//===--- CoverageMappingGen.cpp - Coverage mapping generation ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Instrumentation-based code coverage mapping generator // //===----------------------------------------------------------------------===// #include "CoverageMappingGen.h" #include "CodeGenFunction.h" #include "clang/AST/StmtVisitor.h" #include "clang/Lex/Lexer.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Optional.h" #include "llvm/ProfileData/Coverage/CoverageMapping.h" #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" #include "llvm/ProfileData/Coverage/CoverageMappingWriter.h" #include "llvm/ProfileData/InstrProfReader.h" #include "llvm/Support/FileSystem.h" using namespace clang; using namespace CodeGen; using namespace llvm::coverage; void CoverageSourceInfo::SourceRangeSkipped(SourceRange Range) { SkippedRanges.push_back(Range); } namespace { /// \brief A region of source code that can be mapped to a counter. class SourceMappingRegion { Counter Count; /// \brief The region's starting location. Optional<SourceLocation> LocStart; /// \brief The region's ending location. Optional<SourceLocation> LocEnd; public: SourceMappingRegion(Counter Count, Optional<SourceLocation> LocStart, Optional<SourceLocation> LocEnd) : Count(Count), LocStart(LocStart), LocEnd(LocEnd) {} const Counter &getCounter() const { return Count; } void setCounter(Counter C) { Count = C; } bool hasStartLoc() const { return LocStart.hasValue(); } void setStartLoc(SourceLocation Loc) { LocStart = Loc; } SourceLocation getStartLoc() const { assert(LocStart && "Region has no start location"); return *LocStart; } bool hasEndLoc() const { return LocEnd.hasValue(); } void setEndLoc(SourceLocation Loc) { LocEnd = Loc; } SourceLocation getEndLoc() const { assert(LocEnd && "Region has no end location"); return *LocEnd; } }; /// \brief Provides the common functionality for the different /// coverage mapping region builders. class CoverageMappingBuilder { public: CoverageMappingModuleGen &CVM; SourceManager &SM; const LangOptions &LangOpts; private: /// \brief Map of clang's FileIDs to IDs used for coverage mapping. llvm::SmallDenseMap<FileID, std::pair<unsigned, SourceLocation>, 8> FileIDMapping; public: /// \brief The coverage mapping regions for this function llvm::SmallVector<CounterMappingRegion, 32> MappingRegions; /// \brief The source mapping regions for this function. std::vector<SourceMappingRegion> SourceRegions; CoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM, const LangOptions &LangOpts) : CVM(CVM), SM(SM), LangOpts(LangOpts) {} /// \brief Return the precise end location for the given token. SourceLocation getPreciseTokenLocEnd(SourceLocation Loc) { // We avoid getLocForEndOfToken here, because it doesn't do what we want for // macro locations, which we just treat as expanded files. unsigned TokLen = Lexer::MeasureTokenLength(SM.getSpellingLoc(Loc), SM, LangOpts); return Loc.getLocWithOffset(TokLen); } /// \brief Return the start location of an included file or expanded macro. SourceLocation getStartOfFileOrMacro(SourceLocation Loc) { if (Loc.isMacroID()) return Loc.getLocWithOffset(-SM.getFileOffset(Loc)); return SM.getLocForStartOfFile(SM.getFileID(Loc)); } /// \brief Return the end location of an included file or expanded macro. SourceLocation getEndOfFileOrMacro(SourceLocation Loc) { if (Loc.isMacroID()) return Loc.getLocWithOffset(SM.getFileIDSize(SM.getFileID(Loc)) - SM.getFileOffset(Loc)); return SM.getLocForEndOfFile(SM.getFileID(Loc)); } /// \brief Find out where the current file is included or macro is expanded. SourceLocation getIncludeOrExpansionLoc(SourceLocation Loc) { return Loc.isMacroID() ? SM.getImmediateExpansionRange(Loc).first : SM.getIncludeLoc(SM.getFileID(Loc)); } /// \brief Return true if \c Loc is a location in a built-in macro. bool isInBuiltin(SourceLocation Loc) { return strcmp(SM.getBufferName(SM.getSpellingLoc(Loc)), "<built-in>") == 0; } /// \brief Check whether \c Loc is included or expanded from \c Parent. bool isNestedIn(SourceLocation Loc, FileID Parent) { do { Loc = getIncludeOrExpansionLoc(Loc); if (Loc.isInvalid()) return false; } while (!SM.isInFileID(Loc, Parent)); return true; } /// \brief Get the start of \c S ignoring macro arguments and builtin macros. SourceLocation getStart(const Stmt *S) { SourceLocation Loc = S->getLocStart(); while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc)) Loc = SM.getImmediateExpansionRange(Loc).first; return Loc; } /// \brief Get the end of \c S ignoring macro arguments and builtin macros. SourceLocation getEnd(const Stmt *S) { SourceLocation Loc = S->getLocEnd(); while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc)) Loc = SM.getImmediateExpansionRange(Loc).first; return getPreciseTokenLocEnd(Loc); } /// \brief Find the set of files we have regions for and assign IDs /// /// Fills \c Mapping with the virtual file mapping needed to write out /// coverage and collects the necessary file information to emit source and /// expansion regions. void gatherFileIDs(SmallVectorImpl<unsigned> &Mapping) { FileIDMapping.clear(); llvm::SmallSet<FileID, 8> Visited; SmallVector<std::pair<SourceLocation, unsigned>, 8> FileLocs; for (const auto &Region : SourceRegions) { SourceLocation Loc = Region.getStartLoc(); FileID File = SM.getFileID(Loc); if (!Visited.insert(File).second) continue; // Do not map FileID's associated with system headers. if (SM.isInSystemHeader(SM.getSpellingLoc(Loc))) continue; unsigned Depth = 0; for (SourceLocation Parent = getIncludeOrExpansionLoc(Loc); Parent.isValid(); Parent = getIncludeOrExpansionLoc(Parent)) ++Depth; FileLocs.push_back(std::make_pair(Loc, Depth)); } std::stable_sort(FileLocs.begin(), FileLocs.end(), llvm::less_second()); for (const auto &FL : FileLocs) { SourceLocation Loc = FL.first; FileID SpellingFile = SM.getDecomposedSpellingLoc(Loc).first; auto Entry = SM.getFileEntryForID(SpellingFile); if (!Entry) continue; FileIDMapping[SM.getFileID(Loc)] = std::make_pair(Mapping.size(), Loc); Mapping.push_back(CVM.getFileID(Entry)); } } /// \brief Get the coverage mapping file ID for \c Loc. /// /// If such file id doesn't exist, return None. Optional<unsigned> getCoverageFileID(SourceLocation Loc) { auto Mapping = FileIDMapping.find(SM.getFileID(Loc)); if (Mapping != FileIDMapping.end()) return Mapping->second.first; return None; } /// \brief Gather all the regions that were skipped by the preprocessor /// using the constructs like #if. void gatherSkippedRegions() { /// An array of the minimum lineStarts and the maximum lineEnds /// for mapping regions from the appropriate source files. llvm::SmallVector<std::pair<unsigned, unsigned>, 8> FileLineRanges; FileLineRanges.resize( FileIDMapping.size(), std::make_pair(std::numeric_limits<unsigned>::max(), 0)); for (const auto &R : MappingRegions) { FileLineRanges[R.FileID].first = std::min(FileLineRanges[R.FileID].first, R.LineStart); FileLineRanges[R.FileID].second = std::max(FileLineRanges[R.FileID].second, R.LineEnd); } auto SkippedRanges = CVM.getSourceInfo().getSkippedRanges(); for (const auto &I : SkippedRanges) { auto LocStart = I.getBegin(); auto LocEnd = I.getEnd(); assert(SM.isWrittenInSameFile(LocStart, LocEnd) && "region spans multiple files"); auto CovFileID = getCoverageFileID(LocStart); if (!CovFileID) continue; unsigned LineStart = SM.getSpellingLineNumber(LocStart); unsigned ColumnStart = SM.getSpellingColumnNumber(LocStart); unsigned LineEnd = SM.getSpellingLineNumber(LocEnd); unsigned ColumnEnd = SM.getSpellingColumnNumber(LocEnd); auto Region = CounterMappingRegion::makeSkipped( *CovFileID, LineStart, ColumnStart, LineEnd, ColumnEnd); // Make sure that we only collect the regions that are inside // the souce code of this function. if (Region.LineStart >= FileLineRanges[*CovFileID].first && Region.LineEnd <= FileLineRanges[*CovFileID].second) MappingRegions.push_back(Region); } } /// \brief Generate the coverage counter mapping regions from collected /// source regions. void emitSourceRegions() { for (const auto &Region : SourceRegions) { assert(Region.hasEndLoc() && "incomplete region"); SourceLocation LocStart = Region.getStartLoc(); assert(SM.getFileID(LocStart).isValid() && "region in invalid file"); // Ignore regions from system headers. if (SM.isInSystemHeader(SM.getSpellingLoc(LocStart))) continue; auto CovFileID = getCoverageFileID(LocStart); // Ignore regions that don't have a file, such as builtin macros. if (!CovFileID) continue; SourceLocation LocEnd = Region.getEndLoc(); assert(SM.isWrittenInSameFile(LocStart, LocEnd) && "region spans multiple files"); // Find the spilling locations for the mapping region. unsigned LineStart = SM.getSpellingLineNumber(LocStart); unsigned ColumnStart = SM.getSpellingColumnNumber(LocStart); unsigned LineEnd = SM.getSpellingLineNumber(LocEnd); unsigned ColumnEnd = SM.getSpellingColumnNumber(LocEnd); assert(LineStart <= LineEnd && "region start and end out of order"); MappingRegions.push_back(CounterMappingRegion::makeRegion( Region.getCounter(), *CovFileID, LineStart, ColumnStart, LineEnd, ColumnEnd)); } } /// \brief Generate expansion regions for each virtual file we've seen. void emitExpansionRegions() { for (const auto &FM : FileIDMapping) { SourceLocation ExpandedLoc = FM.second.second; SourceLocation ParentLoc = getIncludeOrExpansionLoc(ExpandedLoc); if (ParentLoc.isInvalid()) continue; auto ParentFileID = getCoverageFileID(ParentLoc); if (!ParentFileID) continue; auto ExpandedFileID = getCoverageFileID(ExpandedLoc); assert(ExpandedFileID && "expansion in uncovered file"); SourceLocation LocEnd = getPreciseTokenLocEnd(ParentLoc); assert(SM.isWrittenInSameFile(ParentLoc, LocEnd) && "region spans multiple files"); unsigned LineStart = SM.getSpellingLineNumber(ParentLoc); unsigned ColumnStart = SM.getSpellingColumnNumber(ParentLoc); unsigned LineEnd = SM.getSpellingLineNumber(LocEnd); unsigned ColumnEnd = SM.getSpellingColumnNumber(LocEnd); MappingRegions.push_back(CounterMappingRegion::makeExpansion( *ParentFileID, *ExpandedFileID, LineStart, ColumnStart, LineEnd, ColumnEnd)); } } }; /// \brief Creates unreachable coverage regions for the functions that /// are not emitted. struct EmptyCoverageMappingBuilder : public CoverageMappingBuilder { EmptyCoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM, const LangOptions &LangOpts) : CoverageMappingBuilder(CVM, SM, LangOpts) {} void VisitDecl(const Decl *D) { if (!D->hasBody()) return; auto Body = D->getBody(); SourceLocation Start = getStart(Body); SourceLocation End = getEnd(Body); if (!SM.isWrittenInSameFile(Start, End)) { // Walk up to find the common ancestor. // Correct the locations accordingly. FileID StartFileID = SM.getFileID(Start); FileID EndFileID = SM.getFileID(End); while (StartFileID != EndFileID && !isNestedIn(End, StartFileID)) { Start = getIncludeOrExpansionLoc(Start); assert(Start.isValid() && "Declaration start location not nested within a known region"); StartFileID = SM.getFileID(Start); } while (StartFileID != EndFileID) { End = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(End)); assert(End.isValid() && "Declaration end location not nested within a known region"); EndFileID = SM.getFileID(End); } } SourceRegions.emplace_back(Counter(), Start, End); } /// \brief Write the mapping data to the output stream void write(llvm::raw_ostream &OS) { SmallVector<unsigned, 16> FileIDMapping; gatherFileIDs(FileIDMapping); emitSourceRegions(); CoverageMappingWriter Writer(FileIDMapping, None, MappingRegions); Writer.write(OS); } }; /// \brief A StmtVisitor that creates coverage mapping regions which map /// from the source code locations to the PGO counters. struct CounterCoverageMappingBuilder : public CoverageMappingBuilder, public ConstStmtVisitor<CounterCoverageMappingBuilder> { /// \brief The map of statements to count values. llvm::DenseMap<const Stmt *, unsigned> &CounterMap; /// \brief A stack of currently live regions. std::vector<SourceMappingRegion> RegionStack; CounterExpressionBuilder Builder; /// \brief A location in the most recently visited file or macro. /// /// This is used to adjust the active source regions appropriately when /// expressions cross file or macro boundaries. SourceLocation MostRecentLocation; /// \brief Return a counter for the subtraction of \c RHS from \c LHS Counter subtractCounters(Counter LHS, Counter RHS) { return Builder.subtract(LHS, RHS); } /// \brief Return a counter for the sum of \c LHS and \c RHS. Counter addCounters(Counter LHS, Counter RHS) { return Builder.add(LHS, RHS); } Counter addCounters(Counter C1, Counter C2, Counter C3) { return addCounters(addCounters(C1, C2), C3); } /// \brief Return the region counter for the given statement. /// /// This should only be called on statements that have a dedicated counter. Counter getRegionCounter(const Stmt *S) { return Counter::getCounter(CounterMap[S]); } /// \brief Push a region onto the stack. /// /// Returns the index on the stack where the region was pushed. This can be /// used with popRegions to exit a "scope", ending the region that was pushed. size_t pushRegion(Counter Count, Optional<SourceLocation> StartLoc = None, Optional<SourceLocation> EndLoc = None) { if (StartLoc) MostRecentLocation = *StartLoc; RegionStack.emplace_back(Count, StartLoc, EndLoc); return RegionStack.size() - 1; } /// \brief Pop regions from the stack into the function's list of regions. /// /// Adds all regions from \c ParentIndex to the top of the stack to the /// function's \c SourceRegions. void popRegions(size_t ParentIndex) { assert(RegionStack.size() >= ParentIndex && "parent not in stack"); while (RegionStack.size() > ParentIndex) { SourceMappingRegion &Region = RegionStack.back(); if (Region.hasStartLoc()) { SourceLocation StartLoc = Region.getStartLoc(); SourceLocation EndLoc = Region.hasEndLoc() ? Region.getEndLoc() : RegionStack[ParentIndex].getEndLoc(); while (!SM.isWrittenInSameFile(StartLoc, EndLoc)) { // The region ends in a nested file or macro expansion. Create a // separate region for each expansion. SourceLocation NestedLoc = getStartOfFileOrMacro(EndLoc); assert(SM.isWrittenInSameFile(NestedLoc, EndLoc)); SourceRegions.emplace_back(Region.getCounter(), NestedLoc, EndLoc); EndLoc = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(EndLoc)); if (EndLoc.isInvalid()) llvm::report_fatal_error("File exit not handled before popRegions"); } Region.setEndLoc(EndLoc); MostRecentLocation = EndLoc; // If this region happens to span an entire expansion, we need to make // sure we don't overlap the parent region with it. if (StartLoc == getStartOfFileOrMacro(StartLoc) && EndLoc == getEndOfFileOrMacro(EndLoc)) MostRecentLocation = getIncludeOrExpansionLoc(EndLoc); assert(SM.isWrittenInSameFile(Region.getStartLoc(), EndLoc)); SourceRegions.push_back(Region); } RegionStack.pop_back(); } } /// \brief Return the currently active region. SourceMappingRegion &getRegion() { assert(!RegionStack.empty() && "statement has no region"); return RegionStack.back(); } /// \brief Propagate counts through the children of \c S. Counter propagateCounts(Counter TopCount, const Stmt *S) { size_t Index = pushRegion(TopCount, getStart(S), getEnd(S)); Visit(S); Counter ExitCount = getRegion().getCounter(); popRegions(Index); // The statement may be spanned by an expansion. Make sure we handle a file // exit out of this expansion before moving to the next statement. if (SM.isBeforeInTranslationUnit(getStart(S), S->getLocStart())) MostRecentLocation = getEnd(S); return ExitCount; } /// \brief Check whether a region with bounds \c StartLoc and \c EndLoc /// is already added to \c SourceRegions. bool isRegionAlreadyAdded(SourceLocation StartLoc, SourceLocation EndLoc) { return SourceRegions.rend() != std::find_if(SourceRegions.rbegin(), SourceRegions.rend(), [&](const SourceMappingRegion &Region) { return Region.getStartLoc() == StartLoc && Region.getEndLoc() == EndLoc; }); } /// \brief Adjust the most recently visited location to \c EndLoc. /// /// This should be used after visiting any statements in non-source order. void adjustForOutOfOrderTraversal(SourceLocation EndLoc) { MostRecentLocation = EndLoc; // The code region for a whole macro is created in handleFileExit() when // it detects exiting of the virtual file of that macro. If we visited // statements in non-source order, we might already have such a region // added, for example, if a body of a loop is divided among multiple // macros. Avoid adding duplicate regions in such case. if (getRegion().hasEndLoc() && MostRecentLocation == getEndOfFileOrMacro(MostRecentLocation) && isRegionAlreadyAdded(getStartOfFileOrMacro(MostRecentLocation), MostRecentLocation)) MostRecentLocation = getIncludeOrExpansionLoc(MostRecentLocation); } /// \brief Adjust regions and state when \c NewLoc exits a file. /// /// If moving from our most recently tracked location to \c NewLoc exits any /// files, this adjusts our current region stack and creates the file regions /// for the exited file. void handleFileExit(SourceLocation NewLoc) { if (NewLoc.isInvalid() || SM.isWrittenInSameFile(MostRecentLocation, NewLoc)) return; // If NewLoc is not in a file that contains MostRecentLocation, walk up to // find the common ancestor. SourceLocation LCA = NewLoc; FileID ParentFile = SM.getFileID(LCA); while (!isNestedIn(MostRecentLocation, ParentFile)) { LCA = getIncludeOrExpansionLoc(LCA); if (LCA.isInvalid() || SM.isWrittenInSameFile(LCA, MostRecentLocation)) { // Since there isn't a common ancestor, no file was exited. We just need // to adjust our location to the new file. MostRecentLocation = NewLoc; return; } ParentFile = SM.getFileID(LCA); } llvm::SmallSet<SourceLocation, 8> StartLocs; Optional<Counter> ParentCounter; for (SourceMappingRegion &I : llvm::reverse(RegionStack)) { if (!I.hasStartLoc()) continue; SourceLocation Loc = I.getStartLoc(); if (!isNestedIn(Loc, ParentFile)) { ParentCounter = I.getCounter(); break; } while (!SM.isInFileID(Loc, ParentFile)) { // The most nested region for each start location is the one with the // correct count. We avoid creating redundant regions by stopping once // we've seen this region. if (StartLocs.insert(Loc).second) SourceRegions.emplace_back(I.getCounter(), Loc, getEndOfFileOrMacro(Loc)); Loc = getIncludeOrExpansionLoc(Loc); } I.setStartLoc(getPreciseTokenLocEnd(Loc)); } if (ParentCounter) { // If the file is contained completely by another region and doesn't // immediately start its own region, the whole file gets a region // corresponding to the parent. SourceLocation Loc = MostRecentLocation; while (isNestedIn(Loc, ParentFile)) { SourceLocation FileStart = getStartOfFileOrMacro(Loc); if (StartLocs.insert(FileStart).second) SourceRegions.emplace_back(*ParentCounter, FileStart, getEndOfFileOrMacro(Loc)); Loc = getIncludeOrExpansionLoc(Loc); } } MostRecentLocation = NewLoc; } /// \brief Ensure that \c S is included in the current region. void extendRegion(const Stmt *S) { SourceMappingRegion &Region = getRegion(); SourceLocation StartLoc = getStart(S); handleFileExit(StartLoc); if (!Region.hasStartLoc()) Region.setStartLoc(StartLoc); } /// \brief Mark \c S as a terminator, starting a zero region. void terminateRegion(const Stmt *S) { extendRegion(S); SourceMappingRegion &Region = getRegion(); if (!Region.hasEndLoc()) Region.setEndLoc(getEnd(S)); pushRegion(Counter::getZero()); } /// \brief Keep counts of breaks and continues inside loops. struct BreakContinue { Counter BreakCount; Counter ContinueCount; }; SmallVector<BreakContinue, 8> BreakContinueStack; CounterCoverageMappingBuilder( CoverageMappingModuleGen &CVM, llvm::DenseMap<const Stmt *, unsigned> &CounterMap, SourceManager &SM, const LangOptions &LangOpts) : CoverageMappingBuilder(CVM, SM, LangOpts), CounterMap(CounterMap) {} /// \brief Write the mapping data to the output stream void write(llvm::raw_ostream &OS) { llvm::SmallVector<unsigned, 8> VirtualFileMapping; gatherFileIDs(VirtualFileMapping); emitSourceRegions(); emitExpansionRegions(); gatherSkippedRegions(); CoverageMappingWriter Writer(VirtualFileMapping, Builder.getExpressions(), MappingRegions); Writer.write(OS); } void VisitStmt(const Stmt *S) { if (S->getLocStart().isValid()) extendRegion(S); for (const Stmt *Child : S->children()) if (Child) this->Visit(Child); handleFileExit(getEnd(S)); } void VisitDecl(const Decl *D) { Stmt *Body = D->getBody(); propagateCounts(getRegionCounter(Body), Body); } void VisitReturnStmt(const ReturnStmt *S) { extendRegion(S); if (S->getRetValue()) Visit(S->getRetValue()); terminateRegion(S); } void VisitCXXThrowExpr(const CXXThrowExpr *E) { extendRegion(E); if (E->getSubExpr()) Visit(E->getSubExpr()); terminateRegion(E); } void VisitGotoStmt(const GotoStmt *S) { terminateRegion(S); } void VisitLabelStmt(const LabelStmt *S) { SourceLocation Start = getStart(S); // We can't extendRegion here or we risk overlapping with our new region. handleFileExit(Start); pushRegion(getRegionCounter(S), Start); Visit(S->getSubStmt()); } void VisitBreakStmt(const BreakStmt *S) { assert(!BreakContinueStack.empty() && "break not in a loop or switch!"); BreakContinueStack.back().BreakCount = addCounters( BreakContinueStack.back().BreakCount, getRegion().getCounter()); terminateRegion(S); } void VisitContinueStmt(const ContinueStmt *S) { assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); BreakContinueStack.back().ContinueCount = addCounters( BreakContinueStack.back().ContinueCount, getRegion().getCounter()); terminateRegion(S); } void VisitWhileStmt(const WhileStmt *S) { extendRegion(S); Counter ParentCount = getRegion().getCounter(); Counter BodyCount = getRegionCounter(S); // Handle the body first so that we can get the backedge count. BreakContinueStack.push_back(BreakContinue()); extendRegion(S->getBody()); Counter BackedgeCount = propagateCounts(BodyCount, S->getBody()); BreakContinue BC = BreakContinueStack.pop_back_val(); // Go back to handle the condition. Counter CondCount = addCounters(ParentCount, BackedgeCount, BC.ContinueCount); propagateCounts(CondCount, S->getCond()); adjustForOutOfOrderTraversal(getEnd(S)); Counter OutCount = addCounters(BC.BreakCount, subtractCounters(CondCount, BodyCount)); if (OutCount != ParentCount) pushRegion(OutCount); } void VisitDoStmt(const DoStmt *S) { extendRegion(S); Counter ParentCount = getRegion().getCounter(); Counter BodyCount = getRegionCounter(S); BreakContinueStack.push_back(BreakContinue()); extendRegion(S->getBody()); Counter BackedgeCount = propagateCounts(addCounters(ParentCount, BodyCount), S->getBody()); BreakContinue BC = BreakContinueStack.pop_back_val(); Counter CondCount = addCounters(BackedgeCount, BC.ContinueCount); propagateCounts(CondCount, S->getCond()); Counter OutCount = addCounters(BC.BreakCount, subtractCounters(CondCount, BodyCount)); if (OutCount != ParentCount) pushRegion(OutCount); } void VisitForStmt(const ForStmt *S) { extendRegion(S); if (S->getInit()) Visit(S->getInit()); Counter ParentCount = getRegion().getCounter(); Counter BodyCount = getRegionCounter(S); // Handle the body first so that we can get the backedge count. BreakContinueStack.push_back(BreakContinue()); extendRegion(S->getBody()); Counter BackedgeCount = propagateCounts(BodyCount, S->getBody()); BreakContinue BC = BreakContinueStack.pop_back_val(); // The increment is essentially part of the body but it needs to include // the count for all the continue statements. if (const Stmt *Inc = S->getInc()) propagateCounts(addCounters(BackedgeCount, BC.ContinueCount), Inc); // Go back to handle the condition. Counter CondCount = addCounters(ParentCount, BackedgeCount, BC.ContinueCount); if (const Expr *Cond = S->getCond()) { propagateCounts(CondCount, Cond); adjustForOutOfOrderTraversal(getEnd(S)); } Counter OutCount = addCounters(BC.BreakCount, subtractCounters(CondCount, BodyCount)); if (OutCount != ParentCount) pushRegion(OutCount); } void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { extendRegion(S); Visit(S->getLoopVarStmt()); Visit(S->getRangeStmt()); Counter ParentCount = getRegion().getCounter(); Counter BodyCount = getRegionCounter(S); BreakContinueStack.push_back(BreakContinue()); extendRegion(S->getBody()); Counter BackedgeCount = propagateCounts(BodyCount, S->getBody()); BreakContinue BC = BreakContinueStack.pop_back_val(); Counter LoopCount = addCounters(ParentCount, BackedgeCount, BC.ContinueCount); Counter OutCount = addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount)); if (OutCount != ParentCount) pushRegion(OutCount); } void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { extendRegion(S); Visit(S->getElement()); Counter ParentCount = getRegion().getCounter(); Counter BodyCount = getRegionCounter(S); BreakContinueStack.push_back(BreakContinue()); extendRegion(S->getBody()); Counter BackedgeCount = propagateCounts(BodyCount, S->getBody()); BreakContinue BC = BreakContinueStack.pop_back_val(); Counter LoopCount = addCounters(ParentCount, BackedgeCount, BC.ContinueCount); Counter OutCount = addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount)); if (OutCount != ParentCount) pushRegion(OutCount); } void VisitSwitchStmt(const SwitchStmt *S) { extendRegion(S); Visit(S->getCond()); BreakContinueStack.push_back(BreakContinue()); const Stmt *Body = S->getBody(); extendRegion(Body); if (const auto *CS = dyn_cast<CompoundStmt>(Body)) { if (!CS->body_empty()) { // The body of the switch needs a zero region so that fallthrough counts // behave correctly, but it would be misleading to include the braces of // the compound statement in the zeroed area, so we need to handle this // specially. size_t Index = pushRegion(Counter::getZero(), getStart(CS->body_front()), getEnd(CS->body_back())); for (const auto *Child : CS->children()) Visit(Child); popRegions(Index); } } else propagateCounts(Counter::getZero(), Body); BreakContinue BC = BreakContinueStack.pop_back_val(); if (!BreakContinueStack.empty()) BreakContinueStack.back().ContinueCount = addCounters( BreakContinueStack.back().ContinueCount, BC.ContinueCount); Counter ExitCount = getRegionCounter(S); SourceLocation ExitLoc = getEnd(S); pushRegion(ExitCount, getStart(S), ExitLoc); handleFileExit(ExitLoc); } void VisitSwitchCase(const SwitchCase *S) { extendRegion(S); SourceMappingRegion &Parent = getRegion(); Counter Count = addCounters(Parent.getCounter(), getRegionCounter(S)); // Reuse the existing region if it starts at our label. This is typical of // the first case in a switch. if (Parent.hasStartLoc() && Parent.getStartLoc() == getStart(S)) Parent.setCounter(Count); else pushRegion(Count, getStart(S)); if (const auto *CS = dyn_cast<CaseStmt>(S)) { Visit(CS->getLHS()); if (const Expr *RHS = CS->getRHS()) Visit(RHS); } Visit(S->getSubStmt()); } void VisitIfStmt(const IfStmt *S) { extendRegion(S); // Extend into the condition before we propagate through it below - this is // needed to handle macros that generate the "if" but not the condition. extendRegion(S->getCond()); Counter ParentCount = getRegion().getCounter(); Counter ThenCount = getRegionCounter(S); // Emitting a counter for the condition makes it easier to interpret the // counter for the body when looking at the coverage. propagateCounts(ParentCount, S->getCond()); extendRegion(S->getThen()); Counter OutCount = propagateCounts(ThenCount, S->getThen()); Counter ElseCount = subtractCounters(ParentCount, ThenCount); if (const Stmt *Else = S->getElse()) { extendRegion(S->getElse()); OutCount = addCounters(OutCount, propagateCounts(ElseCount, Else)); } else OutCount = addCounters(OutCount, ElseCount); if (OutCount != ParentCount) pushRegion(OutCount); } void VisitCXXTryStmt(const CXXTryStmt *S) { extendRegion(S); // Handle macros that generate the "try" but not the rest. extendRegion(S->getTryBlock()); Counter ParentCount = getRegion().getCounter(); propagateCounts(ParentCount, S->getTryBlock()); for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I) Visit(S->getHandler(I)); Counter ExitCount = getRegionCounter(S); pushRegion(ExitCount); } void VisitCXXCatchStmt(const CXXCatchStmt *S) { propagateCounts(getRegionCounter(S), S->getHandlerBlock()); } void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { extendRegion(E); Counter ParentCount = getRegion().getCounter(); Counter TrueCount = getRegionCounter(E); Visit(E->getCond()); if (!isa<BinaryConditionalOperator>(E)) { extendRegion(E->getTrueExpr()); propagateCounts(TrueCount, E->getTrueExpr()); } extendRegion(E->getFalseExpr()); propagateCounts(subtractCounters(ParentCount, TrueCount), E->getFalseExpr()); } void VisitBinLAnd(const BinaryOperator *E) { extendRegion(E); Visit(E->getLHS()); extendRegion(E->getRHS()); propagateCounts(getRegionCounter(E), E->getRHS()); } void VisitBinLOr(const BinaryOperator *E) { extendRegion(E); Visit(E->getLHS()); extendRegion(E->getRHS()); propagateCounts(getRegionCounter(E), E->getRHS()); } void VisitLambdaExpr(const LambdaExpr *LE) { // Lambdas are treated as their own functions for now, so we shouldn't // propagate counts into them. } }; } static bool isMachO(const CodeGenModule &CGM) { return CGM.getTarget().getTriple().isOSBinFormatMachO(); } static StringRef getCoverageSection(const CodeGenModule &CGM) { return llvm::getInstrProfCoverageSectionName(isMachO(CGM)); } static void dump(llvm::raw_ostream &OS, StringRef FunctionName, ArrayRef<CounterExpression> Expressions, ArrayRef<CounterMappingRegion> Regions) { OS << FunctionName << ":\n"; CounterMappingContext Ctx(Expressions); for (const auto &R : Regions) { OS.indent(2); switch (R.Kind) { case CounterMappingRegion::CodeRegion: break; case CounterMappingRegion::ExpansionRegion: OS << "Expansion,"; break; case CounterMappingRegion::SkippedRegion: OS << "Skipped,"; break; } OS << "File " << R.FileID << ", " << R.LineStart << ":" << R.ColumnStart << " -> " << R.LineEnd << ":" << R.ColumnEnd << " = "; Ctx.dump(R.Count, OS); if (R.Kind == CounterMappingRegion::ExpansionRegion) OS << " (Expanded file = " << R.ExpandedFileID << ")"; OS << "\n"; } } void CoverageMappingModuleGen::addFunctionMappingRecord( llvm::GlobalVariable *NamePtr, StringRef NameValue, uint64_t FuncHash, const std::string &CoverageMapping, bool IsUsed) { llvm::LLVMContext &Ctx = CGM.getLLVMContext(); if (!FunctionRecordTy) { #define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) LLVMType, llvm::Type *FunctionRecordTypes[] = { #include "llvm/ProfileData/InstrProfData.inc" }; FunctionRecordTy = llvm::StructType::get(Ctx, makeArrayRef(FunctionRecordTypes), /*isPacked=*/true); } #define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) Init, llvm::Constant *FunctionRecordVals[] = { #include "llvm/ProfileData/InstrProfData.inc" }; FunctionRecords.push_back(llvm::ConstantStruct::get( FunctionRecordTy, makeArrayRef(FunctionRecordVals))); if (!IsUsed) FunctionNames.push_back( llvm::ConstantExpr::getBitCast(NamePtr, llvm::Type::getInt8PtrTy(Ctx))); CoverageMappings.push_back(CoverageMapping); if (CGM.getCodeGenOpts().DumpCoverageMapping) { // Dump the coverage mapping data for this function by decoding the // encoded data. This allows us to dump the mapping regions which were // also processed by the CoverageMappingWriter which performs // additional minimization operations such as reducing the number of // expressions. std::vector<StringRef> Filenames; std::vector<CounterExpression> Expressions; std::vector<CounterMappingRegion> Regions; llvm::SmallVector<StringRef, 16> FilenameRefs; FilenameRefs.resize(FileEntries.size()); for (const auto &Entry : FileEntries) FilenameRefs[Entry.second] = Entry.first->getName(); RawCoverageMappingReader Reader(CoverageMapping, FilenameRefs, Filenames, Expressions, Regions); if (Reader.read()) return; dump(llvm::outs(), NameValue, Expressions, Regions); } } void CoverageMappingModuleGen::emit() { if (FunctionRecords.empty()) return; llvm::LLVMContext &Ctx = CGM.getLLVMContext(); auto *Int32Ty = llvm::Type::getInt32Ty(Ctx); // Create the filenames and merge them with coverage mappings llvm::SmallVector<std::string, 16> FilenameStrs; llvm::SmallVector<StringRef, 16> FilenameRefs; FilenameStrs.resize(FileEntries.size()); FilenameRefs.resize(FileEntries.size()); for (const auto &Entry : FileEntries) { llvm::SmallString<256> Path(Entry.first->getName()); llvm::sys::fs::make_absolute(Path); auto I = Entry.second; FilenameStrs[I] = std::string(Path.begin(), Path.end()); FilenameRefs[I] = FilenameStrs[I]; } std::string FilenamesAndCoverageMappings; llvm::raw_string_ostream OS(FilenamesAndCoverageMappings); CoverageFilenamesSectionWriter(FilenameRefs).write(OS); std::string RawCoverageMappings = llvm::join(CoverageMappings.begin(), CoverageMappings.end(), ""); OS << RawCoverageMappings; size_t CoverageMappingSize = RawCoverageMappings.size(); size_t FilenamesSize = OS.str().size() - CoverageMappingSize; // Append extra zeroes if necessary to ensure that the size of the filenames // and coverage mappings is a multiple of 8. if (size_t Rem = OS.str().size() % 8) { CoverageMappingSize += 8 - Rem; for (size_t I = 0, S = 8 - Rem; I < S; ++I) OS << '\0'; } auto *FilenamesAndMappingsVal = llvm::ConstantDataArray::getString(Ctx, OS.str(), false); // Create the deferred function records array auto RecordsTy = llvm::ArrayType::get(FunctionRecordTy, FunctionRecords.size()); auto RecordsVal = llvm::ConstantArray::get(RecordsTy, FunctionRecords); llvm::Type *CovDataHeaderTypes[] = { #define COVMAP_HEADER(Type, LLVMType, Name, Init) LLVMType, #include "llvm/ProfileData/InstrProfData.inc" }; auto CovDataHeaderTy = llvm::StructType::get(Ctx, makeArrayRef(CovDataHeaderTypes)); llvm::Constant *CovDataHeaderVals[] = { #define COVMAP_HEADER(Type, LLVMType, Name, Init) Init, #include "llvm/ProfileData/InstrProfData.inc" }; auto CovDataHeaderVal = llvm::ConstantStruct::get( CovDataHeaderTy, makeArrayRef(CovDataHeaderVals)); // Create the coverage data record llvm::Type *CovDataTypes[] = {CovDataHeaderTy, RecordsTy, FilenamesAndMappingsVal->getType()}; auto CovDataTy = llvm::StructType::get(Ctx, makeArrayRef(CovDataTypes)); llvm::Constant *TUDataVals[] = {CovDataHeaderVal, RecordsVal, FilenamesAndMappingsVal}; auto CovDataVal = llvm::ConstantStruct::get(CovDataTy, makeArrayRef(TUDataVals)); auto CovData = new llvm::GlobalVariable( CGM.getModule(), CovDataTy, true, llvm::GlobalValue::InternalLinkage, CovDataVal, llvm::getCoverageMappingVarName()); CovData->setSection(getCoverageSection(CGM)); CovData->setAlignment(8); // Make sure the data doesn't get deleted. CGM.addUsedGlobal(CovData); // Create the deferred function records array if (!FunctionNames.empty()) { auto NamesArrTy = llvm::ArrayType::get(llvm::Type::getInt8PtrTy(Ctx), FunctionNames.size()); auto NamesArrVal = llvm::ConstantArray::get(NamesArrTy, FunctionNames); // This variable will *NOT* be emitted to the object file. It is used // to pass the list of names referenced to codegen. new llvm::GlobalVariable(CGM.getModule(), NamesArrTy, true, llvm::GlobalValue::InternalLinkage, NamesArrVal, llvm::getCoverageUnusedNamesVarName()); } } unsigned CoverageMappingModuleGen::getFileID(const FileEntry *File) { auto It = FileEntries.find(File); if (It != FileEntries.end()) return It->second; unsigned FileID = FileEntries.size(); FileEntries.insert(std::make_pair(File, FileID)); return FileID; } void CoverageMappingGen::emitCounterMapping(const Decl *D, llvm::raw_ostream &OS) { assert(CounterMap); CounterCoverageMappingBuilder Walker(CVM, *CounterMap, SM, LangOpts); Walker.VisitDecl(D); Walker.write(OS); } void CoverageMappingGen::emitEmptyMapping(const Decl *D, llvm::raw_ostream &OS) { EmptyCoverageMappingBuilder Walker(CVM, SM, LangOpts); Walker.VisitDecl(D); Walker.write(OS); }