//===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Declaration portions of the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "RAIIObjectsForParser.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclTemplate.h" #include "clang/Basic/AddressSpaces.h" #include "clang/Basic/Attributes.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/TargetInfo.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/PrettyDeclStackTrace.h" #include "clang/Sema/Scope.h" #include "clang/Sema/SemaDiagnostic.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/ScopedPrinter.h" using namespace clang; //===----------------------------------------------------------------------===// // C99 6.7: Declarations. //===----------------------------------------------------------------------===// /// ParseTypeName /// type-name: [C99 6.7.6] /// specifier-qualifier-list abstract-declarator[opt] /// /// Called type-id in C++. TypeResult Parser::ParseTypeName(SourceRange *Range, Declarator::TheContext Context, AccessSpecifier AS, Decl **OwnedType, ParsedAttributes *Attrs) { DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context); if (DSC == DSC_normal) DSC = DSC_type_specifier; // Parse the common declaration-specifiers piece. DeclSpec DS(AttrFactory); if (Attrs) DS.addAttributes(Attrs->getList()); ParseSpecifierQualifierList(DS, AS, DSC); if (OwnedType) *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr; // Parse the abstract-declarator, if present. Declarator DeclaratorInfo(DS, Context); ParseDeclarator(DeclaratorInfo); if (Range) *Range = DeclaratorInfo.getSourceRange(); if (DeclaratorInfo.isInvalidType()) return true; return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); } /// isAttributeLateParsed - Return true if the attribute has arguments that /// require late parsing. static bool isAttributeLateParsed(const IdentifierInfo &II) { #define CLANG_ATTR_LATE_PARSED_LIST return llvm::StringSwitch<bool>(II.getName()) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_LATE_PARSED_LIST } /// ParseGNUAttributes - Parse a non-empty attributes list. /// /// [GNU] attributes: /// attribute /// attributes attribute /// /// [GNU] attribute: /// '__attribute__' '(' '(' attribute-list ')' ')' /// /// [GNU] attribute-list: /// attrib /// attribute_list ',' attrib /// /// [GNU] attrib: /// empty /// attrib-name /// attrib-name '(' identifier ')' /// attrib-name '(' identifier ',' nonempty-expr-list ')' /// attrib-name '(' argument-expression-list [C99 6.5.2] ')' /// /// [GNU] attrib-name: /// identifier /// typespec /// typequal /// storageclass /// /// Whether an attribute takes an 'identifier' is determined by the /// attrib-name. GCC's behavior here is not worth imitating: /// /// * In C mode, if the attribute argument list starts with an identifier /// followed by a ',' or an ')', and the identifier doesn't resolve to /// a type, it is parsed as an identifier. If the attribute actually /// wanted an expression, it's out of luck (but it turns out that no /// attributes work that way, because C constant expressions are very /// limited). /// * In C++ mode, if the attribute argument list starts with an identifier, /// and the attribute *wants* an identifier, it is parsed as an identifier. /// At block scope, any additional tokens between the identifier and the /// ',' or ')' are ignored, otherwise they produce a parse error. /// /// We follow the C++ model, but don't allow junk after the identifier. void Parser::ParseGNUAttributes(ParsedAttributes &attrs, SourceLocation *endLoc, LateParsedAttrList *LateAttrs, Declarator *D) { assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!"); while (Tok.is(tok::kw___attribute)) { ConsumeToken(); if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "attribute")) { SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ; return; } if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) { SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ; return; } // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") )) while (true) { // Allow empty/non-empty attributes. ((__vector_size__(16),,,,)) if (TryConsumeToken(tok::comma)) continue; // Expect an identifier or declaration specifier (const, int, etc.) if (Tok.isAnnotation()) break; IdentifierInfo *AttrName = Tok.getIdentifierInfo(); if (!AttrName) break; SourceLocation AttrNameLoc = ConsumeToken(); if (Tok.isNot(tok::l_paren)) { attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, AttributeList::AS_GNU); continue; } // Handle "parameterized" attributes if (!LateAttrs || !isAttributeLateParsed(*AttrName)) { ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr, SourceLocation(), AttributeList::AS_GNU, D); continue; } // Handle attributes with arguments that require late parsing. LateParsedAttribute *LA = new LateParsedAttribute(this, *AttrName, AttrNameLoc); LateAttrs->push_back(LA); // Attributes in a class are parsed at the end of the class, along // with other late-parsed declarations. if (!ClassStack.empty() && !LateAttrs->parseSoon()) getCurrentClass().LateParsedDeclarations.push_back(LA); // consume everything up to and including the matching right parens ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false); Token Eof; Eof.startToken(); Eof.setLocation(Tok.getLocation()); LA->Toks.push_back(Eof); } if (ExpectAndConsume(tok::r_paren)) SkipUntil(tok::r_paren, StopAtSemi); SourceLocation Loc = Tok.getLocation(); if (ExpectAndConsume(tok::r_paren)) SkipUntil(tok::r_paren, StopAtSemi); if (endLoc) *endLoc = Loc; } } /// \brief Normalizes an attribute name by dropping prefixed and suffixed __. static StringRef normalizeAttrName(StringRef Name) { if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__")) Name = Name.drop_front(2).drop_back(2); return Name; } /// \brief Determine whether the given attribute has an identifier argument. static bool attributeHasIdentifierArg(const IdentifierInfo &II) { #define CLANG_ATTR_IDENTIFIER_ARG_LIST return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_IDENTIFIER_ARG_LIST } /// \brief Determine whether the given attribute parses a type argument. static bool attributeIsTypeArgAttr(const IdentifierInfo &II) { #define CLANG_ATTR_TYPE_ARG_LIST return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_TYPE_ARG_LIST } /// \brief Determine whether the given attribute requires parsing its arguments /// in an unevaluated context or not. static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) { #define CLANG_ATTR_ARG_CONTEXT_LIST return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_ARG_CONTEXT_LIST } IdentifierLoc *Parser::ParseIdentifierLoc() { assert(Tok.is(tok::identifier) && "expected an identifier"); IdentifierLoc *IL = IdentifierLoc::create(Actions.Context, Tok.getLocation(), Tok.getIdentifierInfo()); ConsumeToken(); return IL; } void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, AttributeList::Syntax Syntax) { BalancedDelimiterTracker Parens(*this, tok::l_paren); Parens.consumeOpen(); TypeResult T; if (Tok.isNot(tok::r_paren)) T = ParseTypeName(); if (Parens.consumeClose()) return; if (T.isInvalid()) return; if (T.isUsable()) Attrs.addNewTypeAttr(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()), ScopeName, ScopeLoc, T.get(), Syntax); else Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()), ScopeName, ScopeLoc, nullptr, 0, Syntax); } unsigned Parser::ParseAttributeArgsCommon( IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, AttributeList::Syntax Syntax) { // Ignore the left paren location for now. ConsumeParen(); ArgsVector ArgExprs; if (Tok.is(tok::identifier)) { // If this attribute wants an 'identifier' argument, make it so. bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName); AttributeList::Kind AttrKind = AttributeList::getKind(AttrName, ScopeName, Syntax); // If we don't know how to parse this attribute, but this is the only // token in this argument, assume it's meant to be an identifier. if (AttrKind == AttributeList::UnknownAttribute || AttrKind == AttributeList::IgnoredAttribute) { const Token &Next = NextToken(); IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma); } if (IsIdentifierArg) ArgExprs.push_back(ParseIdentifierLoc()); } if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) { // Eat the comma. if (!ArgExprs.empty()) ConsumeToken(); // Parse the non-empty comma-separated list of expressions. do { std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated; if (attributeParsedArgsUnevaluated(*AttrName)) Unevaluated.reset( new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated)); ExprResult ArgExpr( Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); if (ArgExpr.isInvalid()) { SkipUntil(tok::r_paren, StopAtSemi); return 0; } ArgExprs.push_back(ArgExpr.get()); // Eat the comma, move to the next argument } while (TryConsumeToken(tok::comma)); } SourceLocation RParen = Tok.getLocation(); if (!ExpectAndConsume(tok::r_paren)) { SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc; Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc, ArgExprs.data(), ArgExprs.size(), Syntax); } if (EndLoc) *EndLoc = RParen; return static_cast<unsigned>(ArgExprs.size()); } /// Parse the arguments to a parameterized GNU attribute or /// a C++11 attribute in "gnu" namespace. void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, AttributeList::Syntax Syntax, Declarator *D) { assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); AttributeList::Kind AttrKind = AttributeList::getKind(AttrName, ScopeName, Syntax); if (AttrKind == AttributeList::AT_Availability) { ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); return; } else if (AttrKind == AttributeList::AT_ObjCBridgeRelated) { ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); return; } else if (AttrKind == AttributeList::AT_TypeTagForDatatype) { ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); return; } else if (attributeIsTypeArgAttr(*AttrName)) { ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); return; } // These may refer to the function arguments, but need to be parsed early to // participate in determining whether it's a redeclaration. std::unique_ptr<ParseScope> PrototypeScope; if (normalizeAttrName(AttrName->getName()) == "enable_if" && D && D->isFunctionDeclarator()) { DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo(); PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope | Scope::FunctionDeclarationScope | Scope::DeclScope)); for (unsigned i = 0; i != FTI.NumParams; ++i) { ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param); } } ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); } bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs) { // If the attribute isn't known, we will not attempt to parse any // arguments. if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName, getTargetInfo(), getLangOpts())) { // Eat the left paren, then skip to the ending right paren. ConsumeParen(); SkipUntil(tok::r_paren); return false; } SourceLocation OpenParenLoc = Tok.getLocation(); if (AttrName->getName() == "property") { // The property declspec is more complex in that it can take one or two // assignment expressions as a parameter, but the lhs of the assignment // must be named get or put. BalancedDelimiterTracker T(*this, tok::l_paren); T.expectAndConsume(diag::err_expected_lparen_after, AttrName->getNameStart(), tok::r_paren); enum AccessorKind { AK_Invalid = -1, AK_Put = 0, AK_Get = 1 // indices into AccessorNames }; IdentifierInfo *AccessorNames[] = {nullptr, nullptr}; bool HasInvalidAccessor = false; // Parse the accessor specifications. while (true) { // Stop if this doesn't look like an accessor spec. if (!Tok.is(tok::identifier)) { // If the user wrote a completely empty list, use a special diagnostic. if (Tok.is(tok::r_paren) && !HasInvalidAccessor && AccessorNames[AK_Put] == nullptr && AccessorNames[AK_Get] == nullptr) { Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter); break; } Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor); break; } AccessorKind Kind; SourceLocation KindLoc = Tok.getLocation(); StringRef KindStr = Tok.getIdentifierInfo()->getName(); if (KindStr == "get") { Kind = AK_Get; } else if (KindStr == "put") { Kind = AK_Put; // Recover from the common mistake of using 'set' instead of 'put'. } else if (KindStr == "set") { Diag(KindLoc, diag::err_ms_property_has_set_accessor) << FixItHint::CreateReplacement(KindLoc, "put"); Kind = AK_Put; // Handle the mistake of forgetting the accessor kind by skipping // this accessor. } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) { Diag(KindLoc, diag::err_ms_property_missing_accessor_kind); ConsumeToken(); HasInvalidAccessor = true; goto next_property_accessor; // Otherwise, complain about the unknown accessor kind. } else { Diag(KindLoc, diag::err_ms_property_unknown_accessor); HasInvalidAccessor = true; Kind = AK_Invalid; // Try to keep parsing unless it doesn't look like an accessor spec. if (!NextToken().is(tok::equal)) break; } // Consume the identifier. ConsumeToken(); // Consume the '='. if (!TryConsumeToken(tok::equal)) { Diag(Tok.getLocation(), diag::err_ms_property_expected_equal) << KindStr; break; } // Expect the method name. if (!Tok.is(tok::identifier)) { Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name); break; } if (Kind == AK_Invalid) { // Just drop invalid accessors. } else if (AccessorNames[Kind] != nullptr) { // Complain about the repeated accessor, ignore it, and keep parsing. Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr; } else { AccessorNames[Kind] = Tok.getIdentifierInfo(); } ConsumeToken(); next_property_accessor: // Keep processing accessors until we run out. if (TryConsumeToken(tok::comma)) continue; // If we run into the ')', stop without consuming it. if (Tok.is(tok::r_paren)) break; Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen); break; } // Only add the property attribute if it was well-formed. if (!HasInvalidAccessor) Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(), AccessorNames[AK_Get], AccessorNames[AK_Put], AttributeList::AS_Declspec); T.skipToEnd(); return !HasInvalidAccessor; } unsigned NumArgs = ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr, SourceLocation(), AttributeList::AS_Declspec); // If this attribute's args were parsed, and it was expected to have // arguments but none were provided, emit a diagnostic. const AttributeList *Attr = Attrs.getList(); if (Attr && Attr->getMaxArgs() && !NumArgs) { Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName; return false; } return true; } /// [MS] decl-specifier: /// __declspec ( extended-decl-modifier-seq ) /// /// [MS] extended-decl-modifier-seq: /// extended-decl-modifier[opt] /// extended-decl-modifier extended-decl-modifier-seq void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs, SourceLocation *End) { assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled"); assert(Tok.is(tok::kw___declspec) && "Not a declspec!"); while (Tok.is(tok::kw___declspec)) { ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec", tok::r_paren)) return; // An empty declspec is perfectly legal and should not warn. Additionally, // you can specify multiple attributes per declspec. while (Tok.isNot(tok::r_paren)) { // Attribute not present. if (TryConsumeToken(tok::comma)) continue; // We expect either a well-known identifier or a generic string. Anything // else is a malformed declspec. bool IsString = Tok.getKind() == tok::string_literal; if (!IsString && Tok.getKind() != tok::identifier && Tok.getKind() != tok::kw_restrict) { Diag(Tok, diag::err_ms_declspec_type); T.skipToEnd(); return; } IdentifierInfo *AttrName; SourceLocation AttrNameLoc; if (IsString) { SmallString<8> StrBuffer; bool Invalid = false; StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid); if (Invalid) { T.skipToEnd(); return; } AttrName = PP.getIdentifierInfo(Str); AttrNameLoc = ConsumeStringToken(); } else { AttrName = Tok.getIdentifierInfo(); AttrNameLoc = ConsumeToken(); } bool AttrHandled = false; // Parse attribute arguments. if (Tok.is(tok::l_paren)) AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs); else if (AttrName->getName() == "property") // The property attribute must have an argument list. Diag(Tok.getLocation(), diag::err_expected_lparen_after) << AttrName->getName(); if (!AttrHandled) Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, AttributeList::AS_Declspec); } T.consumeClose(); if (End) *End = T.getCloseLocation(); } } void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) { // Treat these like attributes while (true) { switch (Tok.getKind()) { case tok::kw___fastcall: case tok::kw___stdcall: case tok::kw___thiscall: case tok::kw___cdecl: case tok::kw___vectorcall: case tok::kw___ptr64: case tok::kw___w64: case tok::kw___ptr32: case tok::kw___sptr: case tok::kw___uptr: { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, AttributeList::AS_Keyword); break; } default: return; } } } void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() { SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes(); if (EndLoc.isValid()) { SourceRange Range(StartLoc, EndLoc); Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range; } } SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() { SourceLocation EndLoc; while (true) { switch (Tok.getKind()) { case tok::kw_const: case tok::kw_volatile: case tok::kw___fastcall: case tok::kw___stdcall: case tok::kw___thiscall: case tok::kw___cdecl: case tok::kw___vectorcall: case tok::kw___ptr32: case tok::kw___ptr64: case tok::kw___w64: case tok::kw___unaligned: case tok::kw___sptr: case tok::kw___uptr: EndLoc = ConsumeToken(); break; default: return EndLoc; } } } void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) { // Treat these like attributes while (Tok.is(tok::kw___pascal)) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, AttributeList::AS_Keyword); } } void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) { // Treat these like attributes while (Tok.is(tok::kw___kernel)) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, AttributeList::AS_Keyword); } } void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = Tok.getLocation(); Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, AttributeList::AS_Keyword); } void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) { // Treat these like attributes, even though they're type specifiers. while (true) { switch (Tok.getKind()) { case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Null_unspecified: { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); if (!getLangOpts().ObjC1) Diag(AttrNameLoc, diag::ext_nullability) << AttrName; attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, AttributeList::AS_Keyword); break; } default: return; } } } static bool VersionNumberSeparator(const char Separator) { return (Separator == '.' || Separator == '_'); } /// \brief Parse a version number. /// /// version: /// simple-integer /// simple-integer ',' simple-integer /// simple-integer ',' simple-integer ',' simple-integer VersionTuple Parser::ParseVersionTuple(SourceRange &Range) { Range = Tok.getLocation(); if (!Tok.is(tok::numeric_constant)) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } // Parse the major (and possibly minor and subminor) versions, which // are stored in the numeric constant. We utilize a quirk of the // lexer, which is that it handles something like 1.2.3 as a single // numeric constant, rather than two separate tokens. SmallString<512> Buffer; Buffer.resize(Tok.getLength()+1); const char *ThisTokBegin = &Buffer[0]; // Get the spelling of the token, which eliminates trigraphs, etc. bool Invalid = false; unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid); if (Invalid) return VersionTuple(); // Parse the major version. unsigned AfterMajor = 0; unsigned Major = 0; while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) { Major = Major * 10 + ThisTokBegin[AfterMajor] - '0'; ++AfterMajor; } if (AfterMajor == 0) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } if (AfterMajor == ActualLength) { ConsumeToken(); // We only had a single version component. if (Major == 0) { Diag(Tok, diag::err_zero_version); return VersionTuple(); } return VersionTuple(Major); } const char AfterMajorSeparator = ThisTokBegin[AfterMajor]; if (!VersionNumberSeparator(AfterMajorSeparator) || (AfterMajor + 1 == ActualLength)) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } // Parse the minor version. unsigned AfterMinor = AfterMajor + 1; unsigned Minor = 0; while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) { Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0'; ++AfterMinor; } if (AfterMinor == ActualLength) { ConsumeToken(); // We had major.minor. if (Major == 0 && Minor == 0) { Diag(Tok, diag::err_zero_version); return VersionTuple(); } return VersionTuple(Major, Minor, (AfterMajorSeparator == '_')); } const char AfterMinorSeparator = ThisTokBegin[AfterMinor]; // If what follows is not a '.' or '_', we have a problem. if (!VersionNumberSeparator(AfterMinorSeparator)) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } // Warn if separators, be it '.' or '_', do not match. if (AfterMajorSeparator != AfterMinorSeparator) Diag(Tok, diag::warn_expected_consistent_version_separator); // Parse the subminor version. unsigned AfterSubminor = AfterMinor + 1; unsigned Subminor = 0; while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) { Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0'; ++AfterSubminor; } if (AfterSubminor != ActualLength) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } ConsumeToken(); return VersionTuple(Major, Minor, Subminor, (AfterMajorSeparator == '_')); } /// \brief Parse the contents of the "availability" attribute. /// /// availability-attribute: /// 'availability' '(' platform ',' opt-strict version-arg-list, /// opt-replacement, opt-message')' /// /// platform: /// identifier /// /// opt-strict: /// 'strict' ',' /// /// version-arg-list: /// version-arg /// version-arg ',' version-arg-list /// /// version-arg: /// 'introduced' '=' version /// 'deprecated' '=' version /// 'obsoleted' = version /// 'unavailable' /// opt-replacement: /// 'replacement' '=' <string> /// opt-message: /// 'message' '=' <string> void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability, SourceLocation AvailabilityLoc, ParsedAttributes &attrs, SourceLocation *endLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, AttributeList::Syntax Syntax) { enum { Introduced, Deprecated, Obsoleted, Unknown }; AvailabilityChange Changes[Unknown]; ExprResult MessageExpr, ReplacementExpr; // Opening '('. BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { Diag(Tok, diag::err_expected) << tok::l_paren; return; } // Parse the platform name. if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_availability_expected_platform); SkipUntil(tok::r_paren, StopAtSemi); return; } IdentifierLoc *Platform = ParseIdentifierLoc(); // Canonicalize platform name from "macosx" to "macos". if (Platform->Ident && Platform->Ident->getName() == "macosx") Platform->Ident = PP.getIdentifierInfo("macos"); // Canonicalize platform name from "macosx_app_extension" to // "macos_app_extension". if (Platform->Ident && Platform->Ident->getName() == "macosx_app_extension") Platform->Ident = PP.getIdentifierInfo("macos_app_extension"); // Parse the ',' following the platform name. if (ExpectAndConsume(tok::comma)) { SkipUntil(tok::r_paren, StopAtSemi); return; } // If we haven't grabbed the pointers for the identifiers // "introduced", "deprecated", and "obsoleted", do so now. if (!Ident_introduced) { Ident_introduced = PP.getIdentifierInfo("introduced"); Ident_deprecated = PP.getIdentifierInfo("deprecated"); Ident_obsoleted = PP.getIdentifierInfo("obsoleted"); Ident_unavailable = PP.getIdentifierInfo("unavailable"); Ident_message = PP.getIdentifierInfo("message"); Ident_strict = PP.getIdentifierInfo("strict"); Ident_replacement = PP.getIdentifierInfo("replacement"); } // Parse the optional "strict", the optional "replacement" and the set of // introductions/deprecations/removals. SourceLocation UnavailableLoc, StrictLoc; do { if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_availability_expected_change); SkipUntil(tok::r_paren, StopAtSemi); return; } IdentifierInfo *Keyword = Tok.getIdentifierInfo(); SourceLocation KeywordLoc = ConsumeToken(); if (Keyword == Ident_strict) { if (StrictLoc.isValid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(StrictLoc); } StrictLoc = KeywordLoc; continue; } if (Keyword == Ident_unavailable) { if (UnavailableLoc.isValid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(UnavailableLoc); } UnavailableLoc = KeywordLoc; continue; } if (Tok.isNot(tok::equal)) { Diag(Tok, diag::err_expected_after) << Keyword << tok::equal; SkipUntil(tok::r_paren, StopAtSemi); return; } ConsumeToken(); if (Keyword == Ident_message || Keyword == Ident_replacement) { if (Tok.isNot(tok::string_literal)) { Diag(Tok, diag::err_expected_string_literal) << /*Source='availability attribute'*/2; SkipUntil(tok::r_paren, StopAtSemi); return; } if (Keyword == Ident_message) MessageExpr = ParseStringLiteralExpression(); else ReplacementExpr = ParseStringLiteralExpression(); // Also reject wide string literals. if (StringLiteral *MessageStringLiteral = cast_or_null<StringLiteral>(MessageExpr.get())) { if (MessageStringLiteral->getCharByteWidth() != 1) { Diag(MessageStringLiteral->getSourceRange().getBegin(), diag::err_expected_string_literal) << /*Source='availability attribute'*/ 2; SkipUntil(tok::r_paren, StopAtSemi); return; } } if (Keyword == Ident_message) break; else continue; } // Special handling of 'NA' only when applied to introduced or // deprecated. if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) && Tok.is(tok::identifier)) { IdentifierInfo *NA = Tok.getIdentifierInfo(); if (NA->getName() == "NA") { ConsumeToken(); if (Keyword == Ident_introduced) UnavailableLoc = KeywordLoc; continue; } } SourceRange VersionRange; VersionTuple Version = ParseVersionTuple(VersionRange); if (Version.empty()) { SkipUntil(tok::r_paren, StopAtSemi); return; } unsigned Index; if (Keyword == Ident_introduced) Index = Introduced; else if (Keyword == Ident_deprecated) Index = Deprecated; else if (Keyword == Ident_obsoleted) Index = Obsoleted; else Index = Unknown; if (Index < Unknown) { if (!Changes[Index].KeywordLoc.isInvalid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(Changes[Index].KeywordLoc, Changes[Index].VersionRange.getEnd()); } Changes[Index].KeywordLoc = KeywordLoc; Changes[Index].Version = Version; Changes[Index].VersionRange = VersionRange; } else { Diag(KeywordLoc, diag::err_availability_unknown_change) << Keyword << VersionRange; } } while (TryConsumeToken(tok::comma)); // Closing ')'. if (T.consumeClose()) return; if (endLoc) *endLoc = T.getCloseLocation(); // The 'unavailable' availability cannot be combined with any other // availability changes. Make sure that hasn't happened. if (UnavailableLoc.isValid()) { bool Complained = false; for (unsigned Index = Introduced; Index != Unknown; ++Index) { if (Changes[Index].KeywordLoc.isValid()) { if (!Complained) { Diag(UnavailableLoc, diag::warn_availability_and_unavailable) << SourceRange(Changes[Index].KeywordLoc, Changes[Index].VersionRange.getEnd()); Complained = true; } // Clear out the availability. Changes[Index] = AvailabilityChange(); } } } // Record this attribute attrs.addNew(&Availability, SourceRange(AvailabilityLoc, T.getCloseLocation()), ScopeName, ScopeLoc, Platform, Changes[Introduced], Changes[Deprecated], Changes[Obsoleted], UnavailableLoc, MessageExpr.get(), Syntax, StrictLoc, ReplacementExpr.get()); } /// \brief Parse the contents of the "objc_bridge_related" attribute. /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')' /// related_class: /// Identifier /// /// opt-class_method: /// Identifier: | <empty> /// /// opt-instance_method: /// Identifier | <empty> /// void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated, SourceLocation ObjCBridgeRelatedLoc, ParsedAttributes &attrs, SourceLocation *endLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, AttributeList::Syntax Syntax) { // Opening '('. BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { Diag(Tok, diag::err_expected) << tok::l_paren; return; } // Parse the related class name. if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_objcbridge_related_expected_related_class); SkipUntil(tok::r_paren, StopAtSemi); return; } IdentifierLoc *RelatedClass = ParseIdentifierLoc(); if (ExpectAndConsume(tok::comma)) { SkipUntil(tok::r_paren, StopAtSemi); return; } // Parse optional class method name. IdentifierLoc *ClassMethod = nullptr; if (Tok.is(tok::identifier)) { ClassMethod = ParseIdentifierLoc(); if (!TryConsumeToken(tok::colon)) { Diag(Tok, diag::err_objcbridge_related_selector_name); SkipUntil(tok::r_paren, StopAtSemi); return; } } if (!TryConsumeToken(tok::comma)) { if (Tok.is(tok::colon)) Diag(Tok, diag::err_objcbridge_related_selector_name); else Diag(Tok, diag::err_expected) << tok::comma; SkipUntil(tok::r_paren, StopAtSemi); return; } // Parse optional instance method name. IdentifierLoc *InstanceMethod = nullptr; if (Tok.is(tok::identifier)) InstanceMethod = ParseIdentifierLoc(); else if (Tok.isNot(tok::r_paren)) { Diag(Tok, diag::err_expected) << tok::r_paren; SkipUntil(tok::r_paren, StopAtSemi); return; } // Closing ')'. if (T.consumeClose()) return; if (endLoc) *endLoc = T.getCloseLocation(); // Record this attribute attrs.addNew(&ObjCBridgeRelated, SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()), ScopeName, ScopeLoc, RelatedClass, ClassMethod, InstanceMethod, Syntax); } // Late Parsed Attributes: // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods void Parser::LateParsedDeclaration::ParseLexedAttributes() {} void Parser::LateParsedClass::ParseLexedAttributes() { Self->ParseLexedAttributes(*Class); } void Parser::LateParsedAttribute::ParseLexedAttributes() { Self->ParseLexedAttribute(*this, true, false); } /// Wrapper class which calls ParseLexedAttribute, after setting up the /// scope appropriately. void Parser::ParseLexedAttributes(ParsingClass &Class) { // Deal with templates // FIXME: Test cases to make sure this does the right thing for templates. bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope; ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope); if (HasTemplateScope) Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate); // Set or update the scope flags. bool AlreadyHasClassScope = Class.TopLevelClass; unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope; ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope); ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope); // Enter the scope of nested classes if (!AlreadyHasClassScope) Actions.ActOnStartDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); if (!Class.LateParsedDeclarations.empty()) { for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){ Class.LateParsedDeclarations[i]->ParseLexedAttributes(); } } if (!AlreadyHasClassScope) Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); } /// \brief Parse all attributes in LAs, and attach them to Decl D. void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D, bool EnterScope, bool OnDefinition) { assert(LAs.parseSoon() && "Attribute list should be marked for immediate parsing."); for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) { if (D) LAs[i]->addDecl(D); ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition); delete LAs[i]; } LAs.clear(); } /// \brief Finish parsing an attribute for which parsing was delayed. /// This will be called at the end of parsing a class declaration /// for each LateParsedAttribute. We consume the saved tokens and /// create an attribute with the arguments filled in. We add this /// to the Attribute list for the decl. void Parser::ParseLexedAttribute(LateParsedAttribute &LA, bool EnterScope, bool OnDefinition) { // Create a fake EOF so that attribute parsing won't go off the end of the // attribute. Token AttrEnd; AttrEnd.startToken(); AttrEnd.setKind(tok::eof); AttrEnd.setLocation(Tok.getLocation()); AttrEnd.setEofData(LA.Toks.data()); LA.Toks.push_back(AttrEnd); // Append the current token at the end of the new token stream so that it // doesn't get lost. LA.Toks.push_back(Tok); PP.EnterTokenStream(LA.Toks, true); // Consume the previously pushed token. ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true); ParsedAttributes Attrs(AttrFactory); SourceLocation endLoc; if (LA.Decls.size() > 0) { Decl *D = LA.Decls[0]; NamedDecl *ND = dyn_cast<NamedDecl>(D); RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext()); // Allow 'this' within late-parsed attributes. Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0, ND && ND->isCXXInstanceMember()); if (LA.Decls.size() == 1) { // If the Decl is templatized, add template parameters to scope. bool HasTemplateScope = EnterScope && D->isTemplateDecl(); ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope); if (HasTemplateScope) Actions.ActOnReenterTemplateScope(Actions.CurScope, D); // If the Decl is on a function, add function parameters to the scope. bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate(); ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope); if (HasFunScope) Actions.ActOnReenterFunctionContext(Actions.CurScope, D); ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc, nullptr, SourceLocation(), AttributeList::AS_GNU, nullptr); if (HasFunScope) { Actions.ActOnExitFunctionContext(); FnScope.Exit(); // Pop scope, and remove Decls from IdResolver } if (HasTemplateScope) { TempScope.Exit(); } } else { // If there are multiple decls, then the decl cannot be within the // function scope. ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc, nullptr, SourceLocation(), AttributeList::AS_GNU, nullptr); } } else { Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName(); } const AttributeList *AL = Attrs.getList(); if (OnDefinition && AL && !AL->isCXX11Attribute() && AL->isKnownToGCC()) Diag(Tok, diag::warn_attribute_on_function_definition) << &LA.AttrName; for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i) Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs); // Due to a parsing error, we either went over the cached tokens or // there are still cached tokens left, so we skip the leftover tokens. while (Tok.isNot(tok::eof)) ConsumeAnyToken(); if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData()) ConsumeAnyToken(); } void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, AttributeList::Syntax Syntax) { assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; T.skipToEnd(); return; } IdentifierLoc *ArgumentKind = ParseIdentifierLoc(); if (ExpectAndConsume(tok::comma)) { T.skipToEnd(); return; } SourceRange MatchingCTypeRange; TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange); if (MatchingCType.isInvalid()) { T.skipToEnd(); return; } bool LayoutCompatible = false; bool MustBeNull = false; while (TryConsumeToken(tok::comma)) { if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; T.skipToEnd(); return; } IdentifierInfo *Flag = Tok.getIdentifierInfo(); if (Flag->isStr("layout_compatible")) LayoutCompatible = true; else if (Flag->isStr("must_be_null")) MustBeNull = true; else { Diag(Tok, diag::err_type_safety_unknown_flag) << Flag; T.skipToEnd(); return; } ConsumeToken(); // consume flag } if (!T.consumeClose()) { Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc, ArgumentKind, MatchingCType.get(), LayoutCompatible, MustBeNull, Syntax); } if (EndLoc) *EndLoc = T.getCloseLocation(); } /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets /// of a C++11 attribute-specifier in a location where an attribute is not /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this /// situation. /// /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if /// this doesn't appear to actually be an attribute-specifier, and the caller /// should try to parse it. bool Parser::DiagnoseProhibitedCXX11Attribute() { assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)); switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) { case CAK_NotAttributeSpecifier: // No diagnostic: we're in Obj-C++11 and this is not actually an attribute. return false; case CAK_InvalidAttributeSpecifier: Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute); return false; case CAK_AttributeSpecifier: // Parse and discard the attributes. SourceLocation BeginLoc = ConsumeBracket(); ConsumeBracket(); SkipUntil(tok::r_square); assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied"); SourceLocation EndLoc = ConsumeBracket(); Diag(BeginLoc, diag::err_attributes_not_allowed) << SourceRange(BeginLoc, EndLoc); return true; } llvm_unreachable("All cases handled above."); } /// \brief We have found the opening square brackets of a C++11 /// attribute-specifier in a location where an attribute is not permitted, but /// we know where the attributes ought to be written. Parse them anyway, and /// provide a fixit moving them to the right place. void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs, SourceLocation CorrectLocation) { assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) || Tok.is(tok::kw_alignas)); // Consume the attributes. SourceLocation Loc = Tok.getLocation(); ParseCXX11Attributes(Attrs); CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true); Diag(Loc, diag::err_attributes_not_allowed) << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange) << FixItHint::CreateRemoval(AttrRange); } void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) { Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed) << attrs.Range; } void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) { AttributeList *AttrList = attrs.getList(); while (AttrList) { if (AttrList->isCXX11Attribute()) { Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr) << AttrList->getName(); AttrList->setInvalid(); } AttrList = AttrList->getNext(); } } // As an exception to the rule, __declspec(align(...)) before the // class-key affects the type instead of the variable. void Parser::handleDeclspecAlignBeforeClassKey(ParsedAttributesWithRange &Attrs, DeclSpec &DS, Sema::TagUseKind TUK) { if (TUK == Sema::TUK_Reference) return; ParsedAttributes &PA = DS.getAttributes(); AttributeList *AL = PA.getList(); AttributeList *Prev = nullptr; while (AL) { AttributeList *Next = AL->getNext(); // We only consider attributes using the appropriate '__declspec' spelling. // This behavior doesn't extend to any other spellings. if (AL->getKind() == AttributeList::AT_Aligned && AL->isDeclspecAttribute()) { // Stitch the attribute into the tag's attribute list. AL->setNext(nullptr); Attrs.add(AL); // Remove the attribute from the variable's attribute list. if (Prev) { // Set the last variable attribute's next attribute to be the attribute // after the current one. Prev->setNext(Next); } else { // Removing the head of the list requires us to reset the head to the // next attribute. PA.set(Next); } } else { Prev = AL; } AL = Next; } } /// ParseDeclaration - Parse a full 'declaration', which consists of /// declaration-specifiers, some number of declarators, and a semicolon. /// 'Context' should be a Declarator::TheContext value. This returns the /// location of the semicolon in DeclEnd. /// /// declaration: [C99 6.7] /// block-declaration -> /// simple-declaration /// others [FIXME] /// [C++] template-declaration /// [C++] namespace-definition /// [C++] using-directive /// [C++] using-declaration /// [C++11/C11] static_assert-declaration /// others... [FIXME] /// Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context, SourceLocation &DeclEnd, ParsedAttributesWithRange &attrs) { ParenBraceBracketBalancer BalancerRAIIObj(*this); // Must temporarily exit the objective-c container scope for // parsing c none objective-c decls. ObjCDeclContextSwitch ObjCDC(*this); Decl *SingleDecl = nullptr; Decl *OwnedType = nullptr; switch (Tok.getKind()) { case tok::kw_template: case tok::kw_export: ProhibitAttributes(attrs); SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd); break; case tok::kw_inline: // Could be the start of an inline namespace. Allowed as an ext in C++03. if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) { ProhibitAttributes(attrs); SourceLocation InlineLoc = ConsumeToken(); return ParseNamespace(Context, DeclEnd, InlineLoc); } return ParseSimpleDeclaration(Context, DeclEnd, attrs, true); case tok::kw_namespace: ProhibitAttributes(attrs); return ParseNamespace(Context, DeclEnd); case tok::kw_using: SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(), DeclEnd, attrs, &OwnedType); break; case tok::kw_static_assert: case tok::kw__Static_assert: ProhibitAttributes(attrs); SingleDecl = ParseStaticAssertDeclaration(DeclEnd); break; default: return ParseSimpleDeclaration(Context, DeclEnd, attrs, true); } // This routine returns a DeclGroup, if the thing we parsed only contains a // single decl, convert it now. Alias declarations can also declare a type; // include that too if it is present. return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType); } /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl] /// declaration-specifiers init-declarator-list[opt] ';' /// [C++11] attribute-specifier-seq decl-specifier-seq[opt] /// init-declarator-list ';' ///[C90/C++]init-declarator-list ';' [TODO] /// [OMP] threadprivate-directive [TODO] /// /// for-range-declaration: [C++11 6.5p1: stmt.ranged] /// attribute-specifier-seq[opt] type-specifier-seq declarator /// /// If RequireSemi is false, this does not check for a ';' at the end of the /// declaration. If it is true, it checks for and eats it. /// /// If FRI is non-null, we might be parsing a for-range-declaration instead /// of a simple-declaration. If we find that we are, we also parse the /// for-range-initializer, and place it here. Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context, SourceLocation &DeclEnd, ParsedAttributesWithRange &Attrs, bool RequireSemi, ForRangeInit *FRI) { // Parse the common declaration-specifiers piece. ParsingDeclSpec DS(*this); DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context); ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext); // If we had a free-standing type definition with a missing semicolon, we // may get this far before the problem becomes obvious. if (DS.hasTagDefinition() && DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext)) return nullptr; // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" // declaration-specifiers init-declarator-list[opt] ';' if (Tok.is(tok::semi)) { ProhibitAttributes(Attrs); DeclEnd = Tok.getLocation(); if (RequireSemi) ConsumeToken(); RecordDecl *AnonRecord = nullptr; Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS, AnonRecord); DS.complete(TheDecl); if (AnonRecord) { Decl* decls[] = {AnonRecord, TheDecl}; return Actions.BuildDeclaratorGroup(decls, /*TypeMayContainAuto=*/false); } return Actions.ConvertDeclToDeclGroup(TheDecl); } DS.takeAttributesFrom(Attrs); return ParseDeclGroup(DS, Context, &DeclEnd, FRI); } /// Returns true if this might be the start of a declarator, or a common typo /// for a declarator. bool Parser::MightBeDeclarator(unsigned Context) { switch (Tok.getKind()) { case tok::annot_cxxscope: case tok::annot_template_id: case tok::caret: case tok::code_completion: case tok::coloncolon: case tok::ellipsis: case tok::kw___attribute: case tok::kw_operator: case tok::l_paren: case tok::star: return true; case tok::amp: case tok::ampamp: return getLangOpts().CPlusPlus; case tok::l_square: // Might be an attribute on an unnamed bit-field. return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 && NextToken().is(tok::l_square); case tok::colon: // Might be a typo for '::' or an unnamed bit-field. return Context == Declarator::MemberContext || getLangOpts().CPlusPlus; case tok::identifier: switch (NextToken().getKind()) { case tok::code_completion: case tok::coloncolon: case tok::comma: case tok::equal: case tok::equalequal: // Might be a typo for '='. case tok::kw_alignas: case tok::kw_asm: case tok::kw___attribute: case tok::l_brace: case tok::l_paren: case tok::l_square: case tok::less: case tok::r_brace: case tok::r_paren: case tok::r_square: case tok::semi: return true; case tok::colon: // At namespace scope, 'identifier:' is probably a typo for 'identifier::' // and in block scope it's probably a label. Inside a class definition, // this is a bit-field. return Context == Declarator::MemberContext || (getLangOpts().CPlusPlus && Context == Declarator::FileContext); case tok::identifier: // Possible virt-specifier. return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken()); default: return false; } default: return false; } } /// Skip until we reach something which seems like a sensible place to pick /// up parsing after a malformed declaration. This will sometimes stop sooner /// than SkipUntil(tok::r_brace) would, but will never stop later. void Parser::SkipMalformedDecl() { while (true) { switch (Tok.getKind()) { case tok::l_brace: // Skip until matching }, then stop. We've probably skipped over // a malformed class or function definition or similar. ConsumeBrace(); SkipUntil(tok::r_brace); if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) { // This declaration isn't over yet. Keep skipping. continue; } TryConsumeToken(tok::semi); return; case tok::l_square: ConsumeBracket(); SkipUntil(tok::r_square); continue; case tok::l_paren: ConsumeParen(); SkipUntil(tok::r_paren); continue; case tok::r_brace: return; case tok::semi: ConsumeToken(); return; case tok::kw_inline: // 'inline namespace' at the start of a line is almost certainly // a good place to pick back up parsing, except in an Objective-C // @interface context. if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) && (!ParsingInObjCContainer || CurParsedObjCImpl)) return; break; case tok::kw_namespace: // 'namespace' at the start of a line is almost certainly a good // place to pick back up parsing, except in an Objective-C // @interface context. if (Tok.isAtStartOfLine() && (!ParsingInObjCContainer || CurParsedObjCImpl)) return; break; case tok::at: // @end is very much like } in Objective-C contexts. if (NextToken().isObjCAtKeyword(tok::objc_end) && ParsingInObjCContainer) return; break; case tok::minus: case tok::plus: // - and + probably start new method declarations in Objective-C contexts. if (Tok.isAtStartOfLine() && ParsingInObjCContainer) return; break; case tok::eof: case tok::annot_module_begin: case tok::annot_module_end: case tok::annot_module_include: return; default: break; } ConsumeAnyToken(); } } /// ParseDeclGroup - Having concluded that this is either a function /// definition or a group of object declarations, actually parse the /// result. Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS, unsigned Context, SourceLocation *DeclEnd, ForRangeInit *FRI) { // Parse the first declarator. ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context)); ParseDeclarator(D); // Bail out if the first declarator didn't seem well-formed. if (!D.hasName() && !D.mayOmitIdentifier()) { SkipMalformedDecl(); return nullptr; } // Save late-parsed attributes for now; they need to be parsed in the // appropriate function scope after the function Decl has been constructed. // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList. LateParsedAttrList LateParsedAttrs(true); if (D.isFunctionDeclarator()) { MaybeParseGNUAttributes(D, &LateParsedAttrs); // The _Noreturn keyword can't appear here, unlike the GNU noreturn // attribute. If we find the keyword here, tell the user to put it // at the start instead. if (Tok.is(tok::kw__Noreturn)) { SourceLocation Loc = ConsumeToken(); const char *PrevSpec; unsigned DiagID; // We can offer a fixit if it's valid to mark this function as _Noreturn // and we don't have any other declarators in this declaration. bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID); MaybeParseGNUAttributes(D, &LateParsedAttrs); Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try); Diag(Loc, diag::err_c11_noreturn_misplaced) << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint()) << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ") : FixItHint()); } } // Check to see if we have a function *definition* which must have a body. if (D.isFunctionDeclarator() && // Look at the next token to make sure that this isn't a function // declaration. We have to check this because __attribute__ might be the // start of a function definition in GCC-extended K&R C. !isDeclarationAfterDeclarator()) { // Function definitions are only allowed at file scope and in C++ classes. // The C++ inline method definition case is handled elsewhere, so we only // need to handle the file scope definition case. if (Context == Declarator::FileContext) { if (isStartOfFunctionDefinition(D)) { if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { Diag(Tok, diag::err_function_declared_typedef); // Recover by treating the 'typedef' as spurious. DS.ClearStorageClassSpecs(); } Decl *TheDecl = ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs); return Actions.ConvertDeclToDeclGroup(TheDecl); } if (isDeclarationSpecifier()) { // If there is an invalid declaration specifier right after the // function prototype, then we must be in a missing semicolon case // where this isn't actually a body. Just fall through into the code // that handles it as a prototype, and let the top-level code handle // the erroneous declspec where it would otherwise expect a comma or // semicolon. } else { Diag(Tok, diag::err_expected_fn_body); SkipUntil(tok::semi); return nullptr; } } else { if (Tok.is(tok::l_brace)) { Diag(Tok, diag::err_function_definition_not_allowed); SkipMalformedDecl(); return nullptr; } } } if (ParseAsmAttributesAfterDeclarator(D)) return nullptr; // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we // must parse and analyze the for-range-initializer before the declaration is // analyzed. // // Handle the Objective-C for-in loop variable similarly, although we // don't need to parse the container in advance. if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) { bool IsForRangeLoop = false; if (TryConsumeToken(tok::colon, FRI->ColonLoc)) { IsForRangeLoop = true; if (Tok.is(tok::l_brace)) FRI->RangeExpr = ParseBraceInitializer(); else FRI->RangeExpr = ParseExpression(); } Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); if (IsForRangeLoop) Actions.ActOnCXXForRangeDecl(ThisDecl); Actions.FinalizeDeclaration(ThisDecl); D.complete(ThisDecl); return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl); } SmallVector<Decl *, 8> DeclsInGroup; Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes( D, ParsedTemplateInfo(), FRI); if (LateParsedAttrs.size() > 0) ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false); D.complete(FirstDecl); if (FirstDecl) DeclsInGroup.push_back(FirstDecl); bool ExpectSemi = Context != Declarator::ForContext; // If we don't have a comma, it is either the end of the list (a ';') or an // error, bail out. SourceLocation CommaLoc; while (TryConsumeToken(tok::comma, CommaLoc)) { if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) { // This comma was followed by a line-break and something which can't be // the start of a declarator. The comma was probably a typo for a // semicolon. Diag(CommaLoc, diag::err_expected_semi_declaration) << FixItHint::CreateReplacement(CommaLoc, ";"); ExpectSemi = false; break; } // Parse the next declarator. D.clear(); D.setCommaLoc(CommaLoc); // Accept attributes in an init-declarator. In the first declarator in a // declaration, these would be part of the declspec. In subsequent // declarators, they become part of the declarator itself, so that they // don't apply to declarators after *this* one. Examples: // short __attribute__((common)) var; -> declspec // short var __attribute__((common)); -> declarator // short x, __attribute__((common)) var; -> declarator MaybeParseGNUAttributes(D); // MSVC parses but ignores qualifiers after the comma as an extension. if (getLangOpts().MicrosoftExt) DiagnoseAndSkipExtendedMicrosoftTypeAttributes(); ParseDeclarator(D); if (!D.isInvalidType()) { Decl *ThisDecl = ParseDeclarationAfterDeclarator(D); D.complete(ThisDecl); if (ThisDecl) DeclsInGroup.push_back(ThisDecl); } } if (DeclEnd) *DeclEnd = Tok.getLocation(); if (ExpectSemi && ExpectAndConsumeSemi(Context == Declarator::FileContext ? diag::err_invalid_token_after_toplevel_declarator : diag::err_expected_semi_declaration)) { // Okay, there was no semicolon and one was expected. If we see a // declaration specifier, just assume it was missing and continue parsing. // Otherwise things are very confused and we skip to recover. if (!isDeclarationSpecifier()) { SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch); TryConsumeToken(tok::semi); } } return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup); } /// Parse an optional simple-asm-expr and attributes, and attach them to a /// declarator. Returns true on an error. bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) { // If a simple-asm-expr is present, parse it. if (Tok.is(tok::kw_asm)) { SourceLocation Loc; ExprResult AsmLabel(ParseSimpleAsm(&Loc)); if (AsmLabel.isInvalid()) { SkipUntil(tok::semi, StopBeforeMatch); return true; } D.setAsmLabel(AsmLabel.get()); D.SetRangeEnd(Loc); } MaybeParseGNUAttributes(D); return false; } /// \brief Parse 'declaration' after parsing 'declaration-specifiers /// declarator'. This method parses the remainder of the declaration /// (including any attributes or initializer, among other things) and /// finalizes the declaration. /// /// init-declarator: [C99 6.7] /// declarator /// declarator '=' initializer /// [GNU] declarator simple-asm-expr[opt] attributes[opt] /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer /// [C++] declarator initializer[opt] /// /// [C++] initializer: /// [C++] '=' initializer-clause /// [C++] '(' expression-list ')' /// [C++0x] '=' 'default' [TODO] /// [C++0x] '=' 'delete' /// [C++0x] braced-init-list /// /// According to the standard grammar, =default and =delete are function /// definitions, but that definitely doesn't fit with the parser here. /// Decl *Parser::ParseDeclarationAfterDeclarator( Declarator &D, const ParsedTemplateInfo &TemplateInfo) { if (ParseAsmAttributesAfterDeclarator(D)) return nullptr; return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo); } Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes( Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) { // Inform the current actions module that we just parsed this declarator. Decl *ThisDecl = nullptr; switch (TemplateInfo.Kind) { case ParsedTemplateInfo::NonTemplate: ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); break; case ParsedTemplateInfo::Template: case ParsedTemplateInfo::ExplicitSpecialization: { ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(), *TemplateInfo.TemplateParams, D); if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl)) // Re-direct this decl to refer to the templated decl so that we can // initialize it. ThisDecl = VT->getTemplatedDecl(); break; } case ParsedTemplateInfo::ExplicitInstantiation: { if (Tok.is(tok::semi)) { DeclResult ThisRes = Actions.ActOnExplicitInstantiation( getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D); if (ThisRes.isInvalid()) { SkipUntil(tok::semi, StopBeforeMatch); return nullptr; } ThisDecl = ThisRes.get(); } else { // FIXME: This check should be for a variable template instantiation only. // Check that this is a valid instantiation if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) { // If the declarator-id is not a template-id, issue a diagnostic and // recover by ignoring the 'template' keyword. Diag(Tok, diag::err_template_defn_explicit_instantiation) << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc); ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); } else { SourceLocation LAngleLoc = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc); Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_with_definition) << SourceRange(TemplateInfo.TemplateLoc) << FixItHint::CreateInsertion(LAngleLoc, "<>"); // Recover as if it were an explicit specialization. TemplateParameterLists FakedParamLists; FakedParamLists.push_back(Actions.ActOnTemplateParameterList( 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None, LAngleLoc, nullptr)); ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D); } } break; } } bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType(); // Parse declarator '=' initializer. // If a '==' or '+=' is found, suggest a fixit to '='. if (isTokenEqualOrEqualTypo()) { SourceLocation EqualLoc = ConsumeToken(); if (Tok.is(tok::kw_delete)) { if (D.isFunctionDeclarator()) Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) << 1 /* delete */; else Diag(ConsumeToken(), diag::err_deleted_non_function); } else if (Tok.is(tok::kw_default)) { if (D.isFunctionDeclarator()) Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) << 0 /* default */; else Diag(ConsumeToken(), diag::err_default_special_members); } else { if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) { EnterScope(0); Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl); } if (Tok.is(tok::code_completion)) { Actions.CodeCompleteInitializer(getCurScope(), ThisDecl); Actions.FinalizeDeclaration(ThisDecl); cutOffParsing(); return nullptr; } ExprResult Init(ParseInitializer()); // If this is the only decl in (possibly) range based for statement, // our best guess is that the user meant ':' instead of '='. if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) { Diag(EqualLoc, diag::err_single_decl_assign_in_for_range) << FixItHint::CreateReplacement(EqualLoc, ":"); // We are trying to stop parser from looking for ';' in this for // statement, therefore preventing spurious errors to be issued. FRI->ColonLoc = EqualLoc; Init = ExprError(); FRI->RangeExpr = Init; } if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) { Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl); ExitScope(); } if (Init.isInvalid()) { SmallVector<tok::TokenKind, 2> StopTokens; StopTokens.push_back(tok::comma); if (D.getContext() == Declarator::ForContext || D.getContext() == Declarator::InitStmtContext) StopTokens.push_back(tok::r_paren); SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch); Actions.ActOnInitializerError(ThisDecl); } else Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/false, TypeContainsAuto); } } else if (Tok.is(tok::l_paren)) { // Parse C++ direct initializer: '(' expression-list ')' BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); ExprVector Exprs; CommaLocsTy CommaLocs; if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) { EnterScope(0); Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl); } if (ParseExpressionList(Exprs, CommaLocs, [&] { Actions.CodeCompleteConstructor(getCurScope(), cast<VarDecl>(ThisDecl)->getType()->getCanonicalTypeInternal(), ThisDecl->getLocation(), Exprs); })) { Actions.ActOnInitializerError(ThisDecl); SkipUntil(tok::r_paren, StopAtSemi); if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) { Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl); ExitScope(); } } else { // Match the ')'. T.consumeClose(); assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() && "Unexpected number of commas!"); if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) { Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl); ExitScope(); } ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(), T.getCloseLocation(), Exprs); Actions.AddInitializerToDecl(ThisDecl, Initializer.get(), /*DirectInit=*/true, TypeContainsAuto); } } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) && (!CurParsedObjCImpl || !D.isFunctionDeclarator())) { // Parse C++0x braced-init-list. Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); if (D.getCXXScopeSpec().isSet()) { EnterScope(0); Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl); } ExprResult Init(ParseBraceInitializer()); if (D.getCXXScopeSpec().isSet()) { Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl); ExitScope(); } if (Init.isInvalid()) { Actions.ActOnInitializerError(ThisDecl); } else Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true, TypeContainsAuto); } else { Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto); } Actions.FinalizeDeclaration(ThisDecl); return ThisDecl; } /// ParseSpecifierQualifierList /// specifier-qualifier-list: /// type-specifier specifier-qualifier-list[opt] /// type-qualifier specifier-qualifier-list[opt] /// [GNU] attributes specifier-qualifier-list[opt] /// void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS, DeclSpecContext DSC) { /// specifier-qualifier-list is a subset of declaration-specifiers. Just /// parse declaration-specifiers and complain about extra stuff. /// TODO: diagnose attribute-specifiers and alignment-specifiers. ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC); // Validate declspec for type-name. unsigned Specs = DS.getParsedSpecifiers(); if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) { Diag(Tok, diag::err_expected_type); DS.SetTypeSpecError(); } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) { Diag(Tok, diag::err_typename_requires_specqual); if (!DS.hasTypeSpecifier()) DS.SetTypeSpecError(); } // Issue diagnostic and remove storage class if present. if (Specs & DeclSpec::PQ_StorageClassSpecifier) { if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass); else Diag(DS.getThreadStorageClassSpecLoc(), diag::err_typename_invalid_storageclass); DS.ClearStorageClassSpecs(); } // Issue diagnostic and remove function specifier if present. if (Specs & DeclSpec::PQ_FunctionSpecifier) { if (DS.isInlineSpecified()) Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec); if (DS.isVirtualSpecified()) Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec); if (DS.isExplicitSpecified()) Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec); DS.ClearFunctionSpecs(); } // Issue diagnostic and remove constexpr specfier if present. if (DS.isConstexprSpecified() && DSC != DSC_condition) { Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr); DS.ClearConstexprSpec(); } } /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the /// specified token is valid after the identifier in a declarator which /// immediately follows the declspec. For example, these things are valid: /// /// int x [ 4]; // direct-declarator /// int x ( int y); // direct-declarator /// int(int x ) // direct-declarator /// int x ; // simple-declaration /// int x = 17; // init-declarator-list /// int x , y; // init-declarator-list /// int x __asm__ ("foo"); // init-declarator-list /// int x : 4; // struct-declarator /// int x { 5}; // C++'0x unified initializers /// /// This is not, because 'x' does not immediately follow the declspec (though /// ')' happens to be valid anyway). /// int (x) /// static bool isValidAfterIdentifierInDeclarator(const Token &T) { return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi, tok::comma, tok::equal, tok::kw_asm, tok::l_brace, tok::colon); } /// ParseImplicitInt - This method is called when we have an non-typename /// identifier in a declspec (which normally terminates the decl spec) when /// the declspec has no type specifier. In this case, the declspec is either /// malformed or is "implicit int" (in K&R and C89). /// /// This method handles diagnosing this prettily and returns false if the /// declspec is done being processed. If it recovers and thinks there may be /// other pieces of declspec after it, it returns true. /// bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSC, ParsedAttributesWithRange &Attrs) { assert(Tok.is(tok::identifier) && "should have identifier"); SourceLocation Loc = Tok.getLocation(); // If we see an identifier that is not a type name, we normally would // parse it as the identifer being declared. However, when a typename // is typo'd or the definition is not included, this will incorrectly // parse the typename as the identifier name and fall over misparsing // later parts of the diagnostic. // // As such, we try to do some look-ahead in cases where this would // otherwise be an "implicit-int" case to see if this is invalid. For // example: "static foo_t x = 4;" In this case, if we parsed foo_t as // an identifier with implicit int, we'd get a parse error because the // next token is obviously invalid for a type. Parse these as a case // with an invalid type specifier. assert(!DS.hasTypeSpecifier() && "Type specifier checked above"); // Since we know that this either implicit int (which is rare) or an // error, do lookahead to try to do better recovery. This never applies // within a type specifier. Outside of C++, we allow this even if the // language doesn't "officially" support implicit int -- we support // implicit int as an extension in C99 and C11. if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus && isValidAfterIdentifierInDeclarator(NextToken())) { // If this token is valid for implicit int, e.g. "static x = 4", then // we just avoid eating the identifier, so it will be parsed as the // identifier in the declarator. return false; } if (getLangOpts().CPlusPlus && DS.getStorageClassSpec() == DeclSpec::SCS_auto) { // Don't require a type specifier if we have the 'auto' storage class // specifier in C++98 -- we'll promote it to a type specifier. if (SS) AnnotateScopeToken(*SS, /*IsNewAnnotation*/false); return false; } if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) && getLangOpts().MSVCCompat) { // Lookup of an unqualified type name has failed in MSVC compatibility mode. // Give Sema a chance to recover if we are in a template with dependent base // classes. if (ParsedType T = Actions.ActOnMSVCUnknownTypeName( *Tok.getIdentifierInfo(), Tok.getLocation(), DSC == DSC_template_type_arg)) { const char *PrevSpec; unsigned DiagID; DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, Actions.getASTContext().getPrintingPolicy()); DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); return false; } } // Otherwise, if we don't consume this token, we are going to emit an // error anyway. Try to recover from various common problems. Check // to see if this was a reference to a tag name without a tag specified. // This is a common problem in C (saying 'foo' instead of 'struct foo'). // // C++ doesn't need this, and isTagName doesn't take SS. if (SS == nullptr) { const char *TagName = nullptr, *FixitTagName = nullptr; tok::TokenKind TagKind = tok::unknown; switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) { default: break; case DeclSpec::TST_enum: TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break; case DeclSpec::TST_union: TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break; case DeclSpec::TST_struct: TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break; case DeclSpec::TST_interface: TagName="__interface"; FixitTagName = "__interface "; TagKind=tok::kw___interface;break; case DeclSpec::TST_class: TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break; } if (TagName) { IdentifierInfo *TokenName = Tok.getIdentifierInfo(); LookupResult R(Actions, TokenName, SourceLocation(), Sema::LookupOrdinaryName); Diag(Loc, diag::err_use_of_tag_name_without_tag) << TokenName << TagName << getLangOpts().CPlusPlus << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName); if (Actions.LookupParsedName(R, getCurScope(), SS)) { for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) << TokenName << TagName; } // Parse this as a tag as if the missing tag were present. if (TagKind == tok::kw_enum) ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal); else ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS, /*EnteringContext*/ false, DSC_normal, Attrs); return true; } } // Determine whether this identifier could plausibly be the name of something // being declared (with a missing type). if (!isTypeSpecifier(DSC) && (!SS || DSC == DSC_top_level || DSC == DSC_class)) { // Look ahead to the next token to try to figure out what this declaration // was supposed to be. switch (NextToken().getKind()) { case tok::l_paren: { // static x(4); // 'x' is not a type // x(int n); // 'x' is not a type // x (*p)[]; // 'x' is a type // // Since we're in an error case, we can afford to perform a tentative // parse to determine which case we're in. TentativeParsingAction PA(*this); ConsumeToken(); TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false); PA.Revert(); if (TPR != TPResult::False) { // The identifier is followed by a parenthesized declarator. // It's supposed to be a type. break; } // If we're in a context where we could be declaring a constructor, // check whether this is a constructor declaration with a bogus name. if (DSC == DSC_class || (DSC == DSC_top_level && SS)) { IdentifierInfo *II = Tok.getIdentifierInfo(); if (Actions.isCurrentClassNameTypo(II, SS)) { Diag(Loc, diag::err_constructor_bad_name) << Tok.getIdentifierInfo() << II << FixItHint::CreateReplacement(Tok.getLocation(), II->getName()); Tok.setIdentifierInfo(II); } } // Fall through. } case tok::comma: case tok::equal: case tok::kw_asm: case tok::l_brace: case tok::l_square: case tok::semi: // This looks like a variable or function declaration. The type is // probably missing. We're done parsing decl-specifiers. if (SS) AnnotateScopeToken(*SS, /*IsNewAnnotation*/false); return false; default: // This is probably supposed to be a type. This includes cases like: // int f(itn); // struct S { unsinged : 4; }; break; } } // This is almost certainly an invalid type name. Let Sema emit a diagnostic // and attempt to recover. ParsedType T; IdentifierInfo *II = Tok.getIdentifierInfo(); Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T, getLangOpts().CPlusPlus && NextToken().is(tok::less)); if (T) { // The action has suggested that the type T could be used. Set that as // the type in the declaration specifiers, consume the would-be type // name token, and we're done. const char *PrevSpec; unsigned DiagID; DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, Actions.getASTContext().getPrintingPolicy()); DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // There may be other declaration specifiers after this. return true; } else if (II != Tok.getIdentifierInfo()) { // If no type was suggested, the correction is to a keyword Tok.setKind(II->getTokenID()); // There may be other declaration specifiers after this. return true; } // Otherwise, the action had no suggestion for us. Mark this as an error. DS.SetTypeSpecError(); DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // TODO: Could inject an invalid typedef decl in an enclosing scope to // avoid rippling error messages on subsequent uses of the same type, // could be useful if #include was forgotten. return false; } /// \brief Determine the declaration specifier context from the declarator /// context. /// /// \param Context the declarator context, which is one of the /// Declarator::TheContext enumerator values. Parser::DeclSpecContext Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) { if (Context == Declarator::MemberContext) return DSC_class; if (Context == Declarator::FileContext) return DSC_top_level; if (Context == Declarator::TemplateTypeArgContext) return DSC_template_type_arg; if (Context == Declarator::TrailingReturnContext) return DSC_trailing; if (Context == Declarator::AliasDeclContext || Context == Declarator::AliasTemplateContext) return DSC_alias_declaration; return DSC_normal; } /// ParseAlignArgument - Parse the argument to an alignment-specifier. /// /// FIXME: Simply returns an alignof() expression if the argument is a /// type. Ideally, the type should be propagated directly into Sema. /// /// [C11] type-id /// [C11] constant-expression /// [C++0x] type-id ...[opt] /// [C++0x] assignment-expression ...[opt] ExprResult Parser::ParseAlignArgument(SourceLocation Start, SourceLocation &EllipsisLoc) { ExprResult ER; if (isTypeIdInParens()) { SourceLocation TypeLoc = Tok.getLocation(); ParsedType Ty = ParseTypeName().get(); SourceRange TypeRange(Start, Tok.getLocation()); ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true, Ty.getAsOpaquePtr(), TypeRange); } else ER = ParseConstantExpression(); if (getLangOpts().CPlusPlus11) TryConsumeToken(tok::ellipsis, EllipsisLoc); return ER; } /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the /// attribute to Attrs. /// /// alignment-specifier: /// [C11] '_Alignas' '(' type-id ')' /// [C11] '_Alignas' '(' constant-expression ')' /// [C++11] 'alignas' '(' type-id ...[opt] ')' /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')' void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs, SourceLocation *EndLoc) { assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) && "Not an alignment-specifier!"); IdentifierInfo *KWName = Tok.getIdentifierInfo(); SourceLocation KWLoc = ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume()) return; SourceLocation EllipsisLoc; ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc); if (ArgExpr.isInvalid()) { T.skipToEnd(); return; } T.consumeClose(); if (EndLoc) *EndLoc = T.getCloseLocation(); ArgsVector ArgExprs; ArgExprs.push_back(ArgExpr.get()); Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1, AttributeList::AS_Keyword, EllipsisLoc); } /// Determine whether we're looking at something that might be a declarator /// in a simple-declaration. If it can't possibly be a declarator, maybe /// diagnose a missing semicolon after a prior tag definition in the decl /// specifier. /// /// \return \c true if an error occurred and this can't be any kind of /// declaration. bool Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS, DeclSpecContext DSContext, LateParsedAttrList *LateAttrs) { assert(DS.hasTagDefinition() && "shouldn't call this"); bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level); if (getLangOpts().CPlusPlus && Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype, tok::annot_template_id) && TryAnnotateCXXScopeToken(EnteringContext)) { SkipMalformedDecl(); return true; } bool HasScope = Tok.is(tok::annot_cxxscope); // Make a copy in case GetLookAheadToken invalidates the result of NextToken. Token AfterScope = HasScope ? NextToken() : Tok; // Determine whether the following tokens could possibly be a // declarator. bool MightBeDeclarator = true; if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) { // A declarator-id can't start with 'typename'. MightBeDeclarator = false; } else if (AfterScope.is(tok::annot_template_id)) { // If we have a type expressed as a template-id, this cannot be a // declarator-id (such a type cannot be redeclared in a simple-declaration). TemplateIdAnnotation *Annot = static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue()); if (Annot->Kind == TNK_Type_template) MightBeDeclarator = false; } else if (AfterScope.is(tok::identifier)) { const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken(); // These tokens cannot come after the declarator-id in a // simple-declaration, and are likely to come after a type-specifier. if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier, tok::annot_cxxscope, tok::coloncolon)) { // Missing a semicolon. MightBeDeclarator = false; } else if (HasScope) { // If the declarator-id has a scope specifier, it must redeclare a // previously-declared entity. If that's a type (and this is not a // typedef), that's an error. CXXScopeSpec SS; Actions.RestoreNestedNameSpecifierAnnotation( Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); IdentifierInfo *Name = AfterScope.getIdentifierInfo(); Sema::NameClassification Classification = Actions.ClassifyName( getCurScope(), SS, Name, AfterScope.getLocation(), Next, /*IsAddressOfOperand*/false); switch (Classification.getKind()) { case Sema::NC_Error: SkipMalformedDecl(); return true; case Sema::NC_Keyword: case Sema::NC_NestedNameSpecifier: llvm_unreachable("typo correction and nested name specifiers not " "possible here"); case Sema::NC_Type: case Sema::NC_TypeTemplate: // Not a previously-declared non-type entity. MightBeDeclarator = false; break; case Sema::NC_Unknown: case Sema::NC_Expression: case Sema::NC_VarTemplate: case Sema::NC_FunctionTemplate: // Might be a redeclaration of a prior entity. break; } } } if (MightBeDeclarator) return false; const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy(); Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()), diag::err_expected_after) << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi; // Try to recover from the typo, by dropping the tag definition and parsing // the problematic tokens as a type. // // FIXME: Split the DeclSpec into pieces for the standalone // declaration and pieces for the following declaration, instead // of assuming that all the other pieces attach to new declaration, // and call ParsedFreeStandingDeclSpec as appropriate. DS.ClearTypeSpecType(); ParsedTemplateInfo NotATemplate; ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs); return false; } /// ParseDeclarationSpecifiers /// declaration-specifiers: [C99 6.7] /// storage-class-specifier declaration-specifiers[opt] /// type-specifier declaration-specifiers[opt] /// [C99] function-specifier declaration-specifiers[opt] /// [C11] alignment-specifier declaration-specifiers[opt] /// [GNU] attributes declaration-specifiers[opt] /// [Clang] '__module_private__' declaration-specifiers[opt] /// [ObjC1] '__kindof' declaration-specifiers[opt] /// /// storage-class-specifier: [C99 6.7.1] /// 'typedef' /// 'extern' /// 'static' /// 'auto' /// 'register' /// [C++] 'mutable' /// [C++11] 'thread_local' /// [C11] '_Thread_local' /// [GNU] '__thread' /// function-specifier: [C99 6.7.4] /// [C99] 'inline' /// [C++] 'virtual' /// [C++] 'explicit' /// [OpenCL] '__kernel' /// 'friend': [C++ dcl.friend] /// 'constexpr': [C++0x dcl.constexpr] void Parser::ParseDeclarationSpecifiers(DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSContext, LateParsedAttrList *LateAttrs) { if (DS.getSourceRange().isInvalid()) { // Start the range at the current token but make the end of the range // invalid. This will make the entire range invalid unless we successfully // consume a token. DS.SetRangeStart(Tok.getLocation()); DS.SetRangeEnd(SourceLocation()); } bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level); bool AttrsLastTime = false; ParsedAttributesWithRange attrs(AttrFactory); // We use Sema's policy to get bool macros right. PrintingPolicy Policy = Actions.getPrintingPolicy(); while (1) { bool isInvalid = false; bool isStorageClass = false; const char *PrevSpec = nullptr; unsigned DiagID = 0; // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL // implementation for VS2013 uses _Atomic as an identifier for one of the // classes in <atomic>. // // A typedef declaration containing _Atomic<...> is among the places where // the class is used. If we are currently parsing such a declaration, treat // the token as an identifier. if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) && DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef && !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less)) Tok.setKind(tok::identifier); SourceLocation Loc = Tok.getLocation(); switch (Tok.getKind()) { default: DoneWithDeclSpec: if (!AttrsLastTime) ProhibitAttributes(attrs); else { // Reject C++11 attributes that appertain to decl specifiers as // we don't support any C++11 attributes that appertain to decl // specifiers. This also conforms to what g++ 4.8 is doing. ProhibitCXX11Attributes(attrs); DS.takeAttributesFrom(attrs); } // If this is not a declaration specifier token, we're done reading decl // specifiers. First verify that DeclSpec's are consistent. DS.Finish(Actions, Policy); return; case tok::l_square: case tok::kw_alignas: if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier()) goto DoneWithDeclSpec; ProhibitAttributes(attrs); // FIXME: It would be good to recover by accepting the attributes, // but attempting to do that now would cause serious // madness in terms of diagnostics. attrs.clear(); attrs.Range = SourceRange(); ParseCXX11Attributes(attrs); AttrsLastTime = true; continue; case tok::code_completion: { Sema::ParserCompletionContext CCC = Sema::PCC_Namespace; if (DS.hasTypeSpecifier()) { bool AllowNonIdentifiers = (getCurScope()->getFlags() & (Scope::ControlScope | Scope::BlockScope | Scope::TemplateParamScope | Scope::FunctionPrototypeScope | Scope::AtCatchScope)) == 0; bool AllowNestedNameSpecifiers = DSContext == DSC_top_level || (DSContext == DSC_class && DS.isFriendSpecified()); Actions.CodeCompleteDeclSpec(getCurScope(), DS, AllowNonIdentifiers, AllowNestedNameSpecifiers); return cutOffParsing(); } if (getCurScope()->getFnParent() || getCurScope()->getBlockParent()) CCC = Sema::PCC_LocalDeclarationSpecifiers; else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate : Sema::PCC_Template; else if (DSContext == DSC_class) CCC = Sema::PCC_Class; else if (CurParsedObjCImpl) CCC = Sema::PCC_ObjCImplementation; Actions.CodeCompleteOrdinaryName(getCurScope(), CCC); return cutOffParsing(); } case tok::coloncolon: // ::foo::bar // C++ scope specifier. Annotate and loop, or bail out on error. if (TryAnnotateCXXScopeToken(EnteringContext)) { if (!DS.hasTypeSpecifier()) DS.SetTypeSpecError(); goto DoneWithDeclSpec; } if (Tok.is(tok::coloncolon)) // ::new or ::delete goto DoneWithDeclSpec; continue; case tok::annot_cxxscope: { if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector()) goto DoneWithDeclSpec; CXXScopeSpec SS; Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); // We are looking for a qualified typename. Token Next = NextToken(); if (Next.is(tok::annot_template_id) && static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue()) ->Kind == TNK_Type_template) { // We have a qualified template-id, e.g., N::A<int> // C++ [class.qual]p2: // In a lookup in which the constructor is an acceptable lookup // result and the nested-name-specifier nominates a class C: // // - if the name specified after the // nested-name-specifier, when looked up in C, is the // injected-class-name of C (Clause 9), or // // - if the name specified after the nested-name-specifier // is the same as the identifier or the // simple-template-id's template-name in the last // component of the nested-name-specifier, // // the name is instead considered to name the constructor of // class C. // // Thus, if the template-name is actually the constructor // name, then the code is ill-formed; this interpretation is // reinforced by the NAD status of core issue 635. TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); if ((DSContext == DSC_top_level || DSContext == DSC_class) && TemplateId->Name && Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) { if (isConstructorDeclarator(/*Unqualified*/false)) { // The user meant this to be an out-of-line constructor // definition, but template arguments are not allowed // there. Just allow this as a constructor; we'll // complain about it later. goto DoneWithDeclSpec; } // The user meant this to name a type, but it actually names // a constructor with some extraneous template // arguments. Complain, then parse it as a type as the user // intended. Diag(TemplateId->TemplateNameLoc, diag::err_out_of_line_template_id_type_names_constructor) << TemplateId->Name << 0 /* template name */; } DS.getTypeSpecScope() = SS; ConsumeToken(); // The C++ scope. assert(Tok.is(tok::annot_template_id) && "ParseOptionalCXXScopeSpecifier not working"); AnnotateTemplateIdTokenAsType(); continue; } if (Next.is(tok::annot_typename)) { DS.getTypeSpecScope() = SS; ConsumeToken(); // The C++ scope. if (Tok.getAnnotationValue()) { ParsedType T = getTypeAnnotation(Tok); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Tok.getAnnotationEndLoc(), PrevSpec, DiagID, T, Policy); if (isInvalid) break; } else DS.SetTypeSpecError(); DS.SetRangeEnd(Tok.getAnnotationEndLoc()); ConsumeToken(); // The typename } if (Next.isNot(tok::identifier)) goto DoneWithDeclSpec; // If we're in a context where the identifier could be a class name, // check whether this is a constructor declaration. if ((DSContext == DSC_top_level || DSContext == DSC_class) && Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(), &SS)) { if (isConstructorDeclarator(/*Unqualified*/false)) goto DoneWithDeclSpec; // As noted in C++ [class.qual]p2 (cited above), when the name // of the class is qualified in a context where it could name // a constructor, its a constructor name. However, we've // looked at the declarator, and the user probably meant this // to be a type. Complain that it isn't supposed to be treated // as a type, then proceed to parse it as a type. Diag(Next.getLocation(), diag::err_out_of_line_template_id_type_names_constructor) << Next.getIdentifierInfo() << 1 /* type */; } ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(), getCurScope(), &SS, false, false, nullptr, /*IsCtorOrDtorName=*/false, /*NonTrivialSourceInfo=*/true); // If the referenced identifier is not a type, then this declspec is // erroneous: We already checked about that it has no type specifier, and // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the // typename. if (!TypeRep) { ConsumeToken(); // Eat the scope spec so the identifier is current. ParsedAttributesWithRange Attrs(AttrFactory); if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) { if (!Attrs.empty()) { AttrsLastTime = true; attrs.takeAllFrom(Attrs); } continue; } goto DoneWithDeclSpec; } DS.getTypeSpecScope() = SS; ConsumeToken(); // The C++ scope. isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, TypeRep, Policy); if (isInvalid) break; DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // The typename. continue; } case tok::annot_typename: { // If we've previously seen a tag definition, we were almost surely // missing a semicolon after it. if (DS.hasTypeSpecifier() && DS.hasTagDefinition()) goto DoneWithDeclSpec; if (Tok.getAnnotationValue()) { ParsedType T = getTypeAnnotation(Tok); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, Policy); } else DS.SetTypeSpecError(); if (isInvalid) break; DS.SetRangeEnd(Tok.getAnnotationEndLoc()); ConsumeToken(); // The typename continue; } case tok::kw___is_signed: // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang // typically treats it as a trait. If we see __is_signed as it appears // in libstdc++, e.g., // // static const bool __is_signed; // // then treat __is_signed as an identifier rather than as a keyword. if (DS.getTypeSpecType() == TST_bool && DS.getTypeQualifiers() == DeclSpec::TQ_const && DS.getStorageClassSpec() == DeclSpec::SCS_static) TryKeywordIdentFallback(true); // We're done with the declaration-specifiers. goto DoneWithDeclSpec; // typedef-name case tok::kw___super: case tok::kw_decltype: case tok::identifier: { // This identifier can only be a typedef name if we haven't already seen // a type-specifier. Without this check we misparse: // typedef int X; struct Y { short X; }; as 'short int'. if (DS.hasTypeSpecifier()) goto DoneWithDeclSpec; // In C++, check to see if this is a scope specifier like foo::bar::, if // so handle it as such. This is important for ctor parsing. if (getLangOpts().CPlusPlus) { if (TryAnnotateCXXScopeToken(EnteringContext)) { DS.SetTypeSpecError(); goto DoneWithDeclSpec; } if (!Tok.is(tok::identifier)) continue; } // Check for need to substitute AltiVec keyword tokens. if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid)) break; // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not // allow the use of a typedef name as a type specifier. if (DS.isTypeAltiVecVector()) goto DoneWithDeclSpec; if (DSContext == DSC_objc_method_result && isObjCInstancetype()) { ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc); assert(TypeRep); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, TypeRep, Policy); if (isInvalid) break; DS.SetRangeEnd(Loc); ConsumeToken(); continue; } ParsedType TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope()); // If this is not a typedef name, don't parse it as part of the declspec, // it must be an implicit int or an error. if (!TypeRep) { ParsedAttributesWithRange Attrs(AttrFactory); if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) { if (!Attrs.empty()) { AttrsLastTime = true; attrs.takeAllFrom(Attrs); } continue; } goto DoneWithDeclSpec; } // If we're in a context where the identifier could be a class name, // check whether this is a constructor declaration. if (getLangOpts().CPlusPlus && DSContext == DSC_class && Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) && isConstructorDeclarator(/*Unqualified*/true)) goto DoneWithDeclSpec; isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, TypeRep, Policy); if (isInvalid) break; DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // The identifier // Objective-C supports type arguments and protocol references // following an Objective-C object or object pointer // type. Handle either one of them. if (Tok.is(tok::less) && getLangOpts().ObjC1) { SourceLocation NewEndLoc; TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers( Loc, TypeRep, /*consumeLastToken=*/true, NewEndLoc); if (NewTypeRep.isUsable()) { DS.UpdateTypeRep(NewTypeRep.get()); DS.SetRangeEnd(NewEndLoc); } } // Need to support trailing type qualifiers (e.g. "id<p> const"). // If a type specifier follows, it will be diagnosed elsewhere. continue; } // type-name case tok::annot_template_id: { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->Kind != TNK_Type_template) { // This template-id does not refer to a type name, so we're // done with the type-specifiers. goto DoneWithDeclSpec; } // If we're in a context where the template-id could be a // constructor name or specialization, check whether this is a // constructor declaration. if (getLangOpts().CPlusPlus && DSContext == DSC_class && Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) && isConstructorDeclarator(TemplateId->SS.isEmpty())) goto DoneWithDeclSpec; // Turn the template-id annotation token into a type annotation // token, then try again to parse it as a type-specifier. AnnotateTemplateIdTokenAsType(); continue; } // GNU attributes support. case tok::kw___attribute: ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs); continue; // Microsoft declspec support. case tok::kw___declspec: ParseMicrosoftDeclSpecs(DS.getAttributes()); continue; // Microsoft single token adornments. case tok::kw___forceinline: { isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID); IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = Tok.getLocation(); DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, AttributeList::AS_Keyword); break; } case tok::kw___unaligned: isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw___sptr: case tok::kw___uptr: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___w64: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___vectorcall: ParseMicrosoftTypeAttributes(DS.getAttributes()); continue; // Borland single token adornments. case tok::kw___pascal: ParseBorlandTypeAttributes(DS.getAttributes()); continue; // OpenCL single token adornments. case tok::kw___kernel: ParseOpenCLKernelAttributes(DS.getAttributes()); continue; // Nullability type specifiers. case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Null_unspecified: ParseNullabilityTypeSpecifiers(DS.getAttributes()); continue; // Objective-C 'kindof' types. case tok::kw___kindof: DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc, nullptr, 0, AttributeList::AS_Keyword); (void)ConsumeToken(); continue; // storage-class-specifier case tok::kw_typedef: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw_extern: if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread) Diag(Tok, diag::ext_thread_before) << "extern"; isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw___private_extern__: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw_static: if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread) Diag(Tok, diag::ext_thread_before) << "static"; isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw_auto: if (getLangOpts().CPlusPlus11) { if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) { isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc, PrevSpec, DiagID, Policy); if (!isInvalid) Diag(Tok, diag::ext_auto_storage_class) << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); } else isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID, Policy); } else isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw___auto_type: Diag(Tok, diag::ext_auto_type); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_register: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw_mutable: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw___thread: isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc, PrevSpec, DiagID); isStorageClass = true; break; case tok::kw_thread_local: isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc, PrevSpec, DiagID); break; case tok::kw__Thread_local: isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local, Loc, PrevSpec, DiagID); isStorageClass = true; break; // function-specifier case tok::kw_inline: isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID); break; case tok::kw_virtual: isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID); break; case tok::kw_explicit: isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID); break; case tok::kw__Noreturn: if (!getLangOpts().C11) Diag(Loc, diag::ext_c11_noreturn); isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID); break; // alignment-specifier case tok::kw__Alignas: if (!getLangOpts().C11) Diag(Tok, diag::ext_c11_alignment) << Tok.getName(); ParseAlignmentSpecifier(DS.getAttributes()); continue; // friend case tok::kw_friend: if (DSContext == DSC_class) isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID); else { PrevSpec = ""; // not actually used by the diagnostic DiagID = diag::err_friend_invalid_in_context; isInvalid = true; } break; // Modules case tok::kw___module_private__: isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID); break; // constexpr case tok::kw_constexpr: isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID); break; // concept case tok::kw_concept: isInvalid = DS.SetConceptSpec(Loc, PrevSpec, DiagID); break; // type-specifier case tok::kw_short: isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_long: if (DS.getTypeSpecWidth() != DeclSpec::TSW_long) isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy); else isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___int64: isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_signed: isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID); break; case tok::kw_unsigned: isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID); break; case tok::kw__Complex: isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec, DiagID); break; case tok::kw__Imaginary: isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec, DiagID); break; case tok::kw_void: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_char: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_int: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___int128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_half: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_float: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_double: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___float128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_wchar_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_char16_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_char32_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_bool: case tok::kw__Bool: if (Tok.is(tok::kw_bool) && DS.getTypeSpecType() != DeclSpec::TST_unspecified && DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { PrevSpec = ""; // Not used by the diagnostic. DiagID = diag::err_bool_redeclaration; // For better error recovery. Tok.setKind(tok::identifier); isInvalid = true; } else { isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy); } break; case tok::kw__Decimal32: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__Decimal64: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__Decimal128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___vector: isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___pixel: isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___bool: isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_pipe: if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200)) { // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should // support the "pipe" word as identifier. Tok.getIdentifierInfo()->revertTokenIDToIdentifier(); goto DoneWithDeclSpec; } isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy); break; #define GENERIC_IMAGE_TYPE(ImgType, Id) \ case tok::kw_##ImgType##_t: \ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \ DiagID, Policy); \ break; #include "clang/Basic/OpenCLImageTypes.def" case tok::kw___unknown_anytype: isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc, PrevSpec, DiagID, Policy); break; // class-specifier: case tok::kw_class: case tok::kw_struct: case tok::kw___interface: case tok::kw_union: { tok::TokenKind Kind = Tok.getKind(); ConsumeToken(); // These are attributes following class specifiers. // To produce better diagnostic, we parse them when // parsing class specifier. ParsedAttributesWithRange Attributes(AttrFactory); ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS, EnteringContext, DSContext, Attributes); // If there are attributes following class specifier, // take them over and handle them here. if (!Attributes.empty()) { AttrsLastTime = true; attrs.takeAllFrom(Attributes); } continue; } // enum-specifier: case tok::kw_enum: ConsumeToken(); ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext); continue; // cv-qualifier: case tok::kw_const: isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_volatile: isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_restrict: isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID, getLangOpts()); break; // C++ typename-specifier: case tok::kw_typename: if (TryAnnotateTypeOrScopeToken()) { DS.SetTypeSpecError(); goto DoneWithDeclSpec; } if (!Tok.is(tok::kw_typename)) continue; break; // GNU typeof support. case tok::kw_typeof: ParseTypeofSpecifier(DS); continue; case tok::annot_decltype: ParseDecltypeSpecifier(DS); continue; case tok::annot_pragma_pack: HandlePragmaPack(); continue; case tok::annot_pragma_ms_pragma: HandlePragmaMSPragma(); continue; case tok::annot_pragma_ms_vtordisp: HandlePragmaMSVtorDisp(); continue; case tok::annot_pragma_ms_pointers_to_members: HandlePragmaMSPointersToMembers(); continue; case tok::kw___underlying_type: ParseUnderlyingTypeSpecifier(DS); continue; case tok::kw__Atomic: // C11 6.7.2.4/4: // If the _Atomic keyword is immediately followed by a left parenthesis, // it is interpreted as a type specifier (with a type name), not as a // type qualifier. if (NextToken().is(tok::l_paren)) { ParseAtomicSpecifier(DS); continue; } isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID, getLangOpts()); break; // OpenCL qualifiers: case tok::kw___generic: // generic address space is introduced only in OpenCL v2.0 // see OpenCL C Spec v2.0 s6.5.5 if (Actions.getLangOpts().OpenCLVersion < 200) { DiagID = diag::err_opencl_unknown_type_specifier; PrevSpec = Tok.getIdentifierInfo()->getNameStart(); isInvalid = true; break; }; case tok::kw___private: case tok::kw___global: case tok::kw___local: case tok::kw___constant: case tok::kw___read_only: case tok::kw___write_only: case tok::kw___read_write: ParseOpenCLQualifiers(DS.getAttributes()); break; case tok::less: // GCC ObjC supports types like "<SomeProtocol>" as a synonym for // "id<SomeProtocol>". This is hopelessly old fashioned and dangerous, // but we support it. if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1) goto DoneWithDeclSpec; SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc; TypeResult Type = parseObjCProtocolQualifierType(EndLoc); if (Type.isUsable()) { if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc, PrevSpec, DiagID, Type.get(), Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; DS.SetRangeEnd(EndLoc); } else { DS.SetTypeSpecError(); } // Need to support trailing type qualifiers (e.g. "id<p> const"). // If a type specifier follows, it will be diagnosed elsewhere. continue; } // If the specifier wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); assert(DiagID); if (DiagID == diag::ext_duplicate_declspec) Diag(Tok, DiagID) << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation()); else if (DiagID == diag::err_opencl_unknown_type_specifier) { const int OpenCLVer = getLangOpts().OpenCLVersion; std::string VerSpec = llvm::to_string(OpenCLVer / 100) + std::string (".") + llvm::to_string((OpenCLVer % 100) / 10); Diag(Tok, DiagID) << VerSpec << PrevSpec << isStorageClass; } else Diag(Tok, DiagID) << PrevSpec; } DS.SetRangeEnd(Tok.getLocation()); if (DiagID != diag::err_bool_redeclaration) ConsumeToken(); AttrsLastTime = false; } } /// ParseStructDeclaration - Parse a struct declaration without the terminating /// semicolon. /// /// struct-declaration: /// specifier-qualifier-list struct-declarator-list /// [GNU] __extension__ struct-declaration /// [GNU] specifier-qualifier-list /// struct-declarator-list: /// struct-declarator /// struct-declarator-list ',' struct-declarator /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator /// struct-declarator: /// declarator /// [GNU] declarator attributes[opt] /// declarator[opt] ':' constant-expression /// [GNU] declarator[opt] ':' constant-expression attributes[opt] /// void Parser::ParseStructDeclaration( ParsingDeclSpec &DS, llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) { if (Tok.is(tok::kw___extension__)) { // __extension__ silences extension warnings in the subexpression. ExtensionRAIIObject O(Diags); // Use RAII to do this. ConsumeToken(); return ParseStructDeclaration(DS, FieldsCallback); } // Parse the common specifier-qualifiers-list piece. ParseSpecifierQualifierList(DS); // If there are no declarators, this is a free-standing declaration // specifier. Let the actions module cope with it. if (Tok.is(tok::semi)) { RecordDecl *AnonRecord = nullptr; Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS, AnonRecord); assert(!AnonRecord && "Did not expect anonymous struct or union here"); DS.complete(TheDecl); return; } // Read struct-declarators until we find the semicolon. bool FirstDeclarator = true; SourceLocation CommaLoc; while (1) { ParsingFieldDeclarator DeclaratorInfo(*this, DS); DeclaratorInfo.D.setCommaLoc(CommaLoc); // Attributes are only allowed here on successive declarators. if (!FirstDeclarator) MaybeParseGNUAttributes(DeclaratorInfo.D); /// struct-declarator: declarator /// struct-declarator: declarator[opt] ':' constant-expression if (Tok.isNot(tok::colon)) { // Don't parse FOO:BAR as if it were a typo for FOO::BAR. ColonProtectionRAIIObject X(*this); ParseDeclarator(DeclaratorInfo.D); } else DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation()); if (TryConsumeToken(tok::colon)) { ExprResult Res(ParseConstantExpression()); if (Res.isInvalid()) SkipUntil(tok::semi, StopBeforeMatch); else DeclaratorInfo.BitfieldSize = Res.get(); } // If attributes exist after the declarator, parse them. MaybeParseGNUAttributes(DeclaratorInfo.D); // We're done with this declarator; invoke the callback. FieldsCallback(DeclaratorInfo); // If we don't have a comma, it is either the end of the list (a ';') // or an error, bail out. if (!TryConsumeToken(tok::comma, CommaLoc)) return; FirstDeclarator = false; } } /// ParseStructUnionBody /// struct-contents: /// struct-declaration-list /// [EXT] empty /// [GNU] "struct-declaration-list" without terminatoring ';' /// struct-declaration-list: /// struct-declaration /// struct-declaration-list struct-declaration /// [OBC] '@' 'defs' '(' class-name ')' /// void Parser::ParseStructUnionBody(SourceLocation RecordLoc, unsigned TagType, Decl *TagDecl) { PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc, "parsing struct/union body"); assert(!getLangOpts().CPlusPlus && "C++ declarations not supported"); BalancedDelimiterTracker T(*this, tok::l_brace); if (T.consumeOpen()) return; ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope); Actions.ActOnTagStartDefinition(getCurScope(), TagDecl); SmallVector<Decl *, 32> FieldDecls; // While we still have something to read, read the declarations in the struct. while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { // Each iteration of this loop reads one struct-declaration. // Check for extraneous top-level semicolon. if (Tok.is(tok::semi)) { ConsumeExtraSemi(InsideStruct, TagType); continue; } // Parse _Static_assert declaration. if (Tok.is(tok::kw__Static_assert)) { SourceLocation DeclEnd; ParseStaticAssertDeclaration(DeclEnd); continue; } if (Tok.is(tok::annot_pragma_pack)) { HandlePragmaPack(); continue; } if (Tok.is(tok::annot_pragma_align)) { HandlePragmaAlign(); continue; } if (Tok.is(tok::annot_pragma_openmp)) { // Result can be ignored, because it must be always empty. AccessSpecifier AS = AS_none; ParsedAttributesWithRange Attrs(AttrFactory); (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs); continue; } if (!Tok.is(tok::at)) { auto CFieldCallback = [&](ParsingFieldDeclarator &FD) { // Install the declarator into the current TagDecl. Decl *Field = Actions.ActOnField(getCurScope(), TagDecl, FD.D.getDeclSpec().getSourceRange().getBegin(), FD.D, FD.BitfieldSize); FieldDecls.push_back(Field); FD.complete(Field); }; // Parse all the comma separated declarators. ParsingDeclSpec DS(*this); ParseStructDeclaration(DS, CFieldCallback); } else { // Handle @defs ConsumeToken(); if (!Tok.isObjCAtKeyword(tok::objc_defs)) { Diag(Tok, diag::err_unexpected_at); SkipUntil(tok::semi); continue; } ConsumeToken(); ExpectAndConsume(tok::l_paren); if (!Tok.is(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; SkipUntil(tok::semi); continue; } SmallVector<Decl *, 16> Fields; Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(), Tok.getIdentifierInfo(), Fields); FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end()); ConsumeToken(); ExpectAndConsume(tok::r_paren); } if (TryConsumeToken(tok::semi)) continue; if (Tok.is(tok::r_brace)) { ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list); break; } ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list); // Skip to end of block or statement to avoid ext-warning on extra ';'. SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch); // If we stopped at a ';', eat it. TryConsumeToken(tok::semi); } T.consumeClose(); ParsedAttributes attrs(AttrFactory); // If attributes exist after struct contents, parse them. MaybeParseGNUAttributes(attrs); Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls, T.getOpenLocation(), T.getCloseLocation(), attrs.getList()); StructScope.Exit(); Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getCloseLocation()); } /// ParseEnumSpecifier /// enum-specifier: [C99 6.7.2.2] /// 'enum' identifier[opt] '{' enumerator-list '}' ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}' /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt] /// '}' attributes[opt] /// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt] /// '}' /// 'enum' identifier /// [GNU] 'enum' attributes[opt] identifier /// /// [C++11] enum-head '{' enumerator-list[opt] '}' /// [C++11] enum-head '{' enumerator-list ',' '}' /// /// enum-head: [C++11] /// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt] /// enum-key attribute-specifier-seq[opt] nested-name-specifier /// identifier enum-base[opt] /// /// enum-key: [C++11] /// 'enum' /// 'enum' 'class' /// 'enum' 'struct' /// /// enum-base: [C++11] /// ':' type-specifier-seq /// /// [C++] elaborated-type-specifier: /// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier /// void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSC) { // Parse the tag portion of this. if (Tok.is(tok::code_completion)) { // Code completion for an enum name. Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum); return cutOffParsing(); } // If attributes exist after tag, parse them. ParsedAttributesWithRange attrs(AttrFactory); MaybeParseGNUAttributes(attrs); MaybeParseCXX11Attributes(attrs); MaybeParseMicrosoftDeclSpecs(attrs); SourceLocation ScopedEnumKWLoc; bool IsScopedUsingClassTag = false; // In C++11, recognize 'enum class' and 'enum struct'. if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) { Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum : diag::ext_scoped_enum); IsScopedUsingClassTag = Tok.is(tok::kw_class); ScopedEnumKWLoc = ConsumeToken(); // Attributes are not allowed between these keywords. Diagnose, // but then just treat them like they appeared in the right place. ProhibitAttributes(attrs); // They are allowed afterwards, though. MaybeParseGNUAttributes(attrs); MaybeParseCXX11Attributes(attrs); MaybeParseMicrosoftDeclSpecs(attrs); } // C++11 [temp.explicit]p12: // The usual access controls do not apply to names used to specify // explicit instantiations. // We extend this to also cover explicit specializations. Note that // we don't suppress if this turns out to be an elaborated type // specifier. bool shouldDelayDiagsInTag = (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation || TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization); SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag); // Enum definitions should not be parsed in a trailing-return-type. bool AllowDeclaration = DSC != DSC_trailing; bool AllowFixedUnderlyingType = AllowDeclaration && (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt || getLangOpts().ObjC2); CXXScopeSpec &SS = DS.getTypeSpecScope(); if (getLangOpts().CPlusPlus) { // "enum foo : bar;" is not a potential typo for "enum foo::bar;" // if a fixed underlying type is allowed. ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType); CXXScopeSpec Spec; if (ParseOptionalCXXScopeSpecifier(Spec, nullptr, /*EnteringContext=*/true)) return; if (Spec.isSet() && Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; if (Tok.isNot(tok::l_brace)) { // Has no name and is not a definition. // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, StopAtSemi); return; } } SS = Spec; } // Must have either 'enum name' or 'enum {...}'. if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) && !(AllowFixedUnderlyingType && Tok.is(tok::colon))) { Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace; // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, StopAtSemi); return; } // If an identifier is present, consume and remember it. IdentifierInfo *Name = nullptr; SourceLocation NameLoc; if (Tok.is(tok::identifier)) { Name = Tok.getIdentifierInfo(); NameLoc = ConsumeToken(); } if (!Name && ScopedEnumKWLoc.isValid()) { // C++0x 7.2p2: The optional identifier shall not be omitted in the // declaration of a scoped enumeration. Diag(Tok, diag::err_scoped_enum_missing_identifier); ScopedEnumKWLoc = SourceLocation(); IsScopedUsingClassTag = false; } // Okay, end the suppression area. We'll decide whether to emit the // diagnostics in a second. if (shouldDelayDiagsInTag) diagsFromTag.done(); TypeResult BaseType; // Parse the fixed underlying type. bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope; if (AllowFixedUnderlyingType && Tok.is(tok::colon)) { bool PossibleBitfield = false; if (CanBeBitfield) { // If we're in class scope, this can either be an enum declaration with // an underlying type, or a declaration of a bitfield member. We try to // use a simple disambiguation scheme first to catch the common cases // (integer literal, sizeof); if it's still ambiguous, we then consider // anything that's a simple-type-specifier followed by '(' as an // expression. This suffices because function types are not valid // underlying types anyway. EnterExpressionEvaluationContext Unevaluated(Actions, Sema::ConstantEvaluated); TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind()); // If the next token starts an expression, we know we're parsing a // bit-field. This is the common case. if (TPR == TPResult::True) PossibleBitfield = true; // If the next token starts a type-specifier-seq, it may be either a // a fixed underlying type or the start of a function-style cast in C++; // lookahead one more token to see if it's obvious that we have a // fixed underlying type. else if (TPR == TPResult::False && GetLookAheadToken(2).getKind() == tok::semi) { // Consume the ':'. ConsumeToken(); } else { // We have the start of a type-specifier-seq, so we have to perform // tentative parsing to determine whether we have an expression or a // type. TentativeParsingAction TPA(*this); // Consume the ':'. ConsumeToken(); // If we see a type specifier followed by an open-brace, we have an // ambiguity between an underlying type and a C++11 braced // function-style cast. Resolve this by always treating it as an // underlying type. // FIXME: The standard is not entirely clear on how to disambiguate in // this case. if ((getLangOpts().CPlusPlus && isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) || (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) { // We'll parse this as a bitfield later. PossibleBitfield = true; TPA.Revert(); } else { // We have a type-specifier-seq. TPA.Commit(); } } } else { // Consume the ':'. ConsumeToken(); } if (!PossibleBitfield) { SourceRange Range; BaseType = ParseTypeName(&Range); if (getLangOpts().CPlusPlus11) { Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type); } else if (!getLangOpts().ObjC2) { if (getLangOpts().CPlusPlus) Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range; else Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range; } } } // There are four options here. If we have 'friend enum foo;' then this is a // friend declaration, and cannot have an accompanying definition. If we have // 'enum foo;', then this is a forward declaration. If we have // 'enum foo {...' then this is a definition. Otherwise we have something // like 'enum foo xyz', a reference. // // This is needed to handle stuff like this right (C99 6.7.2.3p11): // enum foo {..}; void bar() { enum foo; } <- new foo in bar. // enum foo {..}; void bar() { enum foo x; } <- use of old foo. // Sema::TagUseKind TUK; if (!AllowDeclaration) { TUK = Sema::TUK_Reference; } else if (Tok.is(tok::l_brace)) { if (DS.isFriendSpecified()) { Diag(Tok.getLocation(), diag::err_friend_decl_defines_type) << SourceRange(DS.getFriendSpecLoc()); ConsumeBrace(); SkipUntil(tok::r_brace, StopAtSemi); TUK = Sema::TUK_Friend; } else { TUK = Sema::TUK_Definition; } } else if (!isTypeSpecifier(DSC) && (Tok.is(tok::semi) || (Tok.isAtStartOfLine() && !isValidAfterTypeSpecifier(CanBeBitfield)))) { TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration; if (Tok.isNot(tok::semi)) { // A semicolon was missing after this declaration. Diagnose and recover. ExpectAndConsume(tok::semi, diag::err_expected_after, "enum"); PP.EnterToken(Tok); Tok.setKind(tok::semi); } } else { TUK = Sema::TUK_Reference; } // If this is an elaborated type specifier, and we delayed // diagnostics before, just merge them into the current pool. if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) { diagsFromTag.redelay(); } MultiTemplateParamsArg TParams; if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate && TUK != Sema::TUK_Reference) { if (!getLangOpts().CPlusPlus11 || !SS.isSet()) { // Skip the rest of this declarator, up until the comma or semicolon. Diag(Tok, diag::err_enum_template); SkipUntil(tok::comma, StopAtSemi); return; } if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) { // Enumerations can't be explicitly instantiated. DS.SetTypeSpecError(); Diag(StartLoc, diag::err_explicit_instantiation_enum); return; } assert(TemplateInfo.TemplateParams && "no template parameters"); TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(), TemplateInfo.TemplateParams->size()); } if (TUK == Sema::TUK_Reference) ProhibitAttributes(attrs); if (!Name && TUK != Sema::TUK_Definition) { Diag(Tok, diag::err_enumerator_unnamed_no_def); // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, StopAtSemi); return; } handleDeclspecAlignBeforeClassKey(attrs, DS, TUK); Sema::SkipBodyInfo SkipBody; if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) && NextToken().is(tok::identifier)) SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(), NextToken().getIdentifierInfo(), NextToken().getLocation()); bool Owned = false; bool IsDependent = false; const char *PrevSpec = nullptr; unsigned DiagID; Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc, attrs.getList(), AS, DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent, ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType, DSC == DSC_type_specifier, &SkipBody); if (SkipBody.ShouldSkip) { assert(TUK == Sema::TUK_Definition && "can only skip a definition"); BalancedDelimiterTracker T(*this, tok::l_brace); T.consumeOpen(); T.skipToEnd(); if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, TagDecl, Owned, Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; return; } if (IsDependent) { // This enum has a dependent nested-name-specifier. Handle it as a // dependent tag. if (!Name) { DS.SetTypeSpecError(); Diag(Tok, diag::err_expected_type_name_after_typename); return; } TypeResult Type = Actions.ActOnDependentTag( getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc); if (Type.isInvalid()) { DS.SetTypeSpecError(); return; } if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, Type.get(), Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; return; } if (!TagDecl) { // The action failed to produce an enumeration tag. If this is a // definition, consume the entire definition. if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) { ConsumeBrace(); SkipUntil(tok::r_brace, StopAtSemi); } DS.SetTypeSpecError(); return; } if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) ParseEnumBody(StartLoc, TagDecl); if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, TagDecl, Owned, Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; } /// ParseEnumBody - Parse a {} enclosed enumerator-list. /// enumerator-list: /// enumerator /// enumerator-list ',' enumerator /// enumerator: /// enumeration-constant attributes[opt] /// enumeration-constant attributes[opt] '=' constant-expression /// enumeration-constant: /// identifier /// void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) { // Enter the scope of the enum body and start the definition. ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope); Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl); BalancedDelimiterTracker T(*this, tok::l_brace); T.consumeOpen(); // C does not allow an empty enumerator-list, C++ does [dcl.enum]. if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus) Diag(Tok, diag::error_empty_enum); SmallVector<Decl *, 32> EnumConstantDecls; SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags; Decl *LastEnumConstDecl = nullptr; // Parse the enumerator-list. while (Tok.isNot(tok::r_brace)) { // Parse enumerator. If failed, try skipping till the start of the next // enumerator definition. if (Tok.isNot(tok::identifier)) { Diag(Tok.getLocation(), diag::err_expected) << tok::identifier; if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) && TryConsumeToken(tok::comma)) continue; break; } IdentifierInfo *Ident = Tok.getIdentifierInfo(); SourceLocation IdentLoc = ConsumeToken(); // If attributes exist after the enumerator, parse them. ParsedAttributesWithRange attrs(AttrFactory); MaybeParseGNUAttributes(attrs); ProhibitAttributes(attrs); // GNU-style attributes are prohibited. if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) { if (!getLangOpts().CPlusPlus1z) Diag(Tok.getLocation(), diag::warn_cxx14_compat_attribute) << 1 /*enumerator*/; ParseCXX11Attributes(attrs); } SourceLocation EqualLoc; ExprResult AssignedVal; EnumAvailabilityDiags.emplace_back(*this); if (TryConsumeToken(tok::equal, EqualLoc)) { AssignedVal = ParseConstantExpression(); if (AssignedVal.isInvalid()) SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch); } // Install the enumerator constant into EnumDecl. Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs.getList(), EqualLoc, AssignedVal.get()); EnumAvailabilityDiags.back().done(); EnumConstantDecls.push_back(EnumConstDecl); LastEnumConstDecl = EnumConstDecl; if (Tok.is(tok::identifier)) { // We're missing a comma between enumerators. SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation); Diag(Loc, diag::err_enumerator_list_missing_comma) << FixItHint::CreateInsertion(Loc, ", "); continue; } // Emumerator definition must be finished, only comma or r_brace are // allowed here. SourceLocation CommaLoc; if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) { if (EqualLoc.isValid()) Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace << tok::comma; else Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator); if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) { if (TryConsumeToken(tok::comma, CommaLoc)) continue; } else { break; } } // If comma is followed by r_brace, emit appropriate warning. if (Tok.is(tok::r_brace) && CommaLoc.isValid()) { if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) Diag(CommaLoc, getLangOpts().CPlusPlus ? diag::ext_enumerator_list_comma_cxx : diag::ext_enumerator_list_comma_c) << FixItHint::CreateRemoval(CommaLoc); else if (getLangOpts().CPlusPlus11) Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma) << FixItHint::CreateRemoval(CommaLoc); break; } } // Eat the }. T.consumeClose(); // If attributes exist after the identifier list, parse them. ParsedAttributes attrs(AttrFactory); MaybeParseGNUAttributes(attrs); Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(), EnumDecl, EnumConstantDecls, getCurScope(), attrs.getList()); // Now handle enum constant availability diagnostics. assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size()); for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) { ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent); EnumAvailabilityDiags[i].redelay(); PD.complete(EnumConstantDecls[i]); } EnumScope.Exit(); Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getCloseLocation()); // The next token must be valid after an enum definition. If not, a ';' // was probably forgotten. bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope; if (!isValidAfterTypeSpecifier(CanBeBitfield)) { ExpectAndConsume(tok::semi, diag::err_expected_after, "enum"); // Push this token back into the preprocessor and change our current token // to ';' so that the rest of the code recovers as though there were an // ';' after the definition. PP.EnterToken(Tok); Tok.setKind(tok::semi); } } /// isKnownToBeTypeSpecifier - Return true if we know that the specified token /// is definitely a type-specifier. Return false if it isn't part of a type /// specifier or if we're not sure. bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const { switch (Tok.getKind()) { default: return false; // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_int: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw___float128: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: case tok::kw___vector: #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: #include "clang/Basic/OpenCLImageTypes.def" // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw___interface: case tok::kw_union: // enum-specifier case tok::kw_enum: // typedef-name case tok::annot_typename: return true; } } /// isTypeSpecifierQualifier - Return true if the current token could be the /// start of a specifier-qualifier-list. bool Parser::isTypeSpecifierQualifier() { switch (Tok.getKind()) { default: return false; case tok::identifier: // foo::bar if (TryAltiVecVectorToken()) return true; // Fall through. case tok::kw_typename: // typename T::type // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken()) return true; if (Tok.is(tok::identifier)) return false; return isTypeSpecifierQualifier(); case tok::coloncolon: // ::foo::bar if (NextToken().is(tok::kw_new) || // ::new NextToken().is(tok::kw_delete)) // ::delete return false; if (TryAnnotateTypeOrScopeToken()) return true; return isTypeSpecifierQualifier(); // GNU attributes support. case tok::kw___attribute: // GNU typeof support. case tok::kw_typeof: // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_int: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw___float128: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: case tok::kw___vector: #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: #include "clang/Basic/OpenCLImageTypes.def" // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw___interface: case tok::kw_union: // enum-specifier case tok::kw_enum: // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: // Debugger support. case tok::kw___unknown_anytype: // typedef-name case tok::annot_typename: return true; // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'. case tok::less: return getLangOpts().ObjC1; case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___vectorcall: case tok::kw___w64: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___pascal: case tok::kw___unaligned: case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Null_unspecified: case tok::kw___kindof: case tok::kw___private: case tok::kw___local: case tok::kw___global: case tok::kw___constant: case tok::kw___generic: case tok::kw___read_only: case tok::kw___read_write: case tok::kw___write_only: return true; // C11 _Atomic case tok::kw__Atomic: return true; } } /// isDeclarationSpecifier() - Return true if the current token is part of a /// declaration specifier. /// /// \param DisambiguatingWithExpression True to indicate that the purpose of /// this check is to disambiguate between an expression and a declaration. bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) { switch (Tok.getKind()) { default: return false; case tok::kw_pipe: return getLangOpts().OpenCL && (getLangOpts().OpenCLVersion >= 200); case tok::identifier: // foo::bar // Unfortunate hack to support "Class.factoryMethod" notation. if (getLangOpts().ObjC1 && NextToken().is(tok::period)) return false; if (TryAltiVecVectorToken()) return true; // Fall through. case tok::kw_decltype: // decltype(T())::type case tok::kw_typename: // typename T::type // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken()) return true; if (Tok.is(tok::identifier)) return false; // If we're in Objective-C and we have an Objective-C class type followed // by an identifier and then either ':' or ']', in a place where an // expression is permitted, then this is probably a class message send // missing the initial '['. In this case, we won't consider this to be // the start of a declaration. if (DisambiguatingWithExpression && isStartOfObjCClassMessageMissingOpenBracket()) return false; return isDeclarationSpecifier(); case tok::coloncolon: // ::foo::bar if (NextToken().is(tok::kw_new) || // ::new NextToken().is(tok::kw_delete)) // ::delete return false; // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken()) return true; return isDeclarationSpecifier(); // storage-class-specifier case tok::kw_typedef: case tok::kw_extern: case tok::kw___private_extern__: case tok::kw_static: case tok::kw_auto: case tok::kw___auto_type: case tok::kw_register: case tok::kw___thread: case tok::kw_thread_local: case tok::kw__Thread_local: // Modules case tok::kw___module_private__: // Debugger support case tok::kw___unknown_anytype: // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_int: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw___float128: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: case tok::kw___vector: // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw_union: case tok::kw___interface: // enum-specifier case tok::kw_enum: // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: // function-specifier case tok::kw_inline: case tok::kw_virtual: case tok::kw_explicit: case tok::kw__Noreturn: // alignment-specifier case tok::kw__Alignas: // friend keyword. case tok::kw_friend: // static_assert-declaration case tok::kw__Static_assert: // GNU typeof support. case tok::kw_typeof: // GNU attributes. case tok::kw___attribute: // C++11 decltype and constexpr. case tok::annot_decltype: case tok::kw_constexpr: // C++ Concepts TS - concept case tok::kw_concept: // C11 _Atomic case tok::kw__Atomic: return true; // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'. case tok::less: return getLangOpts().ObjC1; // typedef-name case tok::annot_typename: return !DisambiguatingWithExpression || !isStartOfObjCClassMessageMissingOpenBracket(); case tok::kw___declspec: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___vectorcall: case tok::kw___w64: case tok::kw___sptr: case tok::kw___uptr: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___forceinline: case tok::kw___pascal: case tok::kw___unaligned: case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Null_unspecified: case tok::kw___kindof: case tok::kw___private: case tok::kw___local: case tok::kw___global: case tok::kw___constant: case tok::kw___generic: case tok::kw___read_only: case tok::kw___read_write: case tok::kw___write_only: #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: #include "clang/Basic/OpenCLImageTypes.def" return true; } } bool Parser::isConstructorDeclarator(bool IsUnqualified) { TentativeParsingAction TPA(*this); // Parse the C++ scope specifier. CXXScopeSpec SS; if (ParseOptionalCXXScopeSpecifier(SS, nullptr, /*EnteringContext=*/true)) { TPA.Revert(); return false; } // Parse the constructor name. if (Tok.isOneOf(tok::identifier, tok::annot_template_id)) { // We already know that we have a constructor name; just consume // the token. ConsumeToken(); } else { TPA.Revert(); return false; } // Current class name must be followed by a left parenthesis. if (Tok.isNot(tok::l_paren)) { TPA.Revert(); return false; } ConsumeParen(); // A right parenthesis, or ellipsis followed by a right parenthesis signals // that we have a constructor. if (Tok.is(tok::r_paren) || (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) { TPA.Revert(); return true; } // A C++11 attribute here signals that we have a constructor, and is an // attribute on the first constructor parameter. if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier(/*Disambiguate*/ false, /*OuterMightBeMessageSend*/ true)) { TPA.Revert(); return true; } // If we need to, enter the specified scope. DeclaratorScopeObj DeclScopeObj(*this, SS); if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS)) DeclScopeObj.EnterDeclaratorScope(); // Optionally skip Microsoft attributes. ParsedAttributes Attrs(AttrFactory); MaybeParseMicrosoftAttributes(Attrs); // Check whether the next token(s) are part of a declaration // specifier, in which case we have the start of a parameter and, // therefore, we know that this is a constructor. bool IsConstructor = false; if (isDeclarationSpecifier()) IsConstructor = true; else if (Tok.is(tok::identifier) || (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) { // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type. // This might be a parenthesized member name, but is more likely to // be a constructor declaration with an invalid argument type. Keep // looking. if (Tok.is(tok::annot_cxxscope)) ConsumeToken(); ConsumeToken(); // If this is not a constructor, we must be parsing a declarator, // which must have one of the following syntactic forms (see the // grammar extract at the start of ParseDirectDeclarator): switch (Tok.getKind()) { case tok::l_paren: // C(X ( int)); case tok::l_square: // C(X [ 5]); // C(X [ [attribute]]); case tok::coloncolon: // C(X :: Y); // C(X :: *p); // Assume this isn't a constructor, rather than assuming it's a // constructor with an unnamed parameter of an ill-formed type. break; case tok::r_paren: // C(X ) if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) { // Assume these were meant to be constructors: // C(X) : (the name of a bit-field cannot be parenthesized). // C(X) try (this is otherwise ill-formed). IsConstructor = true; } if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) { // If we have a constructor name within the class definition, // assume these were meant to be constructors: // C(X) { // C(X) ; // ... because otherwise we would be declaring a non-static data // member that is ill-formed because it's of the same type as its // surrounding class. // // FIXME: We can actually do this whether or not the name is qualified, // because if it is qualified in this context it must be being used as // a constructor name. However, we do not implement that rule correctly // currently, so we're somewhat conservative here. IsConstructor = IsUnqualified; } break; default: IsConstructor = true; break; } } TPA.Revert(); return IsConstructor; } /// ParseTypeQualifierListOpt /// type-qualifier-list: [C99 6.7.5] /// type-qualifier /// [vendor] attributes /// [ only if AttrReqs & AR_VendorAttributesParsed ] /// type-qualifier-list type-qualifier /// [vendor] type-qualifier-list attributes /// [ only if AttrReqs & AR_VendorAttributesParsed ] /// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq /// [ only if AttReqs & AR_CXX11AttributesParsed ] /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via /// AttrRequirements bitmask values. void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed, bool IdentifierRequired) { if (getLangOpts().CPlusPlus11 && (AttrReqs & AR_CXX11AttributesParsed) && isCXX11AttributeSpecifier()) { ParsedAttributesWithRange attrs(AttrFactory); ParseCXX11Attributes(attrs); DS.takeAttributesFrom(attrs); } SourceLocation EndLoc; while (1) { bool isInvalid = false; const char *PrevSpec = nullptr; unsigned DiagID = 0; SourceLocation Loc = Tok.getLocation(); switch (Tok.getKind()) { case tok::code_completion: Actions.CodeCompleteTypeQualifiers(DS); return cutOffParsing(); case tok::kw_const: isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_volatile: isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_restrict: isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw__Atomic: if (!AtomicAllowed) goto DoneWithTypeQuals; isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID, getLangOpts()); break; // OpenCL qualifiers: case tok::kw___private: case tok::kw___global: case tok::kw___local: case tok::kw___constant: case tok::kw___generic: case tok::kw___read_only: case tok::kw___write_only: case tok::kw___read_write: ParseOpenCLQualifiers(DS.getAttributes()); break; case tok::kw___unaligned: isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw___uptr: // GNU libc headers in C mode use '__uptr' as an identifer which conflicts // with the MS modifier keyword. if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus && IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) { if (TryKeywordIdentFallback(false)) continue; } case tok::kw___sptr: case tok::kw___w64: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___vectorcall: if (AttrReqs & AR_DeclspecAttributesParsed) { ParseMicrosoftTypeAttributes(DS.getAttributes()); continue; } goto DoneWithTypeQuals; case tok::kw___pascal: if (AttrReqs & AR_VendorAttributesParsed) { ParseBorlandTypeAttributes(DS.getAttributes()); continue; } goto DoneWithTypeQuals; // Nullability type specifiers. case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Null_unspecified: ParseNullabilityTypeSpecifiers(DS.getAttributes()); continue; // Objective-C 'kindof' types. case tok::kw___kindof: DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc, nullptr, 0, AttributeList::AS_Keyword); (void)ConsumeToken(); continue; case tok::kw___attribute: if (AttrReqs & AR_GNUAttributesParsedAndRejected) // When GNU attributes are expressly forbidden, diagnose their usage. Diag(Tok, diag::err_attributes_not_allowed); // Parse the attributes even if they are rejected to ensure that error // recovery is graceful. if (AttrReqs & AR_GNUAttributesParsed || AttrReqs & AR_GNUAttributesParsedAndRejected) { ParseGNUAttributes(DS.getAttributes()); continue; // do *not* consume the next token! } // otherwise, FALL THROUGH! default: DoneWithTypeQuals: // If this is not a type-qualifier token, we're done reading type // qualifiers. First verify that DeclSpec's are consistent. DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy()); if (EndLoc.isValid()) DS.SetRangeEnd(EndLoc); return; } // If the specifier combination wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); Diag(Tok, DiagID) << PrevSpec; } EndLoc = ConsumeToken(); } } /// ParseDeclarator - Parse and verify a newly-initialized declarator. /// void Parser::ParseDeclarator(Declarator &D) { /// This implements the 'declarator' production in the C grammar, then checks /// for well-formedness and issues diagnostics. ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); } static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang, unsigned TheContext) { if (Kind == tok::star || Kind == tok::caret) return true; if ((Kind == tok::kw_pipe) && Lang.OpenCL && (Lang.OpenCLVersion >= 200)) return true; if (!Lang.CPlusPlus) return false; if (Kind == tok::amp) return true; // We parse rvalue refs in C++03, because otherwise the errors are scary. // But we must not parse them in conversion-type-ids and new-type-ids, since // those can be legitimately followed by a && operator. // (The same thing can in theory happen after a trailing-return-type, but // since those are a C++11 feature, there is no rejects-valid issue there.) if (Kind == tok::ampamp) return Lang.CPlusPlus11 || (TheContext != Declarator::ConversionIdContext && TheContext != Declarator::CXXNewContext); return false; } // Indicates whether the given declarator is a pipe declarator. static bool isPipeDeclerator(const Declarator &D) { const unsigned NumTypes = D.getNumTypeObjects(); for (unsigned Idx = 0; Idx != NumTypes; ++Idx) if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind) return true; return false; } /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator /// is parsed by the function passed to it. Pass null, and the direct-declarator /// isn't parsed at all, making this function effectively parse the C++ /// ptr-operator production. /// /// If the grammar of this construct is extended, matching changes must also be /// made to TryParseDeclarator and MightBeDeclarator, and possibly to /// isConstructorDeclarator. /// /// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl] /// [C] pointer[opt] direct-declarator /// [C++] direct-declarator /// [C++] ptr-operator declarator /// /// pointer: [C99 6.7.5] /// '*' type-qualifier-list[opt] /// '*' type-qualifier-list[opt] pointer /// /// ptr-operator: /// '*' cv-qualifier-seq[opt] /// '&' /// [C++0x] '&&' /// [GNU] '&' restrict[opt] attributes[opt] /// [GNU?] '&&' restrict[opt] attributes[opt] /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] void Parser::ParseDeclaratorInternal(Declarator &D, DirectDeclParseFunction DirectDeclParser) { if (Diags.hasAllExtensionsSilenced()) D.setExtension(); // C++ member pointers start with a '::' or a nested-name. // Member pointers get special handling, since there's no place for the // scope spec in the generic path below. if (getLangOpts().CPlusPlus && (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) || (Tok.is(tok::identifier) && (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) || Tok.is(tok::annot_cxxscope))) { bool EnteringContext = D.getContext() == Declarator::FileContext || D.getContext() == Declarator::MemberContext; CXXScopeSpec SS; ParseOptionalCXXScopeSpecifier(SS, nullptr, EnteringContext); if (SS.isNotEmpty()) { if (Tok.isNot(tok::star)) { // The scope spec really belongs to the direct-declarator. if (D.mayHaveIdentifier()) D.getCXXScopeSpec() = SS; else AnnotateScopeToken(SS, true); if (DirectDeclParser) (this->*DirectDeclParser)(D); return; } SourceLocation Loc = ConsumeToken(); D.SetRangeEnd(Loc); DeclSpec DS(AttrFactory); ParseTypeQualifierListOpt(DS); D.ExtendWithDeclSpec(DS); // Recurse to parse whatever is left. ParseDeclaratorInternal(D, DirectDeclParser); // Sema will have to catch (syntactically invalid) pointers into global // scope. It has to catch pointers into namespace scope anyway. D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(), DS.getLocEnd()), DS.getAttributes(), /* Don't replace range end. */SourceLocation()); return; } } tok::TokenKind Kind = Tok.getKind(); if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) { DeclSpec DS(AttrFactory); ParseTypeQualifierListOpt(DS); D.AddTypeInfo( DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()), DS.getAttributes(), SourceLocation()); } // Not a pointer, C++ reference, or block. if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) { if (DirectDeclParser) (this->*DirectDeclParser)(D); return; } // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference, // '&&' -> rvalue reference SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&. D.SetRangeEnd(Loc); if (Kind == tok::star || Kind == tok::caret) { // Is a pointer. DeclSpec DS(AttrFactory); // GNU attributes are not allowed here in a new-type-id, but Declspec and // C++11 attributes are allowed. unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed | ((D.getContext() != Declarator::CXXNewContext) ? AR_GNUAttributesParsed : AR_GNUAttributesParsedAndRejected); ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier()); D.ExtendWithDeclSpec(DS); // Recursively parse the declarator. ParseDeclaratorInternal(D, DirectDeclParser); if (Kind == tok::star) // Remember that we parsed a pointer type, and remember the type-quals. D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(), DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(), DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()), DS.getAttributes(), SourceLocation()); else // Remember that we parsed a Block type, and remember the type-quals. D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc), DS.getAttributes(), SourceLocation()); } else { // Is a reference DeclSpec DS(AttrFactory); // Complain about rvalue references in C++03, but then go on and build // the declarator. if (Kind == tok::ampamp) Diag(Loc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_rvalue_reference : diag::ext_rvalue_reference); // GNU-style and C++11 attributes are allowed here, as is restrict. ParseTypeQualifierListOpt(DS); D.ExtendWithDeclSpec(DS); // C++ 8.3.2p1: cv-qualified references are ill-formed except when the // cv-qualifiers are introduced through the use of a typedef or of a // template type argument, in which case the cv-qualifiers are ignored. if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) { if (DS.getTypeQualifiers() & DeclSpec::TQ_const) Diag(DS.getConstSpecLoc(), diag::err_invalid_reference_qualifier_application) << "const"; if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) Diag(DS.getVolatileSpecLoc(), diag::err_invalid_reference_qualifier_application) << "volatile"; // 'restrict' is permitted as an extension. if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) Diag(DS.getAtomicSpecLoc(), diag::err_invalid_reference_qualifier_application) << "_Atomic"; } // Recursively parse the declarator. ParseDeclaratorInternal(D, DirectDeclParser); if (D.getNumTypeObjects() > 0) { // C++ [dcl.ref]p4: There shall be no references to references. DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1); if (InnerChunk.Kind == DeclaratorChunk::Reference) { if (const IdentifierInfo *II = D.getIdentifier()) Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) << II; else Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) << "type name"; // Once we've complained about the reference-to-reference, we // can go ahead and build the (technically ill-formed) // declarator: reference collapsing will take care of it. } } // Remember that we parsed a reference type. D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc, Kind == tok::amp), DS.getAttributes(), SourceLocation()); } } // When correcting from misplaced brackets before the identifier, the location // is saved inside the declarator so that other diagnostic messages can use // them. This extracts and returns that location, or returns the provided // location if a stored location does not exist. static SourceLocation getMissingDeclaratorIdLoc(Declarator &D, SourceLocation Loc) { if (D.getName().StartLocation.isInvalid() && D.getName().EndLocation.isValid()) return D.getName().EndLocation; return Loc; } /// ParseDirectDeclarator /// direct-declarator: [C99 6.7.5] /// [C99] identifier /// '(' declarator ')' /// [GNU] '(' attributes declarator ')' /// [C90] direct-declarator '[' constant-expression[opt] ']' /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' /// [C++11] direct-declarator '[' constant-expression[opt] ']' /// attribute-specifier-seq[opt] /// direct-declarator '(' parameter-type-list ')' /// direct-declarator '(' identifier-list[opt] ')' /// [GNU] direct-declarator '(' parameter-forward-declarations /// parameter-type-list[opt] ')' /// [C++] direct-declarator '(' parameter-declaration-clause ')' /// cv-qualifier-seq[opt] exception-specification[opt] /// [C++11] direct-declarator '(' parameter-declaration-clause ')' /// attribute-specifier-seq[opt] cv-qualifier-seq[opt] /// ref-qualifier[opt] exception-specification[opt] /// [C++] declarator-id /// [C++11] declarator-id attribute-specifier-seq[opt] /// /// declarator-id: [C++ 8] /// '...'[opt] id-expression /// '::'[opt] nested-name-specifier[opt] type-name /// /// id-expression: [C++ 5.1] /// unqualified-id /// qualified-id /// /// unqualified-id: [C++ 5.1] /// identifier /// operator-function-id /// conversion-function-id /// '~' class-name /// template-id /// /// Note, any additional constructs added here may need corresponding changes /// in isConstructorDeclarator. void Parser::ParseDirectDeclarator(Declarator &D) { DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec()); if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) { // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in // this context it is a bitfield. Also in range-based for statement colon // may delimit for-range-declaration. ColonProtectionRAIIObject X(*this, D.getContext() == Declarator::MemberContext || (D.getContext() == Declarator::ForContext && getLangOpts().CPlusPlus11)); // ParseDeclaratorInternal might already have parsed the scope. if (D.getCXXScopeSpec().isEmpty()) { bool EnteringContext = D.getContext() == Declarator::FileContext || D.getContext() == Declarator::MemberContext; ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), nullptr, EnteringContext); } if (D.getCXXScopeSpec().isValid()) { if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec())) // Change the declaration context for name lookup, until this function // is exited (and the declarator has been parsed). DeclScopeObj.EnterDeclaratorScope(); } // C++0x [dcl.fct]p14: // There is a syntactic ambiguity when an ellipsis occurs at the end of a // parameter-declaration-clause without a preceding comma. In this case, // the ellipsis is parsed as part of the abstract-declarator if the type // of the parameter either names a template parameter pack that has not // been expanded or contains auto; otherwise, it is parsed as part of the // parameter-declaration-clause. if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() && !((D.getContext() == Declarator::PrototypeContext || D.getContext() == Declarator::LambdaExprParameterContext || D.getContext() == Declarator::BlockLiteralContext) && NextToken().is(tok::r_paren) && !D.hasGroupingParens() && !Actions.containsUnexpandedParameterPacks(D) && D.getDeclSpec().getTypeSpecType() != TST_auto)) { SourceLocation EllipsisLoc = ConsumeToken(); if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) { // The ellipsis was put in the wrong place. Recover, and explain to // the user what they should have done. ParseDeclarator(D); if (EllipsisLoc.isValid()) DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D); return; } else D.setEllipsisLoc(EllipsisLoc); // The ellipsis can't be followed by a parenthesized declarator. We // check for that in ParseParenDeclarator, after we have disambiguated // the l_paren token. } if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id, tok::tilde)) { // We found something that indicates the start of an unqualified-id. // Parse that unqualified-id. bool AllowConstructorName; if (D.getDeclSpec().hasTypeSpecifier()) AllowConstructorName = false; else if (D.getCXXScopeSpec().isSet()) AllowConstructorName = (D.getContext() == Declarator::FileContext || D.getContext() == Declarator::MemberContext); else AllowConstructorName = (D.getContext() == Declarator::MemberContext); SourceLocation TemplateKWLoc; bool HadScope = D.getCXXScopeSpec().isValid(); if (ParseUnqualifiedId(D.getCXXScopeSpec(), /*EnteringContext=*/true, /*AllowDestructorName=*/true, AllowConstructorName, nullptr, TemplateKWLoc, D.getName()) || // Once we're past the identifier, if the scope was bad, mark the // whole declarator bad. D.getCXXScopeSpec().isInvalid()) { D.SetIdentifier(nullptr, Tok.getLocation()); D.setInvalidType(true); } else { // ParseUnqualifiedId might have parsed a scope specifier during error // recovery. If it did so, enter that scope. if (!HadScope && D.getCXXScopeSpec().isValid() && Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec())) DeclScopeObj.EnterDeclaratorScope(); // Parsed the unqualified-id; update range information and move along. if (D.getSourceRange().getBegin().isInvalid()) D.SetRangeBegin(D.getName().getSourceRange().getBegin()); D.SetRangeEnd(D.getName().getSourceRange().getEnd()); } goto PastIdentifier; } if (D.getCXXScopeSpec().isNotEmpty()) { // We have a scope specifier but no following unqualified-id. Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()), diag::err_expected_unqualified_id) << /*C++*/1; D.SetIdentifier(nullptr, Tok.getLocation()); goto PastIdentifier; } } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) { assert(!getLangOpts().CPlusPlus && "There's a C++-specific check for tok::identifier above"); assert(Tok.getIdentifierInfo() && "Not an identifier?"); D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); D.SetRangeEnd(Tok.getLocation()); ConsumeToken(); goto PastIdentifier; } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) { // A virt-specifier isn't treated as an identifier if it appears after a // trailing-return-type. if (D.getContext() != Declarator::TrailingReturnContext || !isCXX11VirtSpecifier(Tok)) { Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id) << FixItHint::CreateRemoval(Tok.getLocation()); D.SetIdentifier(nullptr, Tok.getLocation()); ConsumeToken(); goto PastIdentifier; } } if (Tok.is(tok::l_paren)) { // direct-declarator: '(' declarator ')' // direct-declarator: '(' attributes declarator ')' // Example: 'char (*X)' or 'int (*XX)(void)' ParseParenDeclarator(D); // If the declarator was parenthesized, we entered the declarator // scope when parsing the parenthesized declarator, then exited // the scope already. Re-enter the scope, if we need to. if (D.getCXXScopeSpec().isSet()) { // If there was an error parsing parenthesized declarator, declarator // scope may have been entered before. Don't do it again. if (!D.isInvalidType() && Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec())) // Change the declaration context for name lookup, until this function // is exited (and the declarator has been parsed). DeclScopeObj.EnterDeclaratorScope(); } } else if (D.mayOmitIdentifier()) { // This could be something simple like "int" (in which case the declarator // portion is empty), if an abstract-declarator is allowed. D.SetIdentifier(nullptr, Tok.getLocation()); // The grammar for abstract-pack-declarator does not allow grouping parens. // FIXME: Revisit this once core issue 1488 is resolved. if (D.hasEllipsis() && D.hasGroupingParens()) Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()), diag::ext_abstract_pack_declarator_parens); } else { if (Tok.getKind() == tok::annot_pragma_parser_crash) LLVM_BUILTIN_TRAP; if (Tok.is(tok::l_square)) return ParseMisplacedBracketDeclarator(D); if (D.getContext() == Declarator::MemberContext) { Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), diag::err_expected_member_name_or_semi) << (D.getDeclSpec().isEmpty() ? SourceRange() : D.getDeclSpec().getSourceRange()); } else if (getLangOpts().CPlusPlus) { if (Tok.isOneOf(tok::period, tok::arrow)) Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow); else { SourceLocation Loc = D.getCXXScopeSpec().getEndLoc(); if (Tok.isAtStartOfLine() && Loc.isValid()) Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus; else Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus; } } else { Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), diag::err_expected_either) << tok::identifier << tok::l_paren; } D.SetIdentifier(nullptr, Tok.getLocation()); D.setInvalidType(true); } PastIdentifier: assert(D.isPastIdentifier() && "Haven't past the location of the identifier yet?"); // Don't parse attributes unless we have parsed an unparenthesized name. if (D.hasName() && !D.getNumTypeObjects()) MaybeParseCXX11Attributes(D); while (1) { if (Tok.is(tok::l_paren)) { // Enter function-declaration scope, limiting any declarators to the // function prototype scope, including parameter declarators. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope|Scope::DeclScope| (D.isFunctionDeclaratorAFunctionDeclaration() ? Scope::FunctionDeclarationScope : 0)); // The paren may be part of a C++ direct initializer, eg. "int x(1);". // In such a case, check if we actually have a function declarator; if it // is not, the declarator has been fully parsed. bool IsAmbiguous = false; if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) { // The name of the declarator, if any, is tentatively declared within // a possible direct initializer. TentativelyDeclaredIdentifiers.push_back(D.getIdentifier()); bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous); TentativelyDeclaredIdentifiers.pop_back(); if (!IsFunctionDecl) break; } ParsedAttributes attrs(AttrFactory); BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); ParseFunctionDeclarator(D, attrs, T, IsAmbiguous); PrototypeScope.Exit(); } else if (Tok.is(tok::l_square)) { ParseBracketDeclarator(D); } else { break; } } } /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is /// only called before the identifier, so these are most likely just grouping /// parens for precedence. If we find that these are actually function /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator. /// /// direct-declarator: /// '(' declarator ')' /// [GNU] '(' attributes declarator ')' /// direct-declarator '(' parameter-type-list ')' /// direct-declarator '(' identifier-list[opt] ')' /// [GNU] direct-declarator '(' parameter-forward-declarations /// parameter-type-list[opt] ')' /// void Parser::ParseParenDeclarator(Declarator &D) { BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); assert(!D.isPastIdentifier() && "Should be called before passing identifier"); // Eat any attributes before we look at whether this is a grouping or function // declarator paren. If this is a grouping paren, the attribute applies to // the type being built up, for example: // int (__attribute__(()) *x)(long y) // If this ends up not being a grouping paren, the attribute applies to the // first argument, for example: // int (__attribute__(()) int x) // In either case, we need to eat any attributes to be able to determine what // sort of paren this is. // ParsedAttributes attrs(AttrFactory); bool RequiresArg = false; if (Tok.is(tok::kw___attribute)) { ParseGNUAttributes(attrs); // We require that the argument list (if this is a non-grouping paren) be // present even if the attribute list was empty. RequiresArg = true; } // Eat any Microsoft extensions. ParseMicrosoftTypeAttributes(attrs); // Eat any Borland extensions. if (Tok.is(tok::kw___pascal)) ParseBorlandTypeAttributes(attrs); // If we haven't past the identifier yet (or where the identifier would be // stored, if this is an abstract declarator), then this is probably just // grouping parens. However, if this could be an abstract-declarator, then // this could also be the start of function arguments (consider 'void()'). bool isGrouping; if (!D.mayOmitIdentifier()) { // If this can't be an abstract-declarator, this *must* be a grouping // paren, because we haven't seen the identifier yet. isGrouping = true; } else if (Tok.is(tok::r_paren) || // 'int()' is a function. (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren)) || // C++ int(...) isDeclarationSpecifier() || // 'int(int)' is a function. isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function. // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is // considered to be a type, not a K&R identifier-list. isGrouping = false; } else { // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'. isGrouping = true; } // If this is a grouping paren, handle: // direct-declarator: '(' declarator ')' // direct-declarator: '(' attributes declarator ')' if (isGrouping) { SourceLocation EllipsisLoc = D.getEllipsisLoc(); D.setEllipsisLoc(SourceLocation()); bool hadGroupingParens = D.hasGroupingParens(); D.setGroupingParens(true); ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); // Match the ')'. T.consumeClose(); D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()), attrs, T.getCloseLocation()); D.setGroupingParens(hadGroupingParens); // An ellipsis cannot be placed outside parentheses. if (EllipsisLoc.isValid()) DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D); return; } // Okay, if this wasn't a grouping paren, it must be the start of a function // argument list. Recognize that this declarator will never have an // identifier (and remember where it would have been), then call into // ParseFunctionDeclarator to handle of argument list. D.SetIdentifier(nullptr, Tok.getLocation()); // Enter function-declaration scope, limiting any declarators to the // function prototype scope, including parameter declarators. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope | Scope::DeclScope | (D.isFunctionDeclaratorAFunctionDeclaration() ? Scope::FunctionDeclarationScope : 0)); ParseFunctionDeclarator(D, attrs, T, false, RequiresArg); PrototypeScope.Exit(); } /// ParseFunctionDeclarator - We are after the identifier and have parsed the /// declarator D up to a paren, which indicates that we are parsing function /// arguments. /// /// If FirstArgAttrs is non-null, then the caller parsed those arguments /// immediately after the open paren - they should be considered to be the /// first argument of a parameter. /// /// If RequiresArg is true, then the first argument of the function is required /// to be present and required to not be an identifier list. /// /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt], /// (C++11) ref-qualifier[opt], exception-specification[opt], /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt]. /// /// [C++11] exception-specification: /// dynamic-exception-specification /// noexcept-specification /// void Parser::ParseFunctionDeclarator(Declarator &D, ParsedAttributes &FirstArgAttrs, BalancedDelimiterTracker &Tracker, bool IsAmbiguous, bool RequiresArg) { assert(getCurScope()->isFunctionPrototypeScope() && "Should call from a Function scope"); // lparen is already consumed! assert(D.isPastIdentifier() && "Should not call before identifier!"); // This should be true when the function has typed arguments. // Otherwise, it is treated as a K&R-style function. bool HasProto = false; // Build up an array of information about the parsed arguments. SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo; // Remember where we see an ellipsis, if any. SourceLocation EllipsisLoc; DeclSpec DS(AttrFactory); bool RefQualifierIsLValueRef = true; SourceLocation RefQualifierLoc; SourceLocation ConstQualifierLoc; SourceLocation VolatileQualifierLoc; SourceLocation RestrictQualifierLoc; ExceptionSpecificationType ESpecType = EST_None; SourceRange ESpecRange; SmallVector<ParsedType, 2> DynamicExceptions; SmallVector<SourceRange, 2> DynamicExceptionRanges; ExprResult NoexceptExpr; CachedTokens *ExceptionSpecTokens = nullptr; ParsedAttributes FnAttrs(AttrFactory); TypeResult TrailingReturnType; /* LocalEndLoc is the end location for the local FunctionTypeLoc. EndLoc is the end location for the function declarator. They differ for trailing return types. */ SourceLocation StartLoc, LocalEndLoc, EndLoc; SourceLocation LParenLoc, RParenLoc; LParenLoc = Tracker.getOpenLocation(); StartLoc = LParenLoc; if (isFunctionDeclaratorIdentifierList()) { if (RequiresArg) Diag(Tok, diag::err_argument_required_after_attribute); ParseFunctionDeclaratorIdentifierList(D, ParamInfo); Tracker.consumeClose(); RParenLoc = Tracker.getCloseLocation(); LocalEndLoc = RParenLoc; EndLoc = RParenLoc; } else { if (Tok.isNot(tok::r_paren)) ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc); else if (RequiresArg) Diag(Tok, diag::err_argument_required_after_attribute); HasProto = ParamInfo.size() || getLangOpts().CPlusPlus; // If we have the closing ')', eat it. Tracker.consumeClose(); RParenLoc = Tracker.getCloseLocation(); LocalEndLoc = RParenLoc; EndLoc = RParenLoc; if (getLangOpts().CPlusPlus) { // FIXME: Accept these components in any order, and produce fixits to // correct the order if the user gets it wrong. Ideally we should deal // with the pure-specifier in the same way. // Parse cv-qualifier-seq[opt]. ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed, /*AtomicAllowed*/ false); if (!DS.getSourceRange().getEnd().isInvalid()) { EndLoc = DS.getSourceRange().getEnd(); ConstQualifierLoc = DS.getConstSpecLoc(); VolatileQualifierLoc = DS.getVolatileSpecLoc(); RestrictQualifierLoc = DS.getRestrictSpecLoc(); } // Parse ref-qualifier[opt]. if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc)) EndLoc = RefQualifierLoc; // C++11 [expr.prim.general]p3: // If a declaration declares a member function or member function // template of a class X, the expression this is a prvalue of type // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq // and the end of the function-definition, member-declarator, or // declarator. // FIXME: currently, "static" case isn't handled correctly. bool IsCXX11MemberFunction = getLangOpts().CPlusPlus11 && D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && (D.getContext() == Declarator::MemberContext ? !D.getDeclSpec().isFriendSpecified() : D.getContext() == Declarator::FileContext && D.getCXXScopeSpec().isValid() && Actions.CurContext->isRecord()); Sema::CXXThisScopeRAII ThisScope(Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), DS.getTypeQualifiers() | (D.getDeclSpec().isConstexprSpecified() && !getLangOpts().CPlusPlus14 ? Qualifiers::Const : 0), IsCXX11MemberFunction); // Parse exception-specification[opt]. bool Delayed = D.isFirstDeclarationOfMember() && D.isFunctionDeclaratorAFunctionDeclaration(); if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) && GetLookAheadToken(0).is(tok::kw_noexcept) && GetLookAheadToken(1).is(tok::l_paren) && GetLookAheadToken(2).is(tok::kw_noexcept) && GetLookAheadToken(3).is(tok::l_paren) && GetLookAheadToken(4).is(tok::identifier) && GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) { // HACK: We've got an exception-specification // noexcept(noexcept(swap(...))) // or // noexcept(noexcept(swap(...)) && noexcept(swap(...))) // on a 'swap' member function. This is a libstdc++ bug; the lookup // for 'swap' will only find the function we're currently declaring, // whereas it expects to find a non-member swap through ADL. Turn off // delayed parsing to give it a chance to find what it expects. Delayed = false; } ESpecType = tryParseExceptionSpecification(Delayed, ESpecRange, DynamicExceptions, DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens); if (ESpecType != EST_None) EndLoc = ESpecRange.getEnd(); // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes // after the exception-specification. MaybeParseCXX11Attributes(FnAttrs); // Parse trailing-return-type[opt]. LocalEndLoc = EndLoc; if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) { Diag(Tok, diag::warn_cxx98_compat_trailing_return_type); if (D.getDeclSpec().getTypeSpecType() == TST_auto) StartLoc = D.getDeclSpec().getTypeSpecTypeLoc(); LocalEndLoc = Tok.getLocation(); SourceRange Range; TrailingReturnType = ParseTrailingReturnType(Range); EndLoc = Range.getEnd(); } } } // Remember that we parsed a function type, and remember the attributes. D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(), ParamInfo.size(), EllipsisLoc, RParenLoc, DS.getTypeQualifiers(), RefQualifierIsLValueRef, RefQualifierLoc, ConstQualifierLoc, VolatileQualifierLoc, RestrictQualifierLoc, /*MutableLoc=*/SourceLocation(), ESpecType, ESpecRange, DynamicExceptions.data(), DynamicExceptionRanges.data(), DynamicExceptions.size(), NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr, ExceptionSpecTokens, StartLoc, LocalEndLoc, D, TrailingReturnType), FnAttrs, EndLoc); } /// ParseRefQualifier - Parses a member function ref-qualifier. Returns /// true if a ref-qualifier is found. bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef, SourceLocation &RefQualifierLoc) { if (Tok.isOneOf(tok::amp, tok::ampamp)) { Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_ref_qualifier : diag::ext_ref_qualifier); RefQualifierIsLValueRef = Tok.is(tok::amp); RefQualifierLoc = ConsumeToken(); return true; } return false; } /// isFunctionDeclaratorIdentifierList - This parameter list may have an /// identifier list form for a K&R-style function: void foo(a,b,c) /// /// Note that identifier-lists are only allowed for normal declarators, not for /// abstract-declarators. bool Parser::isFunctionDeclaratorIdentifierList() { return !getLangOpts().CPlusPlus && Tok.is(tok::identifier) && !TryAltiVecVectorToken() // K&R identifier lists can't have typedefs as identifiers, per C99 // 6.7.5.3p11. && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) // Identifier lists follow a really simple grammar: the identifiers can // be followed *only* by a ", identifier" or ")". However, K&R // identifier lists are really rare in the brave new modern world, and // it is very common for someone to typo a type in a non-K&R style // list. If we are presented with something like: "void foo(intptr x, // float y)", we don't want to start parsing the function declarator as // though it is a K&R style declarator just because intptr is an // invalid type. // // To handle this, we check to see if the token after the first // identifier is a "," or ")". Only then do we parse it as an // identifier list. && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)); } /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator /// we found a K&R-style identifier list instead of a typed parameter list. /// /// After returning, ParamInfo will hold the parsed parameters. /// /// identifier-list: [C99 6.7.5] /// identifier /// identifier-list ',' identifier /// void Parser::ParseFunctionDeclaratorIdentifierList( Declarator &D, SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) { // If there was no identifier specified for the declarator, either we are in // an abstract-declarator, or we are in a parameter declarator which was found // to be abstract. In abstract-declarators, identifier lists are not valid: // diagnose this. if (!D.getIdentifier()) Diag(Tok, diag::ext_ident_list_in_param); // Maintain an efficient lookup of params we have seen so far. llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar; do { // If this isn't an identifier, report the error and skip until ')'. if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch); // Forget we parsed anything. ParamInfo.clear(); return; } IdentifierInfo *ParmII = Tok.getIdentifierInfo(); // Reject 'typedef int y; int test(x, y)', but continue parsing. if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope())) Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII; // Verify that the argument identifier has not already been mentioned. if (!ParamsSoFar.insert(ParmII).second) { Diag(Tok, diag::err_param_redefinition) << ParmII; } else { // Remember this identifier in ParamInfo. ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, Tok.getLocation(), nullptr)); } // Eat the identifier. ConsumeToken(); // The list continues if we see a comma. } while (TryConsumeToken(tok::comma)); } /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list /// after the opening parenthesis. This function will not parse a K&R-style /// identifier list. /// /// D is the declarator being parsed. If FirstArgAttrs is non-null, then the /// caller parsed those arguments immediately after the open paren - they should /// be considered to be part of the first parameter. /// /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will /// be the location of the ellipsis, if any was parsed. /// /// parameter-type-list: [C99 6.7.5] /// parameter-list /// parameter-list ',' '...' /// [C++] parameter-list '...' /// /// parameter-list: [C99 6.7.5] /// parameter-declaration /// parameter-list ',' parameter-declaration /// /// parameter-declaration: [C99 6.7.5] /// declaration-specifiers declarator /// [C++] declaration-specifiers declarator '=' assignment-expression /// [C++11] initializer-clause /// [GNU] declaration-specifiers declarator attributes /// declaration-specifiers abstract-declarator[opt] /// [C++] declaration-specifiers abstract-declarator[opt] /// '=' assignment-expression /// [GNU] declaration-specifiers abstract-declarator[opt] attributes /// [C++11] attribute-specifier-seq parameter-declaration /// void Parser::ParseParameterDeclarationClause( Declarator &D, ParsedAttributes &FirstArgAttrs, SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo, SourceLocation &EllipsisLoc) { do { // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq // before deciding this was a parameter-declaration-clause. if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) break; // Parse the declaration-specifiers. // Just use the ParsingDeclaration "scope" of the declarator. DeclSpec DS(AttrFactory); // Parse any C++11 attributes. MaybeParseCXX11Attributes(DS.getAttributes()); // Skip any Microsoft attributes before a param. MaybeParseMicrosoftAttributes(DS.getAttributes()); SourceLocation DSStart = Tok.getLocation(); // If the caller parsed attributes for the first argument, add them now. // Take them so that we only apply the attributes to the first parameter. // FIXME: If we can leave the attributes in the token stream somehow, we can // get rid of a parameter (FirstArgAttrs) and this statement. It might be // too much hassle. DS.takeAttributesFrom(FirstArgAttrs); ParseDeclarationSpecifiers(DS); // Parse the declarator. This is "PrototypeContext" or // "LambdaExprParameterContext", because we must accept either // 'declarator' or 'abstract-declarator' here. Declarator ParmDeclarator(DS, D.getContext() == Declarator::LambdaExprContext ? Declarator::LambdaExprParameterContext : Declarator::PrototypeContext); ParseDeclarator(ParmDeclarator); // Parse GNU attributes, if present. MaybeParseGNUAttributes(ParmDeclarator); // Remember this parsed parameter in ParamInfo. IdentifierInfo *ParmII = ParmDeclarator.getIdentifier(); // DefArgToks is used when the parsing of default arguments needs // to be delayed. CachedTokens *DefArgToks = nullptr; // If no parameter was specified, verify that *something* was specified, // otherwise we have a missing type and identifier. if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr && ParmDeclarator.getNumTypeObjects() == 0) { // Completely missing, emit error. Diag(DSStart, diag::err_missing_param); } else { // Otherwise, we have something. Add it and let semantic analysis try // to grok it and add the result to the ParamInfo we are building. // Last chance to recover from a misplaced ellipsis in an attempted // parameter pack declaration. if (Tok.is(tok::ellipsis) && (NextToken().isNot(tok::r_paren) || (!ParmDeclarator.getEllipsisLoc().isValid() && !Actions.isUnexpandedParameterPackPermitted())) && Actions.containsUnexpandedParameterPacks(ParmDeclarator)) DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator); // Inform the actions module about the parameter declarator, so it gets // added to the current scope. Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator); // Parse the default argument, if any. We parse the default // arguments in all dialects; the semantic analysis in // ActOnParamDefaultArgument will reject the default argument in // C. if (Tok.is(tok::equal)) { SourceLocation EqualLoc = Tok.getLocation(); // Parse the default argument if (D.getContext() == Declarator::MemberContext) { // If we're inside a class definition, cache the tokens // corresponding to the default argument. We'll actually parse // them when we see the end of the class definition. // FIXME: Can we use a smart pointer for Toks? DefArgToks = new CachedTokens; SourceLocation ArgStartLoc = NextToken().getLocation(); if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) { delete DefArgToks; DefArgToks = nullptr; Actions.ActOnParamDefaultArgumentError(Param, EqualLoc); } else { Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc, ArgStartLoc); } } else { // Consume the '='. ConsumeToken(); // The argument isn't actually potentially evaluated unless it is // used. EnterExpressionEvaluationContext Eval(Actions, Sema::PotentiallyEvaluatedIfUsed, Param); ExprResult DefArgResult; if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); DefArgResult = ParseBraceInitializer(); } else DefArgResult = ParseAssignmentExpression(); DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult); if (DefArgResult.isInvalid()) { Actions.ActOnParamDefaultArgumentError(Param, EqualLoc); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch); } else { // Inform the actions module about the default argument Actions.ActOnParamDefaultArgument(Param, EqualLoc, DefArgResult.get()); } } } ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, ParmDeclarator.getIdentifierLoc(), Param, DefArgToks)); } if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) { if (!getLangOpts().CPlusPlus) { // We have ellipsis without a preceding ',', which is ill-formed // in C. Complain and provide the fix. Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis) << FixItHint::CreateInsertion(EllipsisLoc, ", "); } else if (ParmDeclarator.getEllipsisLoc().isValid() || Actions.containsUnexpandedParameterPacks(ParmDeclarator)) { // It looks like this was supposed to be a parameter pack. Warn and // point out where the ellipsis should have gone. SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc(); Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg) << ParmEllipsis.isValid() << ParmEllipsis; if (ParmEllipsis.isValid()) { Diag(ParmEllipsis, diag::note_misplaced_ellipsis_vararg_existing_ellipsis); } else { Diag(ParmDeclarator.getIdentifierLoc(), diag::note_misplaced_ellipsis_vararg_add_ellipsis) << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(), "...") << !ParmDeclarator.hasName(); } Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma) << FixItHint::CreateInsertion(EllipsisLoc, ", "); } // We can't have any more parameters after an ellipsis. break; } // If the next token is a comma, consume it and keep reading arguments. } while (TryConsumeToken(tok::comma)); } /// [C90] direct-declarator '[' constant-expression[opt] ']' /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' /// [C++11] direct-declarator '[' constant-expression[opt] ']' /// attribute-specifier-seq[opt] void Parser::ParseBracketDeclarator(Declarator &D) { if (CheckProhibitedCXX11Attribute()) return; BalancedDelimiterTracker T(*this, tok::l_square); T.consumeOpen(); // C array syntax has many features, but by-far the most common is [] and [4]. // This code does a fast path to handle some of the most obvious cases. if (Tok.getKind() == tok::r_square) { T.consumeClose(); ParsedAttributes attrs(AttrFactory); MaybeParseCXX11Attributes(attrs); // Remember that we parsed the empty array type. D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr, T.getOpenLocation(), T.getCloseLocation()), attrs, T.getCloseLocation()); return; } else if (Tok.getKind() == tok::numeric_constant && GetLookAheadToken(1).is(tok::r_square)) { // [4] is very common. Parse the numeric constant expression. ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope())); ConsumeToken(); T.consumeClose(); ParsedAttributes attrs(AttrFactory); MaybeParseCXX11Attributes(attrs); // Remember that we parsed a array type, and remember its features. D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(), T.getOpenLocation(), T.getCloseLocation()), attrs, T.getCloseLocation()); return; } else if (Tok.getKind() == tok::code_completion) { Actions.CodeCompleteBracketDeclarator(getCurScope()); return cutOffParsing(); } // If valid, this location is the position where we read the 'static' keyword. SourceLocation StaticLoc; TryConsumeToken(tok::kw_static, StaticLoc); // If there is a type-qualifier-list, read it now. // Type qualifiers in an array subscript are a C99 feature. DeclSpec DS(AttrFactory); ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed); // If we haven't already read 'static', check to see if there is one after the // type-qualifier-list. if (!StaticLoc.isValid()) TryConsumeToken(tok::kw_static, StaticLoc); // Handle "direct-declarator [ type-qual-list[opt] * ]". bool isStar = false; ExprResult NumElements; // Handle the case where we have '[*]' as the array size. However, a leading // star could be the start of an expression, for example 'X[*p + 4]'. Verify // the token after the star is a ']'. Since stars in arrays are // infrequent, use of lookahead is not costly here. if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) { ConsumeToken(); // Eat the '*'. if (StaticLoc.isValid()) { Diag(StaticLoc, diag::err_unspecified_vla_size_with_static); StaticLoc = SourceLocation(); // Drop the static. } isStar = true; } else if (Tok.isNot(tok::r_square)) { // Note, in C89, this production uses the constant-expr production instead // of assignment-expr. The only difference is that assignment-expr allows // things like '=' and '*='. Sema rejects these in C89 mode because they // are not i-c-e's, so we don't need to distinguish between the two here. // Parse the constant-expression or assignment-expression now (depending // on dialect). if (getLangOpts().CPlusPlus) { NumElements = ParseConstantExpression(); } else { EnterExpressionEvaluationContext Unevaluated(Actions, Sema::ConstantEvaluated); NumElements = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); } } else { if (StaticLoc.isValid()) { Diag(StaticLoc, diag::err_unspecified_size_with_static); StaticLoc = SourceLocation(); // Drop the static. } } // If there was an error parsing the assignment-expression, recover. if (NumElements.isInvalid()) { D.setInvalidType(true); // If the expression was invalid, skip it. SkipUntil(tok::r_square, StopAtSemi); return; } T.consumeClose(); ParsedAttributes attrs(AttrFactory); MaybeParseCXX11Attributes(attrs); // Remember that we parsed a array type, and remember its features. D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(), isStar, NumElements.get(), T.getOpenLocation(), T.getCloseLocation()), attrs, T.getCloseLocation()); } /// Diagnose brackets before an identifier. void Parser::ParseMisplacedBracketDeclarator(Declarator &D) { assert(Tok.is(tok::l_square) && "Missing opening bracket"); assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier"); SourceLocation StartBracketLoc = Tok.getLocation(); Declarator TempDeclarator(D.getDeclSpec(), D.getContext()); while (Tok.is(tok::l_square)) { ParseBracketDeclarator(TempDeclarator); } // Stuff the location of the start of the brackets into the Declarator. // The diagnostics from ParseDirectDeclarator will make more sense if // they use this location instead. if (Tok.is(tok::semi)) D.getName().EndLocation = StartBracketLoc; SourceLocation SuggestParenLoc = Tok.getLocation(); // Now that the brackets are removed, try parsing the declarator again. ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); // Something went wrong parsing the brackets, in which case, // ParseBracketDeclarator has emitted an error, and we don't need to emit // one here. if (TempDeclarator.getNumTypeObjects() == 0) return; // Determine if parens will need to be suggested in the diagnostic. bool NeedParens = false; if (D.getNumTypeObjects() != 0) { switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) { case DeclaratorChunk::Pointer: case DeclaratorChunk::Reference: case DeclaratorChunk::BlockPointer: case DeclaratorChunk::MemberPointer: case DeclaratorChunk::Pipe: NeedParens = true; break; case DeclaratorChunk::Array: case DeclaratorChunk::Function: case DeclaratorChunk::Paren: break; } } if (NeedParens) { // Create a DeclaratorChunk for the inserted parens. ParsedAttributes attrs(AttrFactory); SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd()); D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs, SourceLocation()); } // Adding back the bracket info to the end of the Declarator. for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) { const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i); ParsedAttributes attrs(AttrFactory); attrs.set(Chunk.Common.AttrList); D.AddTypeInfo(Chunk, attrs, SourceLocation()); } // The missing identifier would have been diagnosed in ParseDirectDeclarator. // If parentheses are required, always suggest them. if (!D.getIdentifier() && !NeedParens) return; SourceLocation EndBracketLoc = TempDeclarator.getLocEnd(); // Generate the move bracket error message. SourceRange BracketRange(StartBracketLoc, EndBracketLoc); SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd()); if (NeedParens) { Diag(EndLoc, diag::err_brackets_go_after_unqualified_id) << getLangOpts().CPlusPlus << FixItHint::CreateInsertion(SuggestParenLoc, "(") << FixItHint::CreateInsertion(EndLoc, ")") << FixItHint::CreateInsertionFromRange( EndLoc, CharSourceRange(BracketRange, true)) << FixItHint::CreateRemoval(BracketRange); } else { Diag(EndLoc, diag::err_brackets_go_after_unqualified_id) << getLangOpts().CPlusPlus << FixItHint::CreateInsertionFromRange( EndLoc, CharSourceRange(BracketRange, true)) << FixItHint::CreateRemoval(BracketRange); } } /// [GNU] typeof-specifier: /// typeof ( expressions ) /// typeof ( type-name ) /// [GNU/C++] typeof unary-expression /// void Parser::ParseTypeofSpecifier(DeclSpec &DS) { assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier"); Token OpTok = Tok; SourceLocation StartLoc = ConsumeToken(); const bool hasParens = Tok.is(tok::l_paren); EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated, Sema::ReuseLambdaContextDecl); bool isCastExpr; ParsedType CastTy; SourceRange CastRange; ExprResult Operand = Actions.CorrectDelayedTyposInExpr( ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange)); if (hasParens) DS.setTypeofParensRange(CastRange); if (CastRange.getEnd().isInvalid()) // FIXME: Not accurate, the range gets one token more than it should. DS.SetRangeEnd(Tok.getLocation()); else DS.SetRangeEnd(CastRange.getEnd()); if (isCastExpr) { if (!CastTy) { DS.SetTypeSpecError(); return; } const char *PrevSpec = nullptr; unsigned DiagID; // Check for duplicate type specifiers (e.g. "int typeof(int)"). if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, DiagID, CastTy, Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; return; } // If we get here, the operand to the typeof was an expresion. if (Operand.isInvalid()) { DS.SetTypeSpecError(); return; } // We might need to transform the operand if it is potentially evaluated. Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get()); if (Operand.isInvalid()) { DS.SetTypeSpecError(); return; } const char *PrevSpec = nullptr; unsigned DiagID; // Check for duplicate type specifiers (e.g. "int typeof(int)"). if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec, DiagID, Operand.get(), Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; } /// [C11] atomic-specifier: /// _Atomic ( type-name ) /// void Parser::ParseAtomicSpecifier(DeclSpec &DS) { assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) && "Not an atomic specifier"); SourceLocation StartLoc = ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) return; TypeResult Result = ParseTypeName(); if (Result.isInvalid()) { SkipUntil(tok::r_paren, StopAtSemi); return; } // Match the ')' T.consumeClose(); if (T.getCloseLocation().isInvalid()) return; DS.setTypeofParensRange(T.getRange()); DS.SetRangeEnd(T.getCloseLocation()); const char *PrevSpec = nullptr; unsigned DiagID; if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec, DiagID, Result.get(), Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; } /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called /// from TryAltiVecVectorToken. bool Parser::TryAltiVecVectorTokenOutOfLine() { Token Next = NextToken(); switch (Next.getKind()) { default: return false; case tok::kw_short: case tok::kw_long: case tok::kw_signed: case tok::kw_unsigned: case tok::kw_void: case tok::kw_char: case tok::kw_int: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw___bool: case tok::kw___pixel: Tok.setKind(tok::kw___vector); return true; case tok::identifier: if (Next.getIdentifierInfo() == Ident_pixel) { Tok.setKind(tok::kw___vector); return true; } if (Next.getIdentifierInfo() == Ident_bool) { Tok.setKind(tok::kw___vector); return true; } return false; } } bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, bool &isInvalid) { const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy(); if (Tok.getIdentifierInfo() == Ident_vector) { Token Next = NextToken(); switch (Next.getKind()) { case tok::kw_short: case tok::kw_long: case tok::kw_signed: case tok::kw_unsigned: case tok::kw_void: case tok::kw_char: case tok::kw_int: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw___bool: case tok::kw___pixel: isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy); return true; case tok::identifier: if (Next.getIdentifierInfo() == Ident_pixel) { isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy); return true; } if (Next.getIdentifierInfo() == Ident_bool) { isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy); return true; } break; default: break; } } else if ((Tok.getIdentifierInfo() == Ident_pixel) && DS.isTypeAltiVecVector()) { isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy); return true; } else if ((Tok.getIdentifierInfo() == Ident_bool) && DS.isTypeAltiVecVector()) { isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy); return true; } return false; }