : ID->properties()) { // Don't emit duplicate metadata for properties that were already in a // class extension. if (!PropertySet.insert(PD->getIdentifier()).second) continue; AddProperty(PD); } } const ASTRecordLayout &RL = CGM.getContext().getASTObjCInterfaceLayout(ID); unsigned FieldNo = 0; for (ObjCIvarDecl *Field = ID->all_declared_ivar_begin(); Field; Field = Field->getNextIvar(), ++FieldNo) { llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); if (!FieldTy) return nullptr; StringRef FieldName = Field->getName(); // Ignore unnamed fields. if (FieldName.empty()) continue; // Get the location for the field. llvm::DIFile *FieldDefUnit = getOrCreateFile(Field->getLocation()); unsigned FieldLine = getLineNumber(Field->getLocation()); QualType FType = Field->getType(); uint64_t FieldSize = 0; unsigned FieldAlign = 0; if (!FType->isIncompleteArrayType()) { // Bit size, align and offset of the type. FieldSize = Field->isBitField() ? Field->getBitWidthValue(CGM.getContext()) : CGM.getContext().getTypeSize(FType); FieldAlign = CGM.getContext().getTypeAlign(FType); } uint64_t FieldOffset; if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { // We don't know the runtime offset of an ivar if we're using the // non-fragile ABI. For bitfields, use the bit offset into the first // byte of storage of the bitfield. For other fields, use zero. if (Field->isBitField()) { FieldOffset = CGM.getObjCRuntime().ComputeBitfieldBitOffset(CGM, ID, Field); FieldOffset %= CGM.getContext().getCharWidth(); } else { FieldOffset = 0; } } else { FieldOffset = RL.getFieldOffset(FieldNo); } unsigned Flags = 0; if (Field->getAccessControl() == ObjCIvarDecl::Protected) Flags = llvm::DINode::FlagProtected; else if (Field->getAccessControl() == ObjCIvarDecl::Private) Flags = llvm::DINode::FlagPrivate; else if (Field->getAccessControl() == ObjCIvarDecl::Public) Flags = llvm::DINode::FlagPublic; llvm::MDNode *PropertyNode = nullptr; if (ObjCImplementationDecl *ImpD = ID->getImplementation()) { if (ObjCPropertyImplDecl *PImpD = ImpD->FindPropertyImplIvarDecl(Field->getIdentifier())) { if (ObjCPropertyDecl *PD = PImpD->getPropertyDecl()) { SourceLocation Loc = PD->getLocation(); llvm::DIFile *PUnit = getOrCreateFile(Loc); unsigned PLine = getLineNumber(Loc); ObjCMethodDecl *Getter = PD->getGetterMethodDecl(); ObjCMethodDecl *Setter = PD->getSetterMethodDecl(); PropertyNode = DBuilder.createObjCProperty( PD->getName(), PUnit, PLine, hasDefaultGetterName(PD, Getter) ? "" : getSelectorName( PD->getGetterName()), hasDefaultSetterName(PD, Setter) ? "" : getSelectorName( PD->getSetterName()), PD->getPropertyAttributes(), getOrCreateType(PD->getType(), PUnit)); } } } FieldTy = DBuilder.createObjCIVar(FieldName, FieldDefUnit, FieldLine, FieldSize, FieldAlign, FieldOffset, Flags, FieldTy, PropertyNode); EltTys.push_back(FieldTy); } llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); DBuilder.replaceArrays(RealDecl, Elements); LexicalBlockStack.pop_back(); return RealDecl; } llvm::DIType *CGDebugInfo::CreateType(const VectorType *Ty, llvm::DIFile *Unit) { llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit); int64_t Count = Ty->getNumElements(); if (Count == 0) // If number of elements are not known then this is an unbounded array. // Use Count == -1 to express such arrays. Count = -1; llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange(0, Count); llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); uint64_t Size = CGM.getContext().getTypeSize(Ty); uint64_t Align = CGM.getContext().getTypeAlign(Ty); return DBuilder.createVectorType(Size, Align, ElementTy, SubscriptArray); } llvm::DIType *CGDebugInfo::CreateType(const ArrayType *Ty, llvm::DIFile *Unit) { uint64_t Size; uint64_t Align; // FIXME: make getTypeAlign() aware of VLAs and incomplete array types if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(Ty)) { Size = 0; Align = CGM.getContext().getTypeAlign(CGM.getContext().getBaseElementType(VAT)); } else if (Ty->isIncompleteArrayType()) { Size = 0; if (Ty->getElementType()->isIncompleteType()) Align = 0; else Align = CGM.getContext().getTypeAlign(Ty->getElementType()); } else if (Ty->isIncompleteType()) { Size = 0; Align = 0; } else { // Size and align of the whole array, not the element type. Size = CGM.getContext().getTypeSize(Ty); Align = CGM.getContext().getTypeAlign(Ty); } // Add the dimensions of the array. FIXME: This loses CV qualifiers from // interior arrays, do we care? Why aren't nested arrays represented the // obvious/recursive way? SmallVector<llvm::Metadata *, 8> Subscripts; QualType EltTy(Ty, 0); while ((Ty = dyn_cast<ArrayType>(EltTy))) { // If the number of elements is known, then count is that number. Otherwise, // it's -1. This allows us to represent a subrange with an array of 0 // elements, like this: // // struct foo { // int x[0]; // }; int64_t Count = -1; // Count == -1 is an unbounded array. if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Ty)) Count = CAT->getSize().getZExtValue(); // FIXME: Verify this is right for VLAs. Subscripts.push_back(DBuilder.getOrCreateSubrange(0, Count)); EltTy = Ty->getElementType(); } llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts); return DBuilder.createArrayType(Size, Align, getOrCreateType(EltTy, Unit), SubscriptArray); } llvm::DIType *CGDebugInfo::CreateType(const LValueReferenceType *Ty, llvm::DIFile *Unit) { return CreatePointerLikeType(llvm::dwarf::DW_TAG_reference_type, Ty, Ty->getPointeeType(), Unit); } llvm::DIType *CGDebugInfo::CreateType(const RValueReferenceType *Ty, llvm::DIFile *Unit) { return CreatePointerLikeType(llvm::dwarf::DW_TAG_rvalue_reference_type, Ty, Ty->getPointeeType(), Unit); } llvm::DIType *CGDebugInfo::CreateType(const MemberPointerType *Ty, llvm::DIFile *U) { unsigned Flags = 0; uint64_t Size = 0; if (!Ty->isIncompleteType()) { Size = CGM.getContext().getTypeSize(Ty); // Set the MS inheritance model. There is no flag for the unspecified model. if (CGM.getTarget().getCXXABI().isMicrosoft()) { switch (Ty->getMostRecentCXXRecordDecl()->getMSInheritanceModel()) { case MSInheritanceAttr::Keyword_single_inheritance: Flags |= llvm::DINode::FlagSingleInheritance; break; case MSInheritanceAttr::Keyword_multiple_inheritance: Flags |= llvm::DINode::FlagMultipleInheritance; break; case MSInheritanceAttr::Keyword_virtual_inheritance: Flags |= llvm::DINode::FlagVirtualInheritance; break; case MSInheritanceAttr::Keyword_unspecified_inheritance: break; } } } llvm::DIType *ClassType = getOrCreateType(QualType(Ty->getClass(), 0), U); if (Ty->isMemberDataPointerType()) return DBuilder.createMemberPointerType( getOrCreateType(Ty->getPointeeType(), U), ClassType, Size, /*Align=*/0, Flags); const FunctionProtoType *FPT = Ty->getPointeeType()->getAs<FunctionProtoType>(); return DBuilder.createMemberPointerType( getOrCreateInstanceMethodType(CGM.getContext().getPointerType(QualType( Ty->getClass(), FPT->getTypeQuals())), FPT, U), ClassType, Size, /*Align=*/0, Flags); } llvm::DIType *CGDebugInfo::CreateType(const AtomicType *Ty, llvm::DIFile *U) { // Ignore the atomic wrapping // FIXME: What is the correct representation? return getOrCreateType(Ty->getValueType(), U); } llvm::DIType* CGDebugInfo::CreateType(const PipeType *Ty, llvm::DIFile *U) { return getOrCreateType(Ty->getElementType(), U); } llvm::DIType *CGDebugInfo::CreateEnumType(const EnumType *Ty) { const EnumDecl *ED = Ty->getDecl(); uint64_t Size = 0; uint64_t Align = 0; if (!ED->getTypeForDecl()->isIncompleteType()) { Size = CGM.getContext().getTypeSize(ED->getTypeForDecl()); Align = CGM.getContext().getTypeAlign(ED->getTypeForDecl()); } SmallString<256> FullName = getUniqueTagTypeName(Ty, CGM, TheCU); bool isImportedFromModule = DebugTypeExtRefs && ED->isFromASTFile() && ED->getDefinition(); // If this is just a forward declaration, construct an appropriately // marked node and just return it. if (isImportedFromModule || !ED->getDefinition()) { // Note that it is possible for enums to be created as part of // their own declcontext. In this case a FwdDecl will be created // twice. This doesn't cause a problem because both FwdDecls are // entered into the ReplaceMap: finalize() will replace the first // FwdDecl with the second and then replace the second with // complete type. llvm::DIScope *EDContext = getDeclContextDescriptor(ED); llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation()); llvm::TempDIScope TmpContext(DBuilder.createReplaceableCompositeType( llvm::dwarf::DW_TAG_enumeration_type, "", TheCU, DefUnit, 0)); unsigned Line = getLineNumber(ED->getLocation()); StringRef EDName = ED->getName(); llvm::DIType *RetTy = DBuilder.createReplaceableCompositeType( llvm::dwarf::DW_TAG_enumeration_type, EDName, EDContext, DefUnit, Line, 0, Size, Align, llvm::DINode::FlagFwdDecl, FullName); ReplaceMap.emplace_back( std::piecewise_construct, std::make_tuple(Ty), std::make_tuple(static_cast<llvm::Metadata *>(RetTy))); return RetTy; } return CreateTypeDefinition(Ty); } llvm::DIType *CGDebugInfo::CreateTypeDefinition(const EnumType *Ty) { const EnumDecl *ED = Ty->getDecl(); uint64_t Size = 0; uint64_t Align = 0; if (!ED->getTypeForDecl()->isIncompleteType()) { Size = CGM.getContext().getTypeSize(ED->getTypeForDecl()); Align = CGM.getContext().getTypeAlign(ED->getTypeForDecl()); } SmallString<256> FullName = getUniqueTagTypeName(Ty, CGM, TheCU); // Create elements for each enumerator. SmallVector<llvm::Metadata *, 16> Enumerators; ED = ED->getDefinition(); for (const auto *Enum : ED->enumerators()) { Enumerators.push_back(DBuilder.createEnumerator( Enum->getName(), Enum->getInitVal().getSExtValue())); } // Return a CompositeType for the enum itself. llvm::DINodeArray EltArray = DBuilder.getOrCreateArray(Enumerators); llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation()); unsigned Line = getLineNumber(ED->getLocation()); llvm::DIScope *EnumContext = getDeclContextDescriptor(ED); llvm::DIType *ClassTy = ED->isFixed() ? getOrCreateType(ED->getIntegerType(), DefUnit) : nullptr; return DBuilder.createEnumerationType(EnumContext, ED->getName(), DefUnit, Line, Size, Align, EltArray, ClassTy, FullName); } static QualType UnwrapTypeForDebugInfo(QualType T, const ASTContext &C) { Qualifiers Quals; do { Qualifiers InnerQuals = T.getLocalQualifiers(); // Qualifiers::operator+() doesn't like it if you add a Qualifier // that is already there. Quals += Qualifiers::removeCommonQualifiers(Quals, InnerQuals); Quals += InnerQuals; QualType LastT = T; switch (T->getTypeClass()) { default: return C.getQualifiedType(T.getTypePtr(), Quals); case Type::TemplateSpecialization: { const auto *Spec = cast<TemplateSpecializationType>(T); if (Spec->isTypeAlias()) return C.getQualifiedType(T.getTypePtr(), Quals); T = Spec->desugar(); break; } case Type::TypeOfExpr: T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType(); break; case Type::TypeOf: T = cast<TypeOfType>(T)->getUnderlyingType(); break; case Type::Decltype: T = cast<DecltypeType>(T)->getUnderlyingType(); break; case Type::UnaryTransform: T = cast<UnaryTransformType>(T)->getUnderlyingType(); break; case Type::Attributed: T = cast<AttributedType>(T)->getEquivalentType(); break; case Type::Elaborated: T = cast<ElaboratedType>(T)->getNamedType(); break; case Type::Paren: T = cast<ParenType>(T)->getInnerType(); break; case Type::SubstTemplateTypeParm: T = cast<SubstTemplateTypeParmType>(T)->getReplacementType(); break; case Type::Auto: QualType DT = cast<AutoType>(T)->getDeducedType(); assert(!DT.isNull() && "Undeduced types shouldn't reach here."); T = DT; break; } assert(T != LastT && "Type unwrapping failed to unwrap!"); (void)LastT; } while (true); } llvm::DIType *CGDebugInfo::getTypeOrNull(QualType Ty) { // Unwrap the type as needed for debug information. Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext()); auto it = TypeCache.find(Ty.getAsOpaquePtr()); if (it != TypeCache.end()) { // Verify that the debug info still exists. if (llvm::Metadata *V = it->second) return cast<llvm::DIType>(V); } return nullptr; } void CGDebugInfo::completeTemplateDefinition( const ClassTemplateSpecializationDecl &SD) { if (DebugKind <= codegenoptions::DebugLineTablesOnly) return; completeClassData(&SD); // In case this type has no member function definitions being emitted, ensure // it is retained RetainedTypes.push_back(CGM.getContext().getRecordType(&SD).getAsOpaquePtr()); } llvm::DIType *CGDebugInfo::getOrCreateType(QualType Ty, llvm::DIFile *Unit) { if (Ty.isNull()) return nullptr; // Unwrap the type as needed for debug information. Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext()); if (auto *T = getTypeOrNull(Ty)) return T; llvm::DIType *Res = CreateTypeNode(Ty, Unit); void* TyPtr = Ty.getAsOpaquePtr(); // And update the type cache. TypeCache[TyPtr].reset(Res); return Res; } llvm::DIModule *CGDebugInfo::getParentModuleOrNull(const Decl *D) { // A forward declaration inside a module header does not belong to the module. if (isa<RecordDecl>(D) && !cast<RecordDecl>(D)->getDefinition()) return nullptr; if (DebugTypeExtRefs && D->isFromASTFile()) { // Record a reference to an imported clang module or precompiled header. auto *Reader = CGM.getContext().getExternalSource(); auto Idx = D->getOwningModuleID(); auto Info = Reader->getSourceDescriptor(Idx); if (Info) return getOrCreateModuleRef(*Info, /*SkeletonCU=*/true); } else if (ClangModuleMap) { // We are building a clang module or a precompiled header. // // TODO: When D is a CXXRecordDecl or a C++ Enum, the ODR applies // and it wouldn't be necessary to specify the parent scope // because the type is already unique by definition (it would look // like the output of -fno-standalone-debug). On the other hand, // the parent scope helps a consumer to quickly locate the object // file where the type's definition is located, so it might be // best to make this behavior a command line or debugger tuning // option. FullSourceLoc Loc(D->getLocation(), CGM.getContext().getSourceManager()); if (Module *M = ClangModuleMap->inferModuleFromLocation(Loc)) { // This is a (sub-)module. auto Info = ExternalASTSource::ASTSourceDescriptor(*M); return getOrCreateModuleRef(Info, /*SkeletonCU=*/false); } else { // This the precompiled header being built. return getOrCreateModuleRef(PCHDescriptor, /*SkeletonCU=*/false); } } return nullptr; } llvm::DIType *CGDebugInfo::CreateTypeNode(QualType Ty, llvm::DIFile *Unit) { // Handle qualifiers, which recursively handles what they refer to. if (Ty.hasLocalQualifiers()) return CreateQualifiedType(Ty, Unit); // Work out details of type. switch (Ty->getTypeClass()) { #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define NON_CANONICAL_TYPE(Class, Base) #define DEPENDENT_TYPE(Class, Base) case Type::Class: #include "clang/AST/TypeNodes.def" llvm_unreachable("Dependent types cannot show up in debug information"); case Type::ExtVector: case Type::Vector: return CreateType(cast<VectorType>(Ty), Unit); case Type::ObjCObjectPointer: return CreateType(cast<ObjCObjectPointerType>(Ty), Unit); case Type::ObjCObject: return CreateType(cast<ObjCObjectType>(Ty), Unit); case Type::ObjCInterface: return CreateType(cast<ObjCInterfaceType>(Ty), Unit); case Type::Builtin: return CreateType(cast<BuiltinType>(Ty)); case Type::Complex: return CreateType(cast<ComplexType>(Ty)); case Type::Pointer: return CreateType(cast<PointerType>(Ty), Unit); case Type::Adjusted: case Type::Decayed: // Decayed and adjusted types use the adjusted type in LLVM and DWARF. return CreateType( cast<PointerType>(cast<AdjustedType>(Ty)->getAdjustedType()), Unit); case Type::BlockPointer: return CreateType(cast<BlockPointerType>(Ty), Unit); case Type::Typedef: return CreateType(cast<TypedefType>(Ty), Unit); case Type::Record: return CreateType(cast<RecordType>(Ty)); case Type::Enum: return CreateEnumType(cast<EnumType>(Ty)); case Type::FunctionProto: case Type::FunctionNoProto: return CreateType(cast<FunctionType>(Ty), Unit); case Type::ConstantArray: case Type::VariableArray: case Type::IncompleteArray: return CreateType(cast<ArrayType>(Ty), Unit); case Type::LValueReference: return CreateType(cast<LValueReferenceType>(Ty), Unit); case Type::RValueReference: return CreateType(cast<RValueReferenceType>(Ty), Unit); case Type::MemberPointer: return CreateType(cast<MemberPointerType>(Ty), Unit); case Type::Atomic: return CreateType(cast<AtomicType>(Ty), Unit); case Type::Pipe: return CreateType(cast<PipeType>(Ty), Unit); case Type::TemplateSpecialization: return CreateType(cast<TemplateSpecializationType>(Ty), Unit); case Type::Auto: case Type::Attributed: case Type::Elaborated: case Type::Paren: case Type::SubstTemplateTypeParm: case Type::TypeOfExpr: case Type::TypeOf: case Type::Decltype: case Type::UnaryTransform: case Type::PackExpansion: break; } llvm_unreachable("type should have been unwrapped!"); } llvm::DICompositeType *CGDebugInfo::getOrCreateLimitedType(const RecordType *Ty, llvm::DIFile *Unit) { QualType QTy(Ty, 0); auto *T = cast_or_null<llvm::DICompositeType>(getTypeOrNull(QTy)); // We may have cached a forward decl when we could have created // a non-forward decl. Go ahead and create a non-forward decl // now. if (T && !T->isForwardDecl()) return T; // Otherwise create the type. llvm::DICompositeType *Res = CreateLimitedType(Ty); // Propagate members from the declaration to the definition // CreateType(const RecordType*) will overwrite this with the members in the // correct order if the full type is needed. DBuilder.replaceArrays(Res, T ? T->getElements() : llvm::DINodeArray()); // And update the type cache. TypeCache[QTy.getAsOpaquePtr()].reset(Res); return Res; } // TODO: Currently used for context chains when limiting debug info. llvm::DICompositeType *CGDebugInfo::CreateLimitedType(const RecordType *Ty) { RecordDecl *RD = Ty->getDecl(); // Get overall information about the record type for the debug info. llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); unsigned Line = getLineNumber(RD->getLocation()); StringRef RDName = getClassName(RD); llvm::DIScope *RDContext = getDeclContextDescriptor(RD); // If we ended up creating the type during the context chain construction, // just return that. auto *T = cast_or_null<llvm::DICompositeType>( getTypeOrNull(CGM.getContext().getRecordType(RD))); if (T && (!T->isForwardDecl() || !RD->getDefinition())) return T; // If this is just a forward or incomplete declaration, construct an // appropriately marked node and just return it. const RecordDecl *D = RD->getDefinition(); if (!D || !D->isCompleteDefinition()) return getOrCreateRecordFwdDecl(Ty, RDContext); uint64_t Size = CGM.getContext().getTypeSize(Ty); uint64_t Align = CGM.getContext().getTypeAlign(Ty); SmallString<256> FullName = getUniqueTagTypeName(Ty, CGM, TheCU); llvm::DICompositeType *RealDecl = DBuilder.createReplaceableCompositeType( getTagForRecord(RD), RDName, RDContext, DefUnit, Line, 0, Size, Align, 0, FullName); // Elements of composite types usually have back to the type, creating // uniquing cycles. Distinct nodes are more efficient. switch (RealDecl->getTag()) { default: llvm_unreachable("invalid composite type tag"); case llvm::dwarf::DW_TAG_array_type: case llvm::dwarf::DW_TAG_enumeration_type: // Array elements and most enumeration elements don't have back references, // so they don't tend to be involved in uniquing cycles and there is some // chance of merging them when linking together two modules. Only make // them distinct if they are ODR-uniqued. if (FullName.empty()) break; case llvm::dwarf::DW_TAG_structure_type: case llvm::dwarf::DW_TAG_union_type: case llvm::dwarf::DW_TAG_class_type: // Immediatley resolve to a distinct node. RealDecl = llvm::MDNode::replaceWithDistinct(llvm::TempDICompositeType(RealDecl)); break; } RegionMap[Ty->getDecl()].reset(RealDecl); TypeCache[QualType(Ty, 0).getAsOpaquePtr()].reset(RealDecl); if (const ClassTemplateSpecializationDecl *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) DBuilder.replaceArrays(RealDecl, llvm::DINodeArray(), CollectCXXTemplateParams(TSpecial, DefUnit)); return RealDecl; } void CGDebugInfo::CollectContainingType(const CXXRecordDecl *RD, llvm::DICompositeType *RealDecl) { // A class's primary base or the class itself contains the vtable. llvm::DICompositeType *ContainingType = nullptr; const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); if (const CXXRecordDecl *PBase = RL.getPrimaryBase()) { // Seek non-virtual primary base root. while (1) { const ASTRecordLayout &BRL = CGM.getContext().getASTRecordLayout(PBase); const CXXRecordDecl *PBT = BRL.getPrimaryBase(); if (PBT && !BRL.isPrimaryBaseVirtual()) PBase = PBT; else break; } ContainingType = cast<llvm::DICompositeType>( getOrCreateType(QualType(PBase->getTypeForDecl(), 0), getOrCreateFile(RD->getLocation()))); } else if (RD->isDynamicClass()) ContainingType = RealDecl; DBuilder.replaceVTableHolder(RealDecl, ContainingType); } llvm::DIType *CGDebugInfo::CreateMemberType(llvm::DIFile *Unit, QualType FType, StringRef Name, uint64_t *Offset) { llvm::DIType *FieldTy = CGDebugInfo::getOrCreateType(FType, Unit); uint64_t FieldSize = CGM.getContext().getTypeSize(FType); unsigned FieldAlign = CGM.getContext().getTypeAlign(FType); llvm::DIType *Ty = DBuilder.createMemberType(Unit, Name, Unit, 0, FieldSize, FieldAlign, *Offset, 0, FieldTy); *Offset += FieldSize; return Ty; } void CGDebugInfo::collectFunctionDeclProps(GlobalDecl GD, llvm::DIFile *Unit, StringRef &Name, StringRef &LinkageName, llvm::DIScope *&FDContext, llvm::DINodeArray &TParamsArray, unsigned &Flags) { const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); Name = getFunctionName(FD); // Use mangled name as linkage name for C/C++ functions. if (FD->hasPrototype()) { LinkageName = CGM.getMangledName(GD); Flags |= llvm::DINode::FlagPrototyped; } // No need to replicate the linkage name if it isn't different from the // subprogram name, no need to have it at all unless coverage is enabled or // debug is set to more than just line tables. if (LinkageName == Name || (!CGM.getCodeGenOpts().EmitGcovArcs && !CGM.getCodeGenOpts().EmitGcovNotes && DebugKind <= codegenoptions::DebugLineTablesOnly)) LinkageName = StringRef(); if (DebugKind >= codegenoptions::LimitedDebugInfo) { if (const NamespaceDecl *NSDecl = dyn_cast_or_null<NamespaceDecl>(FD->getDeclContext())) FDContext = getOrCreateNameSpace(NSDecl); else if (const RecordDecl *RDecl = dyn_cast_or_null<RecordDecl>(FD->getDeclContext())) { llvm::DIScope *Mod = getParentModuleOrNull(RDecl); FDContext = getContextDescriptor(RDecl, Mod ? Mod : TheCU); } // Collect template parameters. TParamsArray = CollectFunctionTemplateParams(FD, Unit); } } void CGDebugInfo::collectVarDeclProps(const VarDecl *VD, llvm::DIFile *&Unit, unsigned &LineNo, QualType &T, StringRef &Name, StringRef &LinkageName, llvm::DIScope *&VDContext) { Unit = getOrCreateFile(VD->getLocation()); LineNo = getLineNumber(VD->getLocation()); setLocation(VD->getLocation()); T = VD->getType(); if (T->isIncompleteArrayType()) { // CodeGen turns int[] into int[1] so we'll do the same here. llvm::APInt ConstVal(32, 1); QualType ET = CGM.getContext().getAsArrayType(T)->getElementType(); T = CGM.getContext().getConstantArrayType(ET, ConstVal, ArrayType::Normal, 0); } Name = VD->getName(); if (VD->getDeclContext() && !isa<FunctionDecl>(VD->getDeclContext()) && !isa<ObjCMethodDecl>(VD->getDeclContext())) LinkageName = CGM.getMangledName(VD); if (LinkageName == Name) LinkageName = StringRef(); // Since we emit declarations (DW_AT_members) for static members, place the // definition of those static members in the namespace they were declared in // in the source code (the lexical decl context). // FIXME: Generalize this for even non-member global variables where the // declaration and definition may have different lexical decl contexts, once // we have support for emitting declarations of (non-member) global variables. const DeclContext *DC = VD->isStaticDataMember() ? VD->getLexicalDeclContext() : VD->getDeclContext(); // When a record type contains an in-line initialization of a static data // member, and the record type is marked as __declspec(dllexport), an implicit // definition of the member will be created in the record context. DWARF // doesn't seem to have a nice way to describe this in a form that consumers // are likely to understand, so fake the "normal" situation of a definition // outside the class by putting it in the global scope. if (DC->isRecord()) DC = CGM.getContext().getTranslationUnitDecl(); llvm::DIScope *Mod = getParentModuleOrNull(VD); VDContext = getContextDescriptor(cast<Decl>(DC), Mod ? Mod : TheCU); } llvm::DISubprogram * CGDebugInfo::getFunctionForwardDeclaration(const FunctionDecl *FD) { llvm::DINodeArray TParamsArray; StringRef Name, LinkageName; unsigned Flags = 0; SourceLocation Loc = FD->getLocation(); llvm::DIFile *Unit = getOrCreateFile(Loc); llvm::DIScope *DContext = Unit; unsigned Line = getLineNumber(Loc); collectFunctionDeclProps(FD, Unit, Name, LinkageName, DContext, TParamsArray, Flags); // Build function type. SmallVector<QualType, 16> ArgTypes; for (const ParmVarDecl *Parm: FD->parameters()) ArgTypes.push_back(Parm->getType()); CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv(); QualType FnType = CGM.getContext().getFunctionType( FD->getReturnType(), ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); llvm::DISubprogram *SP = DBuilder.createTempFunctionFwdDecl( DContext, Name, LinkageName, Unit, Line, getOrCreateFunctionType(FD, FnType, Unit), !FD->isExternallyVisible(), /* isDefinition = */ false, 0, Flags, CGM.getLangOpts().Optimize, TParamsArray.get(), getFunctionDeclaration(FD)); const FunctionDecl *CanonDecl = cast<FunctionDecl>(FD->getCanonicalDecl()); FwdDeclReplaceMap.emplace_back(std::piecewise_construct, std::make_tuple(CanonDecl), std::make_tuple(SP)); return SP; } llvm::DIGlobalVariable * CGDebugInfo::getGlobalVariableForwardDeclaration(const VarDecl *VD) { QualType T; StringRef Name, LinkageName; SourceLocation Loc = VD->getLocation(); llvm::DIFile *Unit = getOrCreateFile(Loc); llvm::DIScope *DContext = Unit; unsigned Line = getLineNumber(Loc); collectVarDeclProps(VD, Unit, Line, T, Name, LinkageName, DContext); auto *GV = DBuilder.createTempGlobalVariableFwdDecl( DContext, Name, LinkageName, Unit, Line, getOrCreateType(T, Unit), !VD->isExternallyVisible(), nullptr, nullptr); FwdDeclReplaceMap.emplace_back( std::piecewise_construct, std::make_tuple(cast<VarDecl>(VD->getCanonicalDecl())), std::make_tuple(static_cast<llvm::Metadata *>(GV))); return GV; } llvm::DINode *CGDebugInfo::getDeclarationOrDefinition(const Decl *D) { // We only need a declaration (not a definition) of the type - so use whatever // we would otherwise do to get a type for a pointee. (forward declarations in // limited debug info, full definitions (if the type definition is available) // in unlimited debug info) if (const TypeDecl *TD = dyn_cast<TypeDecl>(D)) return getOrCreateType(CGM.getContext().getTypeDeclType(TD), getOrCreateFile(TD->getLocation())); auto I = DeclCache.find(D->getCanonicalDecl()); if (I != DeclCache.end()) return dyn_cast_or_null<llvm::DINode>(I->second); // No definition for now. Emit a forward definition that might be // merged with a potential upcoming definition. if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) return getFunctionForwardDeclaration(FD); else if (const auto *VD = dyn_cast<VarDecl>(D)) return getGlobalVariableForwardDeclaration(VD); return nullptr; } llvm::DISubprogram *CGDebugInfo::getFunctionDeclaration(const Decl *D) { if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly) return nullptr; const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); if (!FD) return nullptr; // Setup context. auto *S = getDeclContextDescriptor(D); auto MI = SPCache.find(FD->getCanonicalDecl()); if (MI == SPCache.end()) { if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD->getCanonicalDecl())) { return CreateCXXMemberFunction(MD, getOrCreateFile(MD->getLocation()), cast<llvm::DICompositeType>(S)); } } if (MI != SPCache.end()) { auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second); if (SP && !SP->isDefinition()) return SP; } for (auto NextFD : FD->redecls()) { auto MI = SPCache.find(NextFD->getCanonicalDecl()); if (MI != SPCache.end()) { auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second); if (SP && !SP->isDefinition()) return SP; } } return nullptr; } // getOrCreateFunctionType - Construct type. If it is a c++ method, include // implicit parameter "this". llvm::DISubroutineType *CGDebugInfo::getOrCreateFunctionType(const Decl *D, QualType FnType, llvm::DIFile *F) { if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly) // Create fake but valid subroutine type. Otherwise -verify would fail, and // subprogram DIE will miss DW_AT_decl_file and DW_AT_decl_line fields. return DBuilder.createSubroutineType(DBuilder.getOrCreateTypeArray(None)); if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) return getOrCreateMethodType(Method, F); const auto *FTy = FnType->getAs<FunctionType>(); CallingConv CC = FTy ? FTy->getCallConv() : CallingConv::CC_C; if (const ObjCMethodDecl *OMethod = dyn_cast<ObjCMethodDecl>(D)) { // Add "self" and "_cmd" SmallVector<llvm::Metadata *, 16> Elts; // First element is always return type. For 'void' functions it is NULL. QualType ResultTy = OMethod->getReturnType(); // Replace the instancetype keyword with the actual type. if (ResultTy == CGM.getContext().getObjCInstanceType()) ResultTy = CGM.getContext().getPointerType( QualType(OMethod->getClassInterface()->getTypeForDecl(), 0)); Elts.push_back(getOrCreateType(ResultTy, F)); // "self" pointer is always first argument. QualType SelfDeclTy; if (auto *SelfDecl = OMethod->getSelfDecl()) SelfDeclTy = SelfDecl->getType(); else if (auto *FPT = dyn_cast<FunctionProtoType>(FnType)) if (FPT->getNumParams() > 1) SelfDeclTy = FPT->getParamType(0); if (!SelfDeclTy.isNull()) Elts.push_back(CreateSelfType(SelfDeclTy, getOrCreateType(SelfDeclTy, F))); // "_cmd" pointer is always second argument. Elts.push_back(DBuilder.createArtificialType( getOrCreateType(CGM.getContext().getObjCSelType(), F))); // Get rest of the arguments. for (const auto *PI : OMethod->parameters()) Elts.push_back(getOrCreateType(PI->getType(), F)); // Variadic methods need a special marker at the end of the type list. if (OMethod->isVariadic()) Elts.push_back(DBuilder.createUnspecifiedParameter()); llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts); return DBuilder.createSubroutineType(EltTypeArray, 0, getDwarfCC(CC)); } // Handle variadic function types; they need an additional // unspecified parameter. if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) if (FD->isVariadic()) { SmallVector<llvm::Metadata *, 16> EltTys; EltTys.push_back(getOrCreateType(FD->getReturnType(), F)); if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FnType)) for (unsigned i = 0, e = FPT->getNumParams(); i != e; ++i) EltTys.push_back(getOrCreateType(FPT->getParamType(i), F)); EltTys.push_back(DBuilder.createUnspecifiedParameter()); llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys); return DBuilder.createSubroutineType(EltTypeArray, 0, getDwarfCC(CC)); } return cast<llvm::DISubroutineType>(getOrCreateType(FnType, F)); } void CGDebugInfo::EmitFunctionStart(GlobalDecl GD, SourceLocation Loc, SourceLocation ScopeLoc, QualType FnType, llvm::Function *Fn, CGBuilderTy &Builder) { StringRef Name; StringRef LinkageName; FnBeginRegionCount.push_back(LexicalBlockStack.size()); const Decl *D = GD.getDecl(); bool HasDecl = (D != nullptr); unsigned Flags = 0; llvm::DIFile *Unit = getOrCreateFile(Loc); llvm::DIScope *FDContext = Unit; llvm::DINodeArray TParamsArray; if (!HasDecl) { // Use llvm function name. LinkageName = Fn->getName(); } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { // If there is a subprogram for this function available then use it. auto FI = SPCache.find(FD->getCanonicalDecl()); if (FI != SPCache.end()) { auto *SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second); if (SP && SP->isDefinition()) { LexicalBlockStack.emplace_back(SP); RegionMap[D].reset(SP); return; } } collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext, TParamsArray, Flags); } else if (const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D)) { Name = getObjCMethodName(OMD); Flags |= llvm::DINode::FlagPrototyped; } else { // Use llvm function name. Name = Fn->getName(); Flags |= llvm::DINode::FlagPrototyped; } if (!Name.empty() && Name[0] == '\01') Name = Name.substr(1); if (!HasDecl || D->isImplicit()) { Flags |= llvm::DINode::FlagArtificial; // Artificial functions without a location should not silently reuse CurLoc. if (Loc.isInvalid()) CurLoc = SourceLocation(); } unsigned LineNo = getLineNumber(Loc); unsigned ScopeLine = getLineNumber(ScopeLoc); // FIXME: The function declaration we're constructing here is mostly reusing // declarations from CXXMethodDecl and not constructing new ones for arbitrary // FunctionDecls. When/if we fix this we can have FDContext be TheCU/null for // all subprograms instead of the actual context since subprogram definitions // are emitted as CU level entities by the backend. llvm::DISubprogram *SP = DBuilder.createFunction( FDContext, Name, LinkageName, Unit, LineNo, getOrCreateFunctionType(D, FnType, Unit), Fn->hasLocalLinkage(), true /*definition*/, ScopeLine, Flags, CGM.getLangOpts().Optimize, TParamsArray.get(), getFunctionDeclaration(D)); Fn->setSubprogram(SP); // We might get here with a VarDecl in the case we're generating // code for the initialization of globals. Do not record these decls // as they will overwrite the actual VarDecl Decl in the cache. if (HasDecl && isa<FunctionDecl>(D)) DeclCache[D->getCanonicalDecl()].reset(static_cast<llvm::Metadata *>(SP)); // Push the function onto the lexical block stack. LexicalBlockStack.emplace_back(SP); if (HasDecl) RegionMap[D].reset(SP); } void CGDebugInfo::EmitFunctionDecl(GlobalDecl GD, SourceLocation Loc, QualType FnType) { StringRef Name; StringRef LinkageName; const Decl *D = GD.getDecl(); if (!D) return; unsigned Flags = 0; llvm::DIFile *Unit = getOrCreateFile(Loc); llvm::DIScope *FDContext = getDeclContextDescriptor(D); llvm::DINodeArray TParamsArray; if (isa<FunctionDecl>(D)) { // If there is a DISubprogram for this function available then use it. collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext, TParamsArray, Flags); } else if (const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D)) { Name = getObjCMethodName(OMD); Flags |= llvm::DINode::FlagPrototyped; } else { llvm_unreachable("not a function or ObjC method"); } if (!Name.empty() && Name[0] == '\01') Name = Name.substr(1); if (D->isImplicit()) { Flags |= llvm::DINode::FlagArtificial; // Artificial functions without a location should not silently reuse CurLoc. if (Loc.isInvalid()) CurLoc = SourceLocation(); } unsigned LineNo = getLineNumber(Loc); unsigned ScopeLine = 0; DBuilder.retainType(DBuilder.createFunction( FDContext, Name, LinkageName, Unit, LineNo, getOrCreateFunctionType(D, FnType, Unit), false /*internalLinkage*/, false /*definition*/, ScopeLine, Flags, CGM.getLangOpts().Optimize, TParamsArray.get(), getFunctionDeclaration(D))); } void CGDebugInfo::EmitLocation(CGBuilderTy &Builder, SourceLocation Loc) { // Update our current location setLocation(Loc); if (CurLoc.isInvalid() || CurLoc.isMacroID()) return; llvm::MDNode *Scope = LexicalBlockStack.back(); Builder.SetCurrentDebugLocation(llvm::DebugLoc::get( getLineNumber(CurLoc), getColumnNumber(CurLoc), Scope)); } void CGDebugInfo::CreateLexicalBlock(SourceLocation Loc) { llvm::MDNode *Back = nullptr; if (!LexicalBlockStack.empty()) Back = LexicalBlockStack.back().get(); LexicalBlockStack.emplace_back(DBuilder.createLexicalBlock( cast<llvm::DIScope>(Back), getOrCreateFile(CurLoc), getLineNumber(CurLoc), getColumnNumber(CurLoc))); } void CGDebugInfo::EmitLexicalBlockStart(CGBuilderTy &Builder, SourceLocation Loc) { // Set our current location. setLocation(Loc); // Emit a line table change for the current location inside the new scope. Builder.SetCurrentDebugLocation(llvm::DebugLoc::get( getLineNumber(Loc), getColumnNumber(Loc), LexicalBlockStack.back())); if (DebugKind <= codegenoptions::DebugLineTablesOnly) return; // Create a new lexical block and push it on the stack. CreateLexicalBlock(Loc); } void CGDebugInfo::EmitLexicalBlockEnd(CGBuilderTy &Builder, SourceLocation Loc) { assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); // Provide an entry in the line table for the end of the block. EmitLocation(Builder, Loc); if (DebugKind <= codegenoptions::DebugLineTablesOnly) return; LexicalBlockStack.pop_back(); } void CGDebugInfo::EmitFunctionEnd(CGBuilderTy &Builder) { assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); unsigned RCount = FnBeginRegionCount.back(); assert(RCount <= LexicalBlockStack.size() && "Region stack mismatch"); // Pop all regions for this function. while (LexicalBlockStack.size() != RCount) { // Provide an entry in the line table for the end of the block. EmitLocation(Builder, CurLoc); LexicalBlockStack.pop_back(); } FnBeginRegionCount.pop_back(); } llvm::DIType *CGDebugInfo::EmitTypeForVarWithBlocksAttr(const VarDecl *VD, uint64_t *XOffset) { SmallVector<llvm::Metadata *, 5> EltTys; QualType FType; uint64_t FieldSize, FieldOffset; unsigned FieldAlign; llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); QualType Type = VD->getType(); FieldOffset = 0; FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset)); EltTys.push_back(CreateMemberType(Unit, FType, "__forwarding", &FieldOffset)); FType = CGM.getContext().IntTy; EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset)); EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset)); bool HasCopyAndDispose = CGM.getContext().BlockRequiresCopying(Type, VD); if (HasCopyAndDispose) { FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); EltTys.push_back( CreateMemberType(Unit, FType, "__copy_helper", &FieldOffset)); EltTys.push_back( CreateMemberType(Unit, FType, "__destroy_helper", &FieldOffset)); } bool HasByrefExtendedLayout; Qualifiers::ObjCLifetime Lifetime; if (CGM.getContext().getByrefLifetime(Type, Lifetime, HasByrefExtendedLayout) && HasByrefExtendedLayout) { FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); EltTys.push_back( CreateMemberType(Unit, FType, "__byref_variable_layout", &FieldOffset)); } CharUnits Align = CGM.getContext().getDeclAlign(VD); if (Align > CGM.getContext().toCharUnitsFromBits( CGM.getTarget().getPointerAlign(0))) { CharUnits FieldOffsetInBytes = CGM.getContext().toCharUnitsFromBits(FieldOffset); CharUnits AlignedOffsetInBytes = FieldOffsetInBytes.alignTo(Align); CharUnits NumPaddingBytes = AlignedOffsetInBytes - FieldOffsetInBytes; if (NumPaddingBytes.isPositive()) { llvm::APInt pad(32, NumPaddingBytes.getQuantity()); FType = CGM.getContext().getConstantArrayType(CGM.getContext().CharTy, pad, ArrayType::Normal, 0); EltTys.push_back(CreateMemberType(Unit, FType, "", &FieldOffset)); } } FType = Type; llvm::DIType *FieldTy = getOrCreateType(FType, Unit); FieldSize = CGM.getContext().getTypeSize(FType); FieldAlign = CGM.getContext().toBits(Align); *XOffset = FieldOffset; FieldTy = DBuilder.createMemberType(Unit, VD->getName(), Unit, 0, FieldSize, FieldAlign, FieldOffset, 0, FieldTy); EltTys.push_back(FieldTy); FieldOffset += FieldSize; llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); unsigned Flags = llvm::DINode::FlagBlockByrefStruct; return DBuilder.createStructType(Unit, "", Unit, 0, FieldOffset, 0, Flags, nullptr, Elements); } void CGDebugInfo::EmitDeclare(const VarDecl *VD, llvm::Value *Storage, llvm::Optional<unsigned> ArgNo, CGBuilderTy &Builder) { assert(DebugKind >= codegenoptions::LimitedDebugInfo); assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); if (VD->hasAttr<NoDebugAttr>()) return; bool Unwritten = VD->isImplicit() || (isa<Decl>(VD->getDeclContext()) && cast<Decl>(VD->getDeclContext())->isImplicit()); llvm::DIFile *Unit = nullptr; if (!Unwritten) Unit = getOrCreateFile(VD->getLocation()); llvm::DIType *Ty; uint64_t XOffset = 0; if (VD->hasAttr<BlocksAttr>()) Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset); else Ty = getOrCreateType(VD->getType(), Unit); // If there is no debug info for this type then do not emit debug info // for this variable. if (!Ty) return; // Get location information. unsigned Line = 0; unsigned Column = 0; if (!Unwritten) { Line = getLineNumber(VD->getLocation()); Column = getColumnNumber(VD->getLocation()); } SmallVector<int64_t, 9> Expr; unsigned Flags = 0; if (VD->isImplicit()) Flags |= llvm::DINode::FlagArtificial; // If this is the first argument and it is implicit then // give it an object pointer flag. // FIXME: There has to be a better way to do this, but for static // functions there won't be an implicit param at arg1 and // otherwise it is 'self' or 'this'. if (isa<ImplicitParamDecl>(VD) && ArgNo && *ArgNo == 1) Flags |= llvm::DINode::FlagObjectPointer; if (llvm::Argument *Arg = dyn_cast<llvm::Argument>(Storage)) if (Arg->getType()->isPointerTy() && !Arg->hasByValAttr() && !VD->getType()->isPointerType()) Expr.push_back(llvm::dwarf::DW_OP_deref); auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); StringRef Name = VD->getName(); if (!Name.empty()) { if (VD->hasAttr<BlocksAttr>()) { CharUnits offset = CharUnits::fromQuantity(32); Expr.push_back(llvm::dwarf::DW_OP_plus); // offset of __forwarding field offset = CGM.getContext().toCharUnitsFromBits( CGM.getTarget().getPointerWidth(0)); Expr.push_back(offset.getQuantity()); Expr.push_back(llvm::dwarf::DW_OP_deref); Expr.push_back(llvm::dwarf::DW_OP_plus); // offset of x field offset = CGM.getContext().toCharUnitsFromBits(XOffset); Expr.push_back(offset.getQuantity()); // Create the descriptor for the variable. auto *D = ArgNo ? DBuilder.createParameterVariable(Scope, VD->getName(), *ArgNo, Unit, Line, Ty) : DBuilder.createAutoVariable(Scope, VD->getName(), Unit, Line, Ty); // Insert an llvm.dbg.declare into the current block. DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), llvm::DebugLoc::get(Line, Column, Scope), Builder.GetInsertBlock()); return; } else if (isa<VariableArrayType>(VD->getType())) Expr.push_back(llvm::dwarf::DW_OP_deref); } else if (const RecordType *RT = dyn_cast<RecordType>(VD->getType())) { // If VD is an anonymous union then Storage represents value for // all union fields. const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); if (RD->isUnion() && RD->isAnonymousStructOrUnion()) { // GDB has trouble finding local variables in anonymous unions, so we emit // artifical local variables for each of the members. // // FIXME: Remove this code as soon as GDB supports this. // The debug info verifier in LLVM operates based on the assumption that a // variable has the same size as its storage and we had to disable the check // for artificial variables. for (const auto *Field : RD->fields()) { llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); StringRef FieldName = Field->getName(); // Ignore unnamed fields. Do not ignore unnamed records. if (FieldName.empty() && !isa<RecordType>(Field->getType())) continue; // Use VarDecl's Tag, Scope and Line number. auto *D = DBuilder.createAutoVariable( Scope, FieldName, Unit, Line, FieldTy, CGM.getLangOpts().Optimize, Flags | llvm::DINode::FlagArtificial); // Insert an llvm.dbg.declare into the current block. DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), llvm::DebugLoc::get(Line, Column, Scope), Builder.GetInsertBlock()); } } } // Create the descriptor for the variable. auto *D = ArgNo ? DBuilder.createParameterVariable(Scope, Name, *ArgNo, Unit, Line, Ty, CGM.getLangOpts().Optimize, Flags) : DBuilder.createAutoVariable(Scope, Name, Unit, Line, Ty, CGM.getLangOpts().Optimize, Flags); // Insert an llvm.dbg.declare into the current block. DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), llvm::DebugLoc::get(Line, Column, Scope), Builder.GetInsertBlock()); } void CGDebugInfo::EmitDeclareOfAutoVariable(const VarDecl *VD, llvm::Value *Storage, CGBuilderTy &Builder) { assert(DebugKind >= codegenoptions::LimitedDebugInfo); EmitDeclare(VD, Storage, llvm::None, Builder); } llvm::DIType *CGDebugInfo::CreateSelfType(const QualType &QualTy, llvm::DIType *Ty) { llvm::DIType *CachedTy = getTypeOrNull(QualTy); if (CachedTy) Ty = CachedTy; return DBuilder.createObjectPointerType(Ty); } void CGDebugInfo::EmitDeclareOfBlockDeclRefVariable( const VarDecl *VD, llvm::Value *Storage, CGBuilderTy &Builder, const CGBlockInfo &blockInfo, llvm::Instruction *InsertPoint) { assert(DebugKind >= codegenoptions::LimitedDebugInfo); assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); if (Builder.GetInsertBlock() == nullptr) return; if (VD->hasAttr<NoDebugAttr>()) return; bool isByRef = VD->hasAttr<BlocksAttr>(); uint64_t XOffset = 0; llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); llvm::DIType *Ty; if (isByRef) Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset); else Ty = getOrCreateType(VD->getType(), Unit); // Self is passed along as an implicit non-arg variable in a // block. Mark it as the object pointer. if (isa<ImplicitParamDecl>(VD) && VD->getName() == "self") Ty = CreateSelfType(VD->getType(), Ty); // Get location information. unsigned Line = getLineNumber(VD->getLocation()); unsigned Column = getColumnNumber(VD->getLocation()); const llvm::DataLayout &target = CGM.getDataLayout(); CharUnits offset = CharUnits::fromQuantity( target.getStructLayout(blockInfo.StructureType) ->getElementOffset(blockInfo.getCapture(VD).getIndex())); SmallVector<int64_t, 9> addr; if (isa<llvm::AllocaInst>(Storage)) addr.push_back(llvm::dwarf::DW_OP_deref); addr.push_back(llvm::dwarf::DW_OP_plus); addr.push_back(offset.getQuantity()); if (isByRef) { addr.push_back(llvm::dwarf::DW_OP_deref); addr.push_back(llvm::dwarf::DW_OP_plus); // offset of __forwarding field offset = CGM.getContext().toCharUnitsFromBits(target.getPointerSizeInBits(0)); addr.push_back(offset.getQuantity()); addr.push_back(llvm::dwarf::DW_OP_deref); addr.push_back(llvm::dwarf::DW_OP_plus); // offset of x field offset = CGM.getContext().toCharUnitsFromBits(XOffset); addr.push_back(offset.getQuantity()); } // Create the descriptor for the variable. auto *D = DBuilder.createAutoVariable( cast<llvm::DILocalScope>(LexicalBlockStack.back()), VD->getName(), Unit, Line, Ty); // Insert an llvm.dbg.declare into the current block. auto DL = llvm::DebugLoc::get(Line, Column, LexicalBlockStack.back()); if (InsertPoint) DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(addr), DL, InsertPoint); else DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(addr), DL, Builder.GetInsertBlock()); } void CGDebugInfo::EmitDeclareOfArgVariable(const VarDecl *VD, llvm::Value *AI, unsigned ArgNo, CGBuilderTy &Builder) { assert(DebugKind >= codegenoptions::LimitedDebugInfo); EmitDeclare(VD, AI, ArgNo, Builder); } namespace { struct BlockLayoutChunk { uint64_t OffsetInBits; const BlockDecl::Capture *Capture; }; bool operator<(const BlockLayoutChunk &l, const BlockLayoutChunk &r) { return l.OffsetInBits < r.OffsetInBits; } } void CGDebugInfo::EmitDeclareOfBlockLiteralArgVariable(const CGBlockInfo &block, llvm::Value *Arg, unsigned ArgNo, llvm::Value *LocalAddr, CGBuilderTy &Builder) { assert(DebugKind >= codegenoptions::LimitedDebugInfo); ASTContext &C = CGM.getContext(); const BlockDecl *blockDecl = block.getBlockDecl(); // Collect some general information about the block's location. SourceLocation loc = blockDecl->getCaretLocation(); llvm::DIFile *tunit = getOrCreateFile(loc); unsigned line = getLineNumber(loc); unsigned column = getColumnNumber(loc); // Build the debug-info type for the block literal. getDeclContextDescriptor(blockDecl); const llvm::StructLayout *blockLayout = CGM.getDataLayout().getStructLayout(block.StructureType); SmallVector<llvm::Metadata *, 16> fields; fields.push_back(createFieldType("__isa", C.VoidPtrTy, loc, AS_public, blockLayout->getElementOffsetInBits(0), tunit, tunit)); fields.push_back(createFieldType("__flags", C.IntTy, loc, AS_public, blockLayout->getElementOffsetInBits(1), tunit, tunit)); fields.push_back(createFieldType("__reserved", C.IntTy, loc, AS_public, blockLayout->getElementOffsetInBits(2), tunit, tunit)); auto *FnTy = block.getBlockExpr()->getFunctionType(); auto FnPtrType = CGM.getContext().getPointerType(FnTy->desugar()); fields.push_back(createFieldType("__FuncPtr", FnPtrType, loc, AS_public, blockLayout->getElementOffsetInBits(3), tunit, tunit)); fields.push_back(createFieldType( "__descriptor", C.getPointerType(block.NeedsCopyDispose ? C.getBlockDescriptorExtendedType() : C.getBlockDescriptorType()), loc, AS_public, blockLayout->getElementOffsetInBits(4), tunit, tunit)); // We want to sort the captures by offset, not because DWARF // requires this, but because we're paranoid about debuggers. SmallVector<BlockLayoutChunk, 8> chunks; // 'this' capture. if (blockDecl->capturesCXXThis()) { BlockLayoutChunk chunk; chunk.OffsetInBits = blockLayout->getElementOffsetInBits(block.CXXThisIndex); chunk.Capture = nullptr; chunks.push_back(chunk); } // Variable captures. for (const auto &capture : blockDecl->captures()) { const VarDecl *variable = capture.getVariable(); const CGBlockInfo::Capture &captureInfo = block.getCapture(variable); // Ignore constant captures. if (captureInfo.isConstant()) continue; BlockLayoutChunk chunk; chunk.OffsetInBits = blockLayout->getElementOffsetInBits(captureInfo.getIndex()); chunk.Capture = &capture; chunks.push_back(chunk); } // Sort by offset. llvm::array_pod_sort(chunks.begin(), chunks.end()); for (SmallVectorImpl<BlockLayoutChunk>::iterator i = chunks.begin(), e = chunks.end(); i != e; ++i) { uint64_t offsetInBits = i->OffsetInBits; const BlockDecl::Capture *capture = i->Capture; // If we have a null capture, this must be the C++ 'this' capture. if (!capture) { QualType type; if (auto *Method = cast_or_null<CXXMethodDecl>(blockDecl->getNonClosureContext())) type = Method->getThisType(C); else if (auto *RDecl = dyn_cast<CXXRecordDecl>(blockDecl->getParent())) type = QualType(RDecl->getTypeForDecl(), 0); else llvm_unreachable("unexpected block declcontext"); fields.push_back(createFieldType("this", type, loc, AS_public, offsetInBits, tunit, tunit)); continue; } const VarDecl *variable = capture->getVariable(); StringRef name = variable->getName(); llvm::DIType *fieldType; if (capture->isByRef()) { TypeInfo PtrInfo = C.getTypeInfo(C.VoidPtrTy); // FIXME: this creates a second copy of this type! uint64_t xoffset; fieldType = EmitTypeForVarWithBlocksAttr(variable, &xoffset); fieldType = DBuilder.createPointerType(fieldType, PtrInfo.Width); fieldType = DBuilder.createMemberType(tunit, name, tunit, line, PtrInfo.Width, PtrInfo.Align, offsetInBits, 0, fieldType); } else { fieldType = createFieldType(name, variable->getType(), loc, AS_public, offsetInBits, tunit, tunit); } fields.push_back(fieldType); } SmallString<36> typeName; llvm::raw_svector_ostream(typeName) << "__block_literal_" << CGM.getUniqueBlockCount(); llvm::DINodeArray fieldsArray = DBuilder.getOrCreateArray(fields); llvm::DIType *type = DBuilder.createStructType( tunit, typeName.str(), tunit, line, CGM.getContext().toBits(block.BlockSize), CGM.getContext().toBits(block.BlockAlign), 0, nullptr, fieldsArray); type = DBuilder.createPointerType(type, CGM.PointerWidthInBits); // Get overall information about the block. unsigned flags = llvm::DINode::FlagArtificial; auto *scope = cast<llvm::DILocalScope>(LexicalBlockStack.back()); // Create the descriptor for the parameter. auto *debugVar = DBuilder.createParameterVariable( scope, Arg->getName(), ArgNo, tunit, line, type, CGM.getLangOpts().Optimize, flags); if (LocalAddr) { // Insert an llvm.dbg.value into the current block. DBuilder.insertDbgValueIntrinsic( LocalAddr, 0, debugVar, DBuilder.createExpression(), llvm::DebugLoc::get(line, column, scope), Builder.GetInsertBlock()); } // Insert an llvm.dbg.declare into the current block. DBuilder.insertDeclare(Arg, debugVar, DBuilder.createExpression(), llvm::DebugLoc::get(line, column, scope), Builder.GetInsertBlock()); } llvm::DIDerivedType * CGDebugInfo::getOrCreateStaticDataMemberDeclarationOrNull(const VarDecl *D) { if (!D->isStaticDataMember()) return nullptr; auto MI = StaticDataMemberCache.find(D->getCanonicalDecl()); if (MI != StaticDataMemberCache.end()) { assert(MI->second && "Static data member declaration should still exist"); return MI->second; } // If the member wasn't found in the cache, lazily construct and add it to the // type (used when a limited form of the type is emitted). auto DC = D->getDeclContext(); auto *Ctxt = cast<llvm::DICompositeType>(getDeclContextDescriptor(D)); return CreateRecordStaticField(D, Ctxt, cast<RecordDecl>(DC)); } llvm::DIGlobalVariable *CGDebugInfo::CollectAnonRecordDecls( const RecordDecl *RD, llvm::DIFile *Unit, unsigned LineNo, StringRef LinkageName, llvm::GlobalVariable *Var, llvm::DIScope *DContext) { llvm::DIGlobalVariable *GV = nullptr; for (const auto *Field : RD->fields()) { llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); StringRef FieldName = Field->getName(); // Ignore unnamed fields, but recurse into anonymous records. if (FieldName.empty()) { const RecordType *RT = dyn_cast<RecordType>(Field->getType()); if (RT) GV = CollectAnonRecordDecls(RT->getDecl(), Unit, LineNo, LinkageName, Var, DContext); continue; } // Use VarDecl's Tag, Scope and Line number. GV = DBuilder.createGlobalVariable(DContext, FieldName, LinkageName, Unit, LineNo, FieldTy, Var->hasLocalLinkage(), Var, nullptr); } return GV; } void CGDebugInfo::EmitGlobalVariable(llvm::GlobalVariable *Var, const VarDecl *D) { assert(DebugKind >= codegenoptions::LimitedDebugInfo); if (D->hasAttr<NoDebugAttr>()) return; // Create global variable debug descriptor. llvm::DIFile *Unit = nullptr; llvm::DIScope *DContext = nullptr; unsigned LineNo; StringRef DeclName, LinkageName; QualType T; collectVarDeclProps(D, Unit, LineNo, T, DeclName, LinkageName, DContext); // Attempt to store one global variable for the declaration - even if we // emit a lot of fields. llvm::DIGlobalVariable *GV = nullptr; // If this is an anonymous union then we'll want to emit a global // variable for each member of the anonymous union so that it's possible // to find the name of any field in the union. if (T->isUnionType() && DeclName.empty()) { const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); assert(RD->isAnonymousStructOrUnion() && "unnamed non-anonymous struct or union?"); GV = CollectAnonRecordDecls(RD, Unit, LineNo, LinkageName, Var, DContext); } else { GV = DBuilder.createGlobalVariable( DContext, DeclName, LinkageName, Unit, LineNo, getOrCreateType(T, Unit), Var->hasLocalLinkage(), Var, getOrCreateStaticDataMemberDeclarationOrNull(D)); } DeclCache[D->getCanonicalDecl()].reset(static_cast<llvm::Metadata *>(GV)); } void CGDebugInfo::EmitGlobalVariable(const ValueDecl *VD, llvm::Constant *Init) { assert(DebugKind >= codegenoptions::LimitedDebugInfo); if (VD->hasAttr<NoDebugAttr>()) return; // Create the descriptor for the variable. llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); StringRef Name = VD->getName(); llvm::DIType *Ty = getOrCreateType(VD->getType(), Unit); if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(VD)) { const EnumDecl *ED = cast<EnumDecl>(ECD->getDeclContext()); assert(isa<EnumType>(ED->getTypeForDecl()) && "Enum without EnumType?"); Ty = getOrCreateType(QualType(ED->getTypeForDecl(), 0), Unit); } // Do not use global variables for enums. // // FIXME: why not? if (Ty->getTag() == llvm::dwarf::DW_TAG_enumeration_type) return; // Do not emit separate definitions for function local const/statics. if (isa<FunctionDecl>(VD->getDeclContext())) return; VD = cast<ValueDecl>(VD->getCanonicalDecl()); auto *VarD = cast<VarDecl>(VD); if (VarD->isStaticDataMember()) { auto *RD = cast<RecordDecl>(VarD->getDeclContext()); getDeclContextDescriptor(VarD); // Ensure that the type is retained even though it's otherwise unreferenced. // // FIXME: This is probably unnecessary, since Ty should reference RD // through its scope. RetainedTypes.push_back( CGM.getContext().getRecordType(RD).getAsOpaquePtr()); return; } llvm::DIScope *DContext = getDeclContextDescriptor(VD); auto &GV = DeclCache[VD]; if (GV) return; GV.reset(DBuilder.createGlobalVariable( DContext, Name, StringRef(), Unit, getLineNumber(VD->getLocation()), Ty, true, Init, getOrCreateStaticDataMemberDeclarationOrNull(VarD))); } llvm::DIScope *CGDebugInfo::getCurrentContextDescriptor(const Decl *D) { if (!LexicalBlockStack.empty()) return LexicalBlockStack.back(); llvm::DIScope *Mod = getParentModuleOrNull(D); return getContextDescriptor(D, Mod ? Mod : TheCU); } void CGDebugInfo::EmitUsingDirective(const UsingDirectiveDecl &UD) { if (CGM.getCodeGenOpts().getDebugInfo() < codegenoptions::LimitedDebugInfo) return; const NamespaceDecl *NSDecl = UD.getNominatedNamespace(); if (!NSDecl->isAnonymousNamespace() || CGM.getCodeGenOpts().DebugExplicitImport) { DBuilder.createImportedModule( getCurrentContextDescriptor(cast<Decl>(UD.getDeclContext())), getOrCreateNameSpace(NSDecl), getLineNumber(UD.getLocation())); } } void CGDebugInfo::EmitUsingDecl(const UsingDecl &UD) { if (CGM.getCodeGenOpts().getDebugInfo() < codegenoptions::LimitedDebugInfo) return; assert(UD.shadow_size() && "We shouldn't be codegening an invalid UsingDecl containing no decls"); // Emitting one decl is sufficient - debuggers can detect that this is an // overloaded name & provide lookup for all the overloads. const UsingShadowDecl &USD = **UD.shadow_begin(); if (llvm::DINode *Target = getDeclarationOrDefinition(USD.getUnderlyingDecl())) DBuilder.createImportedDeclaration( getCurrentContextDescriptor(cast<Decl>(USD.getDeclContext())), Target, getLineNumber(USD.getLocation())); } void CGDebugInfo::EmitImportDecl(const ImportDecl &ID) { if (CGM.getCodeGenOpts().getDebuggerTuning() != llvm::DebuggerKind::LLDB) return; if (Module *M = ID.getImportedModule()) { auto Info = ExternalASTSource::ASTSourceDescriptor(*M); DBuilder.createImportedDeclaration( getCurrentContextDescriptor(cast<Decl>(ID.getDeclContext())), getOrCreateModuleRef(Info, DebugTypeExtRefs), getLineNumber(ID.getLocation())); } } llvm::DIImportedEntity * CGDebugInfo::EmitNamespaceAlias(const NamespaceAliasDecl &NA) { if (CGM.getCodeGenOpts().getDebugInfo() < codegenoptions::LimitedDebugInfo) return nullptr; auto &VH = NamespaceAliasCache[&NA]; if (VH) return cast<llvm::DIImportedEntity>(VH); llvm::DIImportedEntity *R; if (const NamespaceAliasDecl *Underlying = dyn_cast<NamespaceAliasDecl>(NA.getAliasedNamespace())) // This could cache & dedup here rather than relying on metadata deduping. R = DBuilder.createImportedDeclaration( getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())), EmitNamespaceAlias(*Underlying), getLineNumber(NA.getLocation()), NA.getName()); else R = DBuilder.createImportedDeclaration( getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())), getOrCreateNameSpace(cast<NamespaceDecl>(NA.getAliasedNamespace())), getLineNumber(NA.getLocation()), NA.getName()); VH.reset(R); return R; } llvm::DINamespace * CGDebugInfo::getOrCreateNameSpace(const NamespaceDecl *NSDecl) { NSDecl = NSDecl->getCanonicalDecl(); auto I = NameSpaceCache.find(NSDecl); if (I != NameSpaceCache.end()) return cast<llvm::DINamespace>(I->second); unsigned LineNo = getLineNumber(NSDecl->getLocation()); llvm::DIFile *FileD = getOrCreateFile(NSDecl->getLocation()); llvm::DIScope *Context = getDeclContextDescriptor(NSDecl); llvm::DINamespace *NS = DBuilder.createNameSpace(Context, NSDecl->getName(), FileD, LineNo); NameSpaceCache[NSDecl].reset(NS); return NS; } void CGDebugInfo::setDwoId(uint64_t Signature) { assert(TheCU && "no main compile unit"); TheCU->setDWOId(Signature); } void CGDebugInfo::finalize() { // Creating types might create further types - invalidating the current // element and the size(), so don't cache/reference them. for (size_t i = 0; i != ObjCInterfaceCache.size(); ++i) { ObjCInterfaceCacheEntry E = ObjCInterfaceCache[i]; llvm::DIType *Ty = E.Type->getDecl()->getDefinition() ? CreateTypeDefinition(E.Type, E.Unit) : E.Decl; DBuilder.replaceTemporary(llvm::TempDIType(E.Decl), Ty); } for (auto p : ReplaceMap) { assert(p.second); auto *Ty = cast<llvm::DIType>(p.second); assert(Ty->isForwardDecl()); auto it = TypeCache.find(p.first); assert(it != TypeCache.end()); assert(it->second); DBuilder.replaceTemporary(llvm::TempDIType(Ty), cast<llvm::DIType>(it->second)); } for (const auto &p : FwdDeclReplaceMap) { assert(p.second); llvm::TempMDNode FwdDecl(cast<llvm::MDNode>(p.second)); llvm::Metadata *Repl; auto it = DeclCache.find(p.first); // If there has been no definition for the declaration, call RAUW // with ourselves, that will destroy the temporary MDNode and // replace it with a standard one, avoiding leaking memory. if (it == DeclCache.end()) Repl = p.second; else Repl = it->second; DBuilder.replaceTemporary(std::move(FwdDecl), cast<llvm::MDNode>(Repl)); } // We keep our own list of retained types, because we need to look // up the final type in the type cache. for (auto &RT : RetainedTypes) if (auto MD = TypeCache[RT]) DBuilder.retainType(cast<llvm::DIType>(MD)); DBuilder.finalize(); } void CGDebugInfo::EmitExplicitCastType(QualType Ty) { if (CGM.getCodeGenOpts().getDebugInfo() < codegenoptions::LimitedDebugInfo) return; if (auto *DieTy = getOrCreateType(Ty, getOrCreateMainFile())) // Don't ignore in case of explicit cast where it is referenced indirectly. DBuilder.retainType(DieTy); }