//===--- CodeGenPGO.cpp - PGO Instrumentation for LLVM CodeGen --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Instrumentation-based profile-guided optimization // //===----------------------------------------------------------------------===// #include "CodeGenPGO.h" #include "CodeGenFunction.h" #include "CoverageMappingGen.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/StmtVisitor.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/MDBuilder.h" #include "llvm/Support/Endian.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MD5.h" static llvm::cl::opt<bool> EnableValueProfiling( "enable-value-profiling", llvm::cl::ZeroOrMore, llvm::cl::desc("Enable value profiling"), llvm::cl::init(false)); using namespace clang; using namespace CodeGen; void CodeGenPGO::setFuncName(StringRef Name, llvm::GlobalValue::LinkageTypes Linkage) { llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader(); FuncName = llvm::getPGOFuncName( Name, Linkage, CGM.getCodeGenOpts().MainFileName, PGOReader ? PGOReader->getVersion() : llvm::IndexedInstrProf::Version); // If we're generating a profile, create a variable for the name. if (CGM.getCodeGenOpts().hasProfileClangInstr()) FuncNameVar = llvm::createPGOFuncNameVar(CGM.getModule(), Linkage, FuncName); } void CodeGenPGO::setFuncName(llvm::Function *Fn) { setFuncName(Fn->getName(), Fn->getLinkage()); // Create PGOFuncName meta data. llvm::createPGOFuncNameMetadata(*Fn, FuncName); } namespace { /// \brief Stable hasher for PGO region counters. /// /// PGOHash produces a stable hash of a given function's control flow. /// /// Changing the output of this hash will invalidate all previously generated /// profiles -- i.e., don't do it. /// /// \note When this hash does eventually change (years?), we still need to /// support old hashes. We'll need to pull in the version number from the /// profile data format and use the matching hash function. class PGOHash { uint64_t Working; unsigned Count; llvm::MD5 MD5; static const int NumBitsPerType = 6; static const unsigned NumTypesPerWord = sizeof(uint64_t) * 8 / NumBitsPerType; static const unsigned TooBig = 1u << NumBitsPerType; public: /// \brief Hash values for AST nodes. /// /// Distinct values for AST nodes that have region counters attached. /// /// These values must be stable. All new members must be added at the end, /// and no members should be removed. Changing the enumeration value for an /// AST node will affect the hash of every function that contains that node. enum HashType : unsigned char { None = 0, LabelStmt = 1, WhileStmt, DoStmt, ForStmt, CXXForRangeStmt, ObjCForCollectionStmt, SwitchStmt, CaseStmt, DefaultStmt, IfStmt, CXXTryStmt, CXXCatchStmt, ConditionalOperator, BinaryOperatorLAnd, BinaryOperatorLOr, BinaryConditionalOperator, // Keep this last. It's for the static assert that follows. LastHashType }; static_assert(LastHashType <= TooBig, "Too many types in HashType"); // TODO: When this format changes, take in a version number here, and use the // old hash calculation for file formats that used the old hash. PGOHash() : Working(0), Count(0) {} void combine(HashType Type); uint64_t finalize(); }; const int PGOHash::NumBitsPerType; const unsigned PGOHash::NumTypesPerWord; const unsigned PGOHash::TooBig; /// A RecursiveASTVisitor that fills a map of statements to PGO counters. struct MapRegionCounters : public RecursiveASTVisitor<MapRegionCounters> { /// The next counter value to assign. unsigned NextCounter; /// The function hash. PGOHash Hash; /// The map of statements to counters. llvm::DenseMap<const Stmt *, unsigned> &CounterMap; MapRegionCounters(llvm::DenseMap<const Stmt *, unsigned> &CounterMap) : NextCounter(0), CounterMap(CounterMap) {} // Blocks and lambdas are handled as separate functions, so we need not // traverse them in the parent context. bool TraverseBlockExpr(BlockExpr *BE) { return true; } bool TraverseLambdaBody(LambdaExpr *LE) { return true; } bool TraverseCapturedStmt(CapturedStmt *CS) { return true; } bool VisitDecl(const Decl *D) { switch (D->getKind()) { default: break; case Decl::Function: case Decl::CXXMethod: case Decl::CXXConstructor: case Decl::CXXDestructor: case Decl::CXXConversion: case Decl::ObjCMethod: case Decl::Block: case Decl::Captured: CounterMap[D->getBody()] = NextCounter++; break; } return true; } bool VisitStmt(const Stmt *S) { auto Type = getHashType(S); if (Type == PGOHash::None) return true; CounterMap[S] = NextCounter++; Hash.combine(Type); return true; } PGOHash::HashType getHashType(const Stmt *S) { switch (S->getStmtClass()) { default: break; case Stmt::LabelStmtClass: return PGOHash::LabelStmt; case Stmt::WhileStmtClass: return PGOHash::WhileStmt; case Stmt::DoStmtClass: return PGOHash::DoStmt; case Stmt::ForStmtClass: return PGOHash::ForStmt; case Stmt::CXXForRangeStmtClass: return PGOHash::CXXForRangeStmt; case Stmt::ObjCForCollectionStmtClass: return PGOHash::ObjCForCollectionStmt; case Stmt::SwitchStmtClass: return PGOHash::SwitchStmt; case Stmt::CaseStmtClass: return PGOHash::CaseStmt; case Stmt::DefaultStmtClass: return PGOHash::DefaultStmt; case Stmt::IfStmtClass: return PGOHash::IfStmt; case Stmt::CXXTryStmtClass: return PGOHash::CXXTryStmt; case Stmt::CXXCatchStmtClass: return PGOHash::CXXCatchStmt; case Stmt::ConditionalOperatorClass: return PGOHash::ConditionalOperator; case Stmt::BinaryConditionalOperatorClass: return PGOHash::BinaryConditionalOperator; case Stmt::BinaryOperatorClass: { const BinaryOperator *BO = cast<BinaryOperator>(S); if (BO->getOpcode() == BO_LAnd) return PGOHash::BinaryOperatorLAnd; if (BO->getOpcode() == BO_LOr) return PGOHash::BinaryOperatorLOr; break; } } return PGOHash::None; } }; /// A StmtVisitor that propagates the raw counts through the AST and /// records the count at statements where the value may change. struct ComputeRegionCounts : public ConstStmtVisitor<ComputeRegionCounts> { /// PGO state. CodeGenPGO &PGO; /// A flag that is set when the current count should be recorded on the /// next statement, such as at the exit of a loop. bool RecordNextStmtCount; /// The count at the current location in the traversal. uint64_t CurrentCount; /// The map of statements to count values. llvm::DenseMap<const Stmt *, uint64_t> &CountMap; /// BreakContinueStack - Keep counts of breaks and continues inside loops. struct BreakContinue { uint64_t BreakCount; uint64_t ContinueCount; BreakContinue() : BreakCount(0), ContinueCount(0) {} }; SmallVector<BreakContinue, 8> BreakContinueStack; ComputeRegionCounts(llvm::DenseMap<const Stmt *, uint64_t> &CountMap, CodeGenPGO &PGO) : PGO(PGO), RecordNextStmtCount(false), CountMap(CountMap) {} void RecordStmtCount(const Stmt *S) { if (RecordNextStmtCount) { CountMap[S] = CurrentCount; RecordNextStmtCount = false; } } /// Set and return the current count. uint64_t setCount(uint64_t Count) { CurrentCount = Count; return Count; } void VisitStmt(const Stmt *S) { RecordStmtCount(S); for (const Stmt *Child : S->children()) if (Child) this->Visit(Child); } void VisitFunctionDecl(const FunctionDecl *D) { // Counter tracks entry to the function body. uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody())); CountMap[D->getBody()] = BodyCount; Visit(D->getBody()); } // Skip lambda expressions. We visit these as FunctionDecls when we're // generating them and aren't interested in the body when generating a // parent context. void VisitLambdaExpr(const LambdaExpr *LE) {} void VisitCapturedDecl(const CapturedDecl *D) { // Counter tracks entry to the capture body. uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody())); CountMap[D->getBody()] = BodyCount; Visit(D->getBody()); } void VisitObjCMethodDecl(const ObjCMethodDecl *D) { // Counter tracks entry to the method body. uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody())); CountMap[D->getBody()] = BodyCount; Visit(D->getBody()); } void VisitBlockDecl(const BlockDecl *D) { // Counter tracks entry to the block body. uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody())); CountMap[D->getBody()] = BodyCount; Visit(D->getBody()); } void VisitReturnStmt(const ReturnStmt *S) { RecordStmtCount(S); if (S->getRetValue()) Visit(S->getRetValue()); CurrentCount = 0; RecordNextStmtCount = true; } void VisitCXXThrowExpr(const CXXThrowExpr *E) { RecordStmtCount(E); if (E->getSubExpr()) Visit(E->getSubExpr()); CurrentCount = 0; RecordNextStmtCount = true; } void VisitGotoStmt(const GotoStmt *S) { RecordStmtCount(S); CurrentCount = 0; RecordNextStmtCount = true; } void VisitLabelStmt(const LabelStmt *S) { RecordNextStmtCount = false; // Counter tracks the block following the label. uint64_t BlockCount = setCount(PGO.getRegionCount(S)); CountMap[S] = BlockCount; Visit(S->getSubStmt()); } void VisitBreakStmt(const BreakStmt *S) { RecordStmtCount(S); assert(!BreakContinueStack.empty() && "break not in a loop or switch!"); BreakContinueStack.back().BreakCount += CurrentCount; CurrentCount = 0; RecordNextStmtCount = true; } void VisitContinueStmt(const ContinueStmt *S) { RecordStmtCount(S); assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); BreakContinueStack.back().ContinueCount += CurrentCount; CurrentCount = 0; RecordNextStmtCount = true; } void VisitWhileStmt(const WhileStmt *S) { RecordStmtCount(S); uint64_t ParentCount = CurrentCount; BreakContinueStack.push_back(BreakContinue()); // Visit the body region first so the break/continue adjustments can be // included when visiting the condition. uint64_t BodyCount = setCount(PGO.getRegionCount(S)); CountMap[S->getBody()] = CurrentCount; Visit(S->getBody()); uint64_t BackedgeCount = CurrentCount; // ...then go back and propagate counts through the condition. The count // at the start of the condition is the sum of the incoming edges, // the backedge from the end of the loop body, and the edges from // continue statements. BreakContinue BC = BreakContinueStack.pop_back_val(); uint64_t CondCount = setCount(ParentCount + BackedgeCount + BC.ContinueCount); CountMap[S->getCond()] = CondCount; Visit(S->getCond()); setCount(BC.BreakCount + CondCount - BodyCount); RecordNextStmtCount = true; } void VisitDoStmt(const DoStmt *S) { RecordStmtCount(S); uint64_t LoopCount = PGO.getRegionCount(S); BreakContinueStack.push_back(BreakContinue()); // The count doesn't include the fallthrough from the parent scope. Add it. uint64_t BodyCount = setCount(LoopCount + CurrentCount); CountMap[S->getBody()] = BodyCount; Visit(S->getBody()); uint64_t BackedgeCount = CurrentCount; BreakContinue BC = BreakContinueStack.pop_back_val(); // The count at the start of the condition is equal to the count at the // end of the body, plus any continues. uint64_t CondCount = setCount(BackedgeCount + BC.ContinueCount); CountMap[S->getCond()] = CondCount; Visit(S->getCond()); setCount(BC.BreakCount + CondCount - LoopCount); RecordNextStmtCount = true; } void VisitForStmt(const ForStmt *S) { RecordStmtCount(S); if (S->getInit()) Visit(S->getInit()); uint64_t ParentCount = CurrentCount; BreakContinueStack.push_back(BreakContinue()); // Visit the body region first. (This is basically the same as a while // loop; see further comments in VisitWhileStmt.) uint64_t BodyCount = setCount(PGO.getRegionCount(S)); CountMap[S->getBody()] = BodyCount; Visit(S->getBody()); uint64_t BackedgeCount = CurrentCount; BreakContinue BC = BreakContinueStack.pop_back_val(); // The increment is essentially part of the body but it needs to include // the count for all the continue statements. if (S->getInc()) { uint64_t IncCount = setCount(BackedgeCount + BC.ContinueCount); CountMap[S->getInc()] = IncCount; Visit(S->getInc()); } // ...then go back and propagate counts through the condition. uint64_t CondCount = setCount(ParentCount + BackedgeCount + BC.ContinueCount); if (S->getCond()) { CountMap[S->getCond()] = CondCount; Visit(S->getCond()); } setCount(BC.BreakCount + CondCount - BodyCount); RecordNextStmtCount = true; } void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { RecordStmtCount(S); Visit(S->getLoopVarStmt()); Visit(S->getRangeStmt()); Visit(S->getBeginStmt()); Visit(S->getEndStmt()); uint64_t ParentCount = CurrentCount; BreakContinueStack.push_back(BreakContinue()); // Visit the body region first. (This is basically the same as a while // loop; see further comments in VisitWhileStmt.) uint64_t BodyCount = setCount(PGO.getRegionCount(S)); CountMap[S->getBody()] = BodyCount; Visit(S->getBody()); uint64_t BackedgeCount = CurrentCount; BreakContinue BC = BreakContinueStack.pop_back_val(); // The increment is essentially part of the body but it needs to include // the count for all the continue statements. uint64_t IncCount = setCount(BackedgeCount + BC.ContinueCount); CountMap[S->getInc()] = IncCount; Visit(S->getInc()); // ...then go back and propagate counts through the condition. uint64_t CondCount = setCount(ParentCount + BackedgeCount + BC.ContinueCount); CountMap[S->getCond()] = CondCount; Visit(S->getCond()); setCount(BC.BreakCount + CondCount - BodyCount); RecordNextStmtCount = true; } void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { RecordStmtCount(S); Visit(S->getElement()); uint64_t ParentCount = CurrentCount; BreakContinueStack.push_back(BreakContinue()); // Counter tracks the body of the loop. uint64_t BodyCount = setCount(PGO.getRegionCount(S)); CountMap[S->getBody()] = BodyCount; Visit(S->getBody()); uint64_t BackedgeCount = CurrentCount; BreakContinue BC = BreakContinueStack.pop_back_val(); setCount(BC.BreakCount + ParentCount + BackedgeCount + BC.ContinueCount - BodyCount); RecordNextStmtCount = true; } void VisitSwitchStmt(const SwitchStmt *S) { RecordStmtCount(S); Visit(S->getCond()); CurrentCount = 0; BreakContinueStack.push_back(BreakContinue()); Visit(S->getBody()); // If the switch is inside a loop, add the continue counts. BreakContinue BC = BreakContinueStack.pop_back_val(); if (!BreakContinueStack.empty()) BreakContinueStack.back().ContinueCount += BC.ContinueCount; // Counter tracks the exit block of the switch. setCount(PGO.getRegionCount(S)); RecordNextStmtCount = true; } void VisitSwitchCase(const SwitchCase *S) { RecordNextStmtCount = false; // Counter for this particular case. This counts only jumps from the // switch header and does not include fallthrough from the case before // this one. uint64_t CaseCount = PGO.getRegionCount(S); setCount(CurrentCount + CaseCount); // We need the count without fallthrough in the mapping, so it's more useful // for branch probabilities. CountMap[S] = CaseCount; RecordNextStmtCount = true; Visit(S->getSubStmt()); } void VisitIfStmt(const IfStmt *S) { RecordStmtCount(S); uint64_t ParentCount = CurrentCount; Visit(S->getCond()); // Counter tracks the "then" part of an if statement. The count for // the "else" part, if it exists, will be calculated from this counter. uint64_t ThenCount = setCount(PGO.getRegionCount(S)); CountMap[S->getThen()] = ThenCount; Visit(S->getThen()); uint64_t OutCount = CurrentCount; uint64_t ElseCount = ParentCount - ThenCount; if (S->getElse()) { setCount(ElseCount); CountMap[S->getElse()] = ElseCount; Visit(S->getElse()); OutCount += CurrentCount; } else OutCount += ElseCount; setCount(OutCount); RecordNextStmtCount = true; } void VisitCXXTryStmt(const CXXTryStmt *S) { RecordStmtCount(S); Visit(S->getTryBlock()); for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I) Visit(S->getHandler(I)); // Counter tracks the continuation block of the try statement. setCount(PGO.getRegionCount(S)); RecordNextStmtCount = true; } void VisitCXXCatchStmt(const CXXCatchStmt *S) { RecordNextStmtCount = false; // Counter tracks the catch statement's handler block. uint64_t CatchCount = setCount(PGO.getRegionCount(S)); CountMap[S] = CatchCount; Visit(S->getHandlerBlock()); } void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { RecordStmtCount(E); uint64_t ParentCount = CurrentCount; Visit(E->getCond()); // Counter tracks the "true" part of a conditional operator. The // count in the "false" part will be calculated from this counter. uint64_t TrueCount = setCount(PGO.getRegionCount(E)); CountMap[E->getTrueExpr()] = TrueCount; Visit(E->getTrueExpr()); uint64_t OutCount = CurrentCount; uint64_t FalseCount = setCount(ParentCount - TrueCount); CountMap[E->getFalseExpr()] = FalseCount; Visit(E->getFalseExpr()); OutCount += CurrentCount; setCount(OutCount); RecordNextStmtCount = true; } void VisitBinLAnd(const BinaryOperator *E) { RecordStmtCount(E); uint64_t ParentCount = CurrentCount; Visit(E->getLHS()); // Counter tracks the right hand side of a logical and operator. uint64_t RHSCount = setCount(PGO.getRegionCount(E)); CountMap[E->getRHS()] = RHSCount; Visit(E->getRHS()); setCount(ParentCount + RHSCount - CurrentCount); RecordNextStmtCount = true; } void VisitBinLOr(const BinaryOperator *E) { RecordStmtCount(E); uint64_t ParentCount = CurrentCount; Visit(E->getLHS()); // Counter tracks the right hand side of a logical or operator. uint64_t RHSCount = setCount(PGO.getRegionCount(E)); CountMap[E->getRHS()] = RHSCount; Visit(E->getRHS()); setCount(ParentCount + RHSCount - CurrentCount); RecordNextStmtCount = true; } }; } // end anonymous namespace void PGOHash::combine(HashType Type) { // Check that we never combine 0 and only have six bits. assert(Type && "Hash is invalid: unexpected type 0"); assert(unsigned(Type) < TooBig && "Hash is invalid: too many types"); // Pass through MD5 if enough work has built up. if (Count && Count % NumTypesPerWord == 0) { using namespace llvm::support; uint64_t Swapped = endian::byte_swap<uint64_t, little>(Working); MD5.update(llvm::makeArrayRef((uint8_t *)&Swapped, sizeof(Swapped))); Working = 0; } // Accumulate the current type. ++Count; Working = Working << NumBitsPerType | Type; } uint64_t PGOHash::finalize() { // Use Working as the hash directly if we never used MD5. if (Count <= NumTypesPerWord) // No need to byte swap here, since none of the math was endian-dependent. // This number will be byte-swapped as required on endianness transitions, // so we will see the same value on the other side. return Working; // Check for remaining work in Working. if (Working) MD5.update(Working); // Finalize the MD5 and return the hash. llvm::MD5::MD5Result Result; MD5.final(Result); using namespace llvm::support; return endian::read<uint64_t, little, unaligned>(Result); } void CodeGenPGO::assignRegionCounters(GlobalDecl GD, llvm::Function *Fn) { const Decl *D = GD.getDecl(); bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader(); if (!InstrumentRegions && !PGOReader) return; if (D->isImplicit()) return; // Constructors and destructors may be represented by several functions in IR. // If so, instrument only base variant, others are implemented by delegation // to the base one, it would be counted twice otherwise. if (CGM.getTarget().getCXXABI().hasConstructorVariants() && ((isa<CXXConstructorDecl>(GD.getDecl()) && GD.getCtorType() != Ctor_Base) || (isa<CXXDestructorDecl>(GD.getDecl()) && GD.getDtorType() != Dtor_Base))) { return; } CGM.ClearUnusedCoverageMapping(D); setFuncName(Fn); mapRegionCounters(D); if (CGM.getCodeGenOpts().CoverageMapping) emitCounterRegionMapping(D); if (PGOReader) { SourceManager &SM = CGM.getContext().getSourceManager(); loadRegionCounts(PGOReader, SM.isInMainFile(D->getLocation())); computeRegionCounts(D); applyFunctionAttributes(PGOReader, Fn); } } void CodeGenPGO::mapRegionCounters(const Decl *D) { RegionCounterMap.reset(new llvm::DenseMap<const Stmt *, unsigned>); MapRegionCounters Walker(*RegionCounterMap); if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) Walker.TraverseDecl(const_cast<FunctionDecl *>(FD)); else if (const ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(D)) Walker.TraverseDecl(const_cast<ObjCMethodDecl *>(MD)); else if (const BlockDecl *BD = dyn_cast_or_null<BlockDecl>(D)) Walker.TraverseDecl(const_cast<BlockDecl *>(BD)); else if (const CapturedDecl *CD = dyn_cast_or_null<CapturedDecl>(D)) Walker.TraverseDecl(const_cast<CapturedDecl *>(CD)); assert(Walker.NextCounter > 0 && "no entry counter mapped for decl"); NumRegionCounters = Walker.NextCounter; FunctionHash = Walker.Hash.finalize(); } bool CodeGenPGO::skipRegionMappingForDecl(const Decl *D) { if (SkipCoverageMapping) return true; // Don't map the functions in system headers. const auto &SM = CGM.getContext().getSourceManager(); auto Loc = D->getBody()->getLocStart(); return SM.isInSystemHeader(Loc); } void CodeGenPGO::emitCounterRegionMapping(const Decl *D) { if (skipRegionMappingForDecl(D)) return; std::string CoverageMapping; llvm::raw_string_ostream OS(CoverageMapping); CoverageMappingGen MappingGen(*CGM.getCoverageMapping(), CGM.getContext().getSourceManager(), CGM.getLangOpts(), RegionCounterMap.get()); MappingGen.emitCounterMapping(D, OS); OS.flush(); if (CoverageMapping.empty()) return; CGM.getCoverageMapping()->addFunctionMappingRecord( FuncNameVar, FuncName, FunctionHash, CoverageMapping); } void CodeGenPGO::emitEmptyCounterMapping(const Decl *D, StringRef Name, llvm::GlobalValue::LinkageTypes Linkage) { if (skipRegionMappingForDecl(D)) return; std::string CoverageMapping; llvm::raw_string_ostream OS(CoverageMapping); CoverageMappingGen MappingGen(*CGM.getCoverageMapping(), CGM.getContext().getSourceManager(), CGM.getLangOpts()); MappingGen.emitEmptyMapping(D, OS); OS.flush(); if (CoverageMapping.empty()) return; setFuncName(Name, Linkage); CGM.getCoverageMapping()->addFunctionMappingRecord( FuncNameVar, FuncName, FunctionHash, CoverageMapping, false); } void CodeGenPGO::computeRegionCounts(const Decl *D) { StmtCountMap.reset(new llvm::DenseMap<const Stmt *, uint64_t>); ComputeRegionCounts Walker(*StmtCountMap, *this); if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) Walker.VisitFunctionDecl(FD); else if (const ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(D)) Walker.VisitObjCMethodDecl(MD); else if (const BlockDecl *BD = dyn_cast_or_null<BlockDecl>(D)) Walker.VisitBlockDecl(BD); else if (const CapturedDecl *CD = dyn_cast_or_null<CapturedDecl>(D)) Walker.VisitCapturedDecl(const_cast<CapturedDecl *>(CD)); } void CodeGenPGO::applyFunctionAttributes(llvm::IndexedInstrProfReader *PGOReader, llvm::Function *Fn) { if (!haveRegionCounts()) return; uint64_t FunctionCount = getRegionCount(nullptr); Fn->setEntryCount(FunctionCount); } void CodeGenPGO::emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S) { if (!CGM.getCodeGenOpts().hasProfileClangInstr() || !RegionCounterMap) return; if (!Builder.GetInsertBlock()) return; unsigned Counter = (*RegionCounterMap)[S]; auto *I8PtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext()); Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::instrprof_increment), {llvm::ConstantExpr::getBitCast(FuncNameVar, I8PtrTy), Builder.getInt64(FunctionHash), Builder.getInt32(NumRegionCounters), Builder.getInt32(Counter)}); } // This method either inserts a call to the profile run-time during // instrumentation or puts profile data into metadata for PGO use. void CodeGenPGO::valueProfile(CGBuilderTy &Builder, uint32_t ValueKind, llvm::Instruction *ValueSite, llvm::Value *ValuePtr) { if (!EnableValueProfiling) return; if (!ValuePtr || !ValueSite || !Builder.GetInsertBlock()) return; if (isa<llvm::Constant>(ValuePtr)) return; bool InstrumentValueSites = CGM.getCodeGenOpts().hasProfileClangInstr(); if (InstrumentValueSites && RegionCounterMap) { auto BuilderInsertPoint = Builder.saveIP(); Builder.SetInsertPoint(ValueSite); llvm::Value *Args[5] = { llvm::ConstantExpr::getBitCast(FuncNameVar, Builder.getInt8PtrTy()), Builder.getInt64(FunctionHash), Builder.CreatePtrToInt(ValuePtr, Builder.getInt64Ty()), Builder.getInt32(ValueKind), Builder.getInt32(NumValueSites[ValueKind]++) }; Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::instrprof_value_profile), Args); Builder.restoreIP(BuilderInsertPoint); return; } llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader(); if (PGOReader && haveRegionCounts()) { // We record the top most called three functions at each call site. // Profile metadata contains "VP" string identifying this metadata // as value profiling data, then a uint32_t value for the value profiling // kind, a uint64_t value for the total number of times the call is // executed, followed by the function hash and execution count (uint64_t) // pairs for each function. if (NumValueSites[ValueKind] >= ProfRecord->getNumValueSites(ValueKind)) return; llvm::annotateValueSite(CGM.getModule(), *ValueSite, *ProfRecord, (llvm::InstrProfValueKind)ValueKind, NumValueSites[ValueKind]); NumValueSites[ValueKind]++; } } void CodeGenPGO::loadRegionCounts(llvm::IndexedInstrProfReader *PGOReader, bool IsInMainFile) { CGM.getPGOStats().addVisited(IsInMainFile); RegionCounts.clear(); llvm::Expected<llvm::InstrProfRecord> RecordExpected = PGOReader->getInstrProfRecord(FuncName, FunctionHash); if (auto E = RecordExpected.takeError()) { auto IPE = llvm::InstrProfError::take(std::move(E)); if (IPE == llvm::instrprof_error::unknown_function) CGM.getPGOStats().addMissing(IsInMainFile); else if (IPE == llvm::instrprof_error::hash_mismatch) CGM.getPGOStats().addMismatched(IsInMainFile); else if (IPE == llvm::instrprof_error::malformed) // TODO: Consider a more specific warning for this case. CGM.getPGOStats().addMismatched(IsInMainFile); return; } ProfRecord = llvm::make_unique<llvm::InstrProfRecord>(std::move(RecordExpected.get())); RegionCounts = ProfRecord->Counts; } /// \brief Calculate what to divide by to scale weights. /// /// Given the maximum weight, calculate a divisor that will scale all the /// weights to strictly less than UINT32_MAX. static uint64_t calculateWeightScale(uint64_t MaxWeight) { return MaxWeight < UINT32_MAX ? 1 : MaxWeight / UINT32_MAX + 1; } /// \brief Scale an individual branch weight (and add 1). /// /// Scale a 64-bit weight down to 32-bits using \c Scale. /// /// According to Laplace's Rule of Succession, it is better to compute the /// weight based on the count plus 1, so universally add 1 to the value. /// /// \pre \c Scale was calculated by \a calculateWeightScale() with a weight no /// greater than \c Weight. static uint32_t scaleBranchWeight(uint64_t Weight, uint64_t Scale) { assert(Scale && "scale by 0?"); uint64_t Scaled = Weight / Scale + 1; assert(Scaled <= UINT32_MAX && "overflow 32-bits"); return Scaled; } llvm::MDNode *CodeGenFunction::createProfileWeights(uint64_t TrueCount, uint64_t FalseCount) { // Check for empty weights. if (!TrueCount && !FalseCount) return nullptr; // Calculate how to scale down to 32-bits. uint64_t Scale = calculateWeightScale(std::max(TrueCount, FalseCount)); llvm::MDBuilder MDHelper(CGM.getLLVMContext()); return MDHelper.createBranchWeights(scaleBranchWeight(TrueCount, Scale), scaleBranchWeight(FalseCount, Scale)); } llvm::MDNode * CodeGenFunction::createProfileWeights(ArrayRef<uint64_t> Weights) { // We need at least two elements to create meaningful weights. if (Weights.size() < 2) return nullptr; // Check for empty weights. uint64_t MaxWeight = *std::max_element(Weights.begin(), Weights.end()); if (MaxWeight == 0) return nullptr; // Calculate how to scale down to 32-bits. uint64_t Scale = calculateWeightScale(MaxWeight); SmallVector<uint32_t, 16> ScaledWeights; ScaledWeights.reserve(Weights.size()); for (uint64_t W : Weights) ScaledWeights.push_back(scaleBranchWeight(W, Scale)); llvm::MDBuilder MDHelper(CGM.getLLVMContext()); return MDHelper.createBranchWeights(ScaledWeights); } llvm::MDNode *CodeGenFunction::createProfileWeightsForLoop(const Stmt *Cond, uint64_t LoopCount) { if (!PGO.haveRegionCounts()) return nullptr; Optional<uint64_t> CondCount = PGO.getStmtCount(Cond); assert(CondCount.hasValue() && "missing expected loop condition count"); if (*CondCount == 0) return nullptr; return createProfileWeights(LoopCount, std::max(*CondCount, LoopCount) - LoopCount); }