//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines analysis_warnings::[Policy,Executor]. // Together they are used by Sema to issue warnings based on inexpensive // static analysis algorithms in libAnalysis. // //===----------------------------------------------------------------------===// #include "clang/Sema/AnalysisBasedWarnings.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ParentMap.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/StmtVisitor.h" #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h" #include "clang/Analysis/Analyses/Consumed.h" #include "clang/Analysis/Analyses/ReachableCode.h" #include "clang/Analysis/Analyses/ThreadSafety.h" #include "clang/Analysis/Analyses/UninitializedValues.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/CFGStmtMap.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaInternal.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include <algorithm> #include <deque> #include <iterator> #include <vector> using namespace clang; //===----------------------------------------------------------------------===// // Unreachable code analysis. //===----------------------------------------------------------------------===// namespace { class UnreachableCodeHandler : public reachable_code::Callback { Sema &S; public: UnreachableCodeHandler(Sema &s) : S(s) {} void HandleUnreachable(reachable_code::UnreachableKind UK, SourceLocation L, SourceRange SilenceableCondVal, SourceRange R1, SourceRange R2) override { unsigned diag = diag::warn_unreachable; switch (UK) { case reachable_code::UK_Break: diag = diag::warn_unreachable_break; break; case reachable_code::UK_Return: diag = diag::warn_unreachable_return; break; case reachable_code::UK_Loop_Increment: diag = diag::warn_unreachable_loop_increment; break; case reachable_code::UK_Other: break; } S.Diag(L, diag) << R1 << R2; SourceLocation Open = SilenceableCondVal.getBegin(); if (Open.isValid()) { SourceLocation Close = SilenceableCondVal.getEnd(); Close = S.getLocForEndOfToken(Close); if (Close.isValid()) { S.Diag(Open, diag::note_unreachable_silence) << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (") << FixItHint::CreateInsertion(Close, ")"); } } } }; } // anonymous namespace /// CheckUnreachable - Check for unreachable code. static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) { // As a heuristic prune all diagnostics not in the main file. Currently // the majority of warnings in headers are false positives. These // are largely caused by configuration state, e.g. preprocessor // defined code, etc. // // Note that this is also a performance optimization. Analyzing // headers many times can be expensive. if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart())) return; UnreachableCodeHandler UC(S); reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC); } namespace { /// \brief Warn on logical operator errors in CFGBuilder class LogicalErrorHandler : public CFGCallback { Sema &S; public: LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {} static bool HasMacroID(const Expr *E) { if (E->getExprLoc().isMacroID()) return true; // Recurse to children. for (const Stmt *SubStmt : E->children()) if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt)) if (HasMacroID(SubExpr)) return true; return false; } void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override { if (HasMacroID(B)) return; SourceRange DiagRange = B->getSourceRange(); S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison) << DiagRange << isAlwaysTrue; } void compareBitwiseEquality(const BinaryOperator *B, bool isAlwaysTrue) override { if (HasMacroID(B)) return; SourceRange DiagRange = B->getSourceRange(); S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always) << DiagRange << isAlwaysTrue; } }; } // anonymous namespace //===----------------------------------------------------------------------===// // Check for infinite self-recursion in functions //===----------------------------------------------------------------------===// // Returns true if the function is called anywhere within the CFGBlock. // For member functions, the additional condition of being call from the // this pointer is required. static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) { // Process all the Stmt's in this block to find any calls to FD. for (const auto &B : Block) { if (B.getKind() != CFGElement::Statement) continue; const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt()); if (!CE || !CE->getCalleeDecl() || CE->getCalleeDecl()->getCanonicalDecl() != FD) continue; // Skip function calls which are qualified with a templated class. if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) { if (NestedNameSpecifier *NNS = DRE->getQualifier()) { if (NNS->getKind() == NestedNameSpecifier::TypeSpec && isa<TemplateSpecializationType>(NNS->getAsType())) { continue; } } } const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE); if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) || !MCE->getMethodDecl()->isVirtual()) return true; } return false; } // All blocks are in one of three states. States are ordered so that blocks // can only move to higher states. enum RecursiveState { FoundNoPath, FoundPath, FoundPathWithNoRecursiveCall }; // Returns true if there exists a path to the exit block and every path // to the exit block passes through a call to FD. static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) { const unsigned ExitID = cfg->getExit().getBlockID(); // Mark all nodes as FoundNoPath, then set the status of the entry block. SmallVector<RecursiveState, 16> States(cfg->getNumBlockIDs(), FoundNoPath); States[cfg->getEntry().getBlockID()] = FoundPathWithNoRecursiveCall; // Make the processing stack and seed it with the entry block. SmallVector<CFGBlock *, 16> Stack; Stack.push_back(&cfg->getEntry()); while (!Stack.empty()) { CFGBlock *CurBlock = Stack.back(); Stack.pop_back(); unsigned ID = CurBlock->getBlockID(); RecursiveState CurState = States[ID]; if (CurState == FoundPathWithNoRecursiveCall) { // Found a path to the exit node without a recursive call. if (ExitID == ID) return false; // Only change state if the block has a recursive call. if (hasRecursiveCallInPath(FD, *CurBlock)) CurState = FoundPath; } // Loop over successor blocks and add them to the Stack if their state // changes. for (auto I = CurBlock->succ_begin(), E = CurBlock->succ_end(); I != E; ++I) if (*I) { unsigned next_ID = (*I)->getBlockID(); if (States[next_ID] < CurState) { States[next_ID] = CurState; Stack.push_back(*I); } } } // Return true if the exit node is reachable, and only reachable through // a recursive call. return States[ExitID] == FoundPath; } static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD, const Stmt *Body, AnalysisDeclContext &AC) { FD = FD->getCanonicalDecl(); // Only run on non-templated functions and non-templated members of // templated classes. if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate && FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization) return; CFG *cfg = AC.getCFG(); if (!cfg) return; // If the exit block is unreachable, skip processing the function. if (cfg->getExit().pred_empty()) return; // Emit diagnostic if a recursive function call is detected for all paths. if (checkForRecursiveFunctionCall(FD, cfg)) S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function); } //===----------------------------------------------------------------------===// // Check for missing return value. //===----------------------------------------------------------------------===// enum ControlFlowKind { UnknownFallThrough, NeverFallThrough, MaybeFallThrough, AlwaysFallThrough, NeverFallThroughOrReturn }; /// CheckFallThrough - Check that we don't fall off the end of a /// Statement that should return a value. /// /// \returns AlwaysFallThrough iff we always fall off the end of the statement, /// MaybeFallThrough iff we might or might not fall off the end, /// NeverFallThroughOrReturn iff we never fall off the end of the statement or /// return. We assume NeverFallThrough iff we never fall off the end of the /// statement but we may return. We assume that functions not marked noreturn /// will return. static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) { CFG *cfg = AC.getCFG(); if (!cfg) return UnknownFallThrough; // The CFG leaves in dead things, and we don't want the dead code paths to // confuse us, so we mark all live things first. llvm::BitVector live(cfg->getNumBlockIDs()); unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(), live); bool AddEHEdges = AC.getAddEHEdges(); if (!AddEHEdges && count != cfg->getNumBlockIDs()) // When there are things remaining dead, and we didn't add EH edges // from CallExprs to the catch clauses, we have to go back and // mark them as live. for (const auto *B : *cfg) { if (!live[B->getBlockID()]) { if (B->pred_begin() == B->pred_end()) { if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator())) // When not adding EH edges from calls, catch clauses // can otherwise seem dead. Avoid noting them as dead. count += reachable_code::ScanReachableFromBlock(B, live); continue; } } } // Now we know what is live, we check the live precessors of the exit block // and look for fall through paths, being careful to ignore normal returns, // and exceptional paths. bool HasLiveReturn = false; bool HasFakeEdge = false; bool HasPlainEdge = false; bool HasAbnormalEdge = false; // Ignore default cases that aren't likely to be reachable because all // enums in a switch(X) have explicit case statements. CFGBlock::FilterOptions FO; FO.IgnoreDefaultsWithCoveredEnums = 1; for (CFGBlock::filtered_pred_iterator I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) { const CFGBlock& B = **I; if (!live[B.getBlockID()]) continue; // Skip blocks which contain an element marked as no-return. They don't // represent actually viable edges into the exit block, so mark them as // abnormal. if (B.hasNoReturnElement()) { HasAbnormalEdge = true; continue; } // Destructors can appear after the 'return' in the CFG. This is // normal. We need to look pass the destructors for the return // statement (if it exists). CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend(); for ( ; ri != re ; ++ri) if (ri->getAs<CFGStmt>()) break; // No more CFGElements in the block? if (ri == re) { if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) { HasAbnormalEdge = true; continue; } // A labeled empty statement, or the entry block... HasPlainEdge = true; continue; } CFGStmt CS = ri->castAs<CFGStmt>(); const Stmt *S = CS.getStmt(); if (isa<ReturnStmt>(S)) { HasLiveReturn = true; continue; } if (isa<ObjCAtThrowStmt>(S)) { HasFakeEdge = true; continue; } if (isa<CXXThrowExpr>(S)) { HasFakeEdge = true; continue; } if (isa<MSAsmStmt>(S)) { // TODO: Verify this is correct. HasFakeEdge = true; HasLiveReturn = true; continue; } if (isa<CXXTryStmt>(S)) { HasAbnormalEdge = true; continue; } if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit()) == B.succ_end()) { HasAbnormalEdge = true; continue; } HasPlainEdge = true; } if (!HasPlainEdge) { if (HasLiveReturn) return NeverFallThrough; return NeverFallThroughOrReturn; } if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn) return MaybeFallThrough; // This says AlwaysFallThrough for calls to functions that are not marked // noreturn, that don't return. If people would like this warning to be more // accurate, such functions should be marked as noreturn. return AlwaysFallThrough; } namespace { struct CheckFallThroughDiagnostics { unsigned diag_MaybeFallThrough_HasNoReturn; unsigned diag_MaybeFallThrough_ReturnsNonVoid; unsigned diag_AlwaysFallThrough_HasNoReturn; unsigned diag_AlwaysFallThrough_ReturnsNonVoid; unsigned diag_NeverFallThroughOrReturn; enum { Function, Block, Lambda } funMode; SourceLocation FuncLoc; static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) { CheckFallThroughDiagnostics D; D.FuncLoc = Func->getLocation(); D.diag_MaybeFallThrough_HasNoReturn = diag::warn_falloff_noreturn_function; D.diag_MaybeFallThrough_ReturnsNonVoid = diag::warn_maybe_falloff_nonvoid_function; D.diag_AlwaysFallThrough_HasNoReturn = diag::warn_falloff_noreturn_function; D.diag_AlwaysFallThrough_ReturnsNonVoid = diag::warn_falloff_nonvoid_function; // Don't suggest that virtual functions be marked "noreturn", since they // might be overridden by non-noreturn functions. bool isVirtualMethod = false; if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func)) isVirtualMethod = Method->isVirtual(); // Don't suggest that template instantiations be marked "noreturn" bool isTemplateInstantiation = false; if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func)) isTemplateInstantiation = Function->isTemplateInstantiation(); if (!isVirtualMethod && !isTemplateInstantiation) D.diag_NeverFallThroughOrReturn = diag::warn_suggest_noreturn_function; else D.diag_NeverFallThroughOrReturn = 0; D.funMode = Function; return D; } static CheckFallThroughDiagnostics MakeForBlock() { CheckFallThroughDiagnostics D; D.diag_MaybeFallThrough_HasNoReturn = diag::err_noreturn_block_has_return_expr; D.diag_MaybeFallThrough_ReturnsNonVoid = diag::err_maybe_falloff_nonvoid_block; D.diag_AlwaysFallThrough_HasNoReturn = diag::err_noreturn_block_has_return_expr; D.diag_AlwaysFallThrough_ReturnsNonVoid = diag::err_falloff_nonvoid_block; D.diag_NeverFallThroughOrReturn = 0; D.funMode = Block; return D; } static CheckFallThroughDiagnostics MakeForLambda() { CheckFallThroughDiagnostics D; D.diag_MaybeFallThrough_HasNoReturn = diag::err_noreturn_lambda_has_return_expr; D.diag_MaybeFallThrough_ReturnsNonVoid = diag::warn_maybe_falloff_nonvoid_lambda; D.diag_AlwaysFallThrough_HasNoReturn = diag::err_noreturn_lambda_has_return_expr; D.diag_AlwaysFallThrough_ReturnsNonVoid = diag::warn_falloff_nonvoid_lambda; D.diag_NeverFallThroughOrReturn = 0; D.funMode = Lambda; return D; } bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid, bool HasNoReturn) const { if (funMode == Function) { return (ReturnsVoid || D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc)) && (!HasNoReturn || D.isIgnored(diag::warn_noreturn_function_has_return_expr, FuncLoc)) && (!ReturnsVoid || D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc)); } // For blocks / lambdas. return ReturnsVoid && !HasNoReturn; } }; } // anonymous namespace /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a /// function that should return a value. Check that we don't fall off the end /// of a noreturn function. We assume that functions and blocks not marked /// noreturn will return. static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body, const BlockExpr *blkExpr, const CheckFallThroughDiagnostics& CD, AnalysisDeclContext &AC) { bool ReturnsVoid = false; bool HasNoReturn = false; if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { ReturnsVoid = FD->getReturnType()->isVoidType(); HasNoReturn = FD->isNoReturn(); } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { ReturnsVoid = MD->getReturnType()->isVoidType(); HasNoReturn = MD->hasAttr<NoReturnAttr>(); } else if (isa<BlockDecl>(D)) { QualType BlockTy = blkExpr->getType(); if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) { if (FT->getReturnType()->isVoidType()) ReturnsVoid = true; if (FT->getNoReturnAttr()) HasNoReturn = true; } } DiagnosticsEngine &Diags = S.getDiagnostics(); // Short circuit for compilation speed. if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn)) return; SourceLocation LBrace = Body->getLocStart(), RBrace = Body->getLocEnd(); // Either in a function body compound statement, or a function-try-block. switch (CheckFallThrough(AC)) { case UnknownFallThrough: break; case MaybeFallThrough: if (HasNoReturn) S.Diag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn); else if (!ReturnsVoid) S.Diag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid); break; case AlwaysFallThrough: if (HasNoReturn) S.Diag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn); else if (!ReturnsVoid) S.Diag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid); break; case NeverFallThroughOrReturn: if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) { if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD; } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD; } else { S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn); } } break; case NeverFallThrough: break; } } //===----------------------------------------------------------------------===// // -Wuninitialized //===----------------------------------------------------------------------===// namespace { /// ContainsReference - A visitor class to search for references to /// a particular declaration (the needle) within any evaluated component of an /// expression (recursively). class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> { bool FoundReference; const DeclRefExpr *Needle; public: typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited; ContainsReference(ASTContext &Context, const DeclRefExpr *Needle) : Inherited(Context), FoundReference(false), Needle(Needle) {} void VisitExpr(const Expr *E) { // Stop evaluating if we already have a reference. if (FoundReference) return; Inherited::VisitExpr(E); } void VisitDeclRefExpr(const DeclRefExpr *E) { if (E == Needle) FoundReference = true; else Inherited::VisitDeclRefExpr(E); } bool doesContainReference() const { return FoundReference; } }; } // anonymous namespace static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) { QualType VariableTy = VD->getType().getCanonicalType(); if (VariableTy->isBlockPointerType() && !VD->hasAttr<BlocksAttr>()) { S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization) << VD->getDeclName() << FixItHint::CreateInsertion(VD->getLocation(), "__block "); return true; } // Don't issue a fixit if there is already an initializer. if (VD->getInit()) return false; // Don't suggest a fixit inside macros. if (VD->getLocEnd().isMacroID()) return false; SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd()); // Suggest possible initialization (if any). std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); if (Init.empty()) return false; S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName() << FixItHint::CreateInsertion(Loc, Init); return true; } /// Create a fixit to remove an if-like statement, on the assumption that its /// condition is CondVal. static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then, const Stmt *Else, bool CondVal, FixItHint &Fixit1, FixItHint &Fixit2) { if (CondVal) { // If condition is always true, remove all but the 'then'. Fixit1 = FixItHint::CreateRemoval( CharSourceRange::getCharRange(If->getLocStart(), Then->getLocStart())); if (Else) { SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getLocEnd()); Fixit2 = FixItHint::CreateRemoval( SourceRange(ElseKwLoc, Else->getLocEnd())); } } else { // If condition is always false, remove all but the 'else'. if (Else) Fixit1 = FixItHint::CreateRemoval( CharSourceRange::getCharRange(If->getLocStart(), Else->getLocStart())); else Fixit1 = FixItHint::CreateRemoval(If->getSourceRange()); } } /// DiagUninitUse -- Helper function to produce a diagnostic for an /// uninitialized use of a variable. static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use, bool IsCapturedByBlock) { bool Diagnosed = false; switch (Use.getKind()) { case UninitUse::Always: S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var) << VD->getDeclName() << IsCapturedByBlock << Use.getUser()->getSourceRange(); return; case UninitUse::AfterDecl: case UninitUse::AfterCall: S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var) << VD->getDeclName() << IsCapturedByBlock << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5) << const_cast<DeclContext*>(VD->getLexicalDeclContext()) << VD->getSourceRange(); S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use) << IsCapturedByBlock << Use.getUser()->getSourceRange(); return; case UninitUse::Maybe: case UninitUse::Sometimes: // Carry on to report sometimes-uninitialized branches, if possible, // or a 'may be used uninitialized' diagnostic otherwise. break; } // Diagnose each branch which leads to a sometimes-uninitialized use. for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end(); I != E; ++I) { assert(Use.getKind() == UninitUse::Sometimes); const Expr *User = Use.getUser(); const Stmt *Term = I->Terminator; // Information used when building the diagnostic. unsigned DiagKind; StringRef Str; SourceRange Range; // FixIts to suppress the diagnostic by removing the dead condition. // For all binary terminators, branch 0 is taken if the condition is true, // and branch 1 is taken if the condition is false. int RemoveDiagKind = -1; const char *FixitStr = S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false") : (I->Output ? "1" : "0"); FixItHint Fixit1, Fixit2; switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) { default: // Don't know how to report this. Just fall back to 'may be used // uninitialized'. FIXME: Can this happen? continue; // "condition is true / condition is false". case Stmt::IfStmtClass: { const IfStmt *IS = cast<IfStmt>(Term); DiagKind = 0; Str = "if"; Range = IS->getCond()->getSourceRange(); RemoveDiagKind = 0; CreateIfFixit(S, IS, IS->getThen(), IS->getElse(), I->Output, Fixit1, Fixit2); break; } case Stmt::ConditionalOperatorClass: { const ConditionalOperator *CO = cast<ConditionalOperator>(Term); DiagKind = 0; Str = "?:"; Range = CO->getCond()->getSourceRange(); RemoveDiagKind = 0; CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(), I->Output, Fixit1, Fixit2); break; } case Stmt::BinaryOperatorClass: { const BinaryOperator *BO = cast<BinaryOperator>(Term); if (!BO->isLogicalOp()) continue; DiagKind = 0; Str = BO->getOpcodeStr(); Range = BO->getLHS()->getSourceRange(); RemoveDiagKind = 0; if ((BO->getOpcode() == BO_LAnd && I->Output) || (BO->getOpcode() == BO_LOr && !I->Output)) // true && y -> y, false || y -> y. Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(), BO->getOperatorLoc())); else // false && y -> false, true || y -> true. Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr); break; } // "loop is entered / loop is exited". case Stmt::WhileStmtClass: DiagKind = 1; Str = "while"; Range = cast<WhileStmt>(Term)->getCond()->getSourceRange(); RemoveDiagKind = 1; Fixit1 = FixItHint::CreateReplacement(Range, FixitStr); break; case Stmt::ForStmtClass: DiagKind = 1; Str = "for"; Range = cast<ForStmt>(Term)->getCond()->getSourceRange(); RemoveDiagKind = 1; if (I->Output) Fixit1 = FixItHint::CreateRemoval(Range); else Fixit1 = FixItHint::CreateReplacement(Range, FixitStr); break; case Stmt::CXXForRangeStmtClass: if (I->Output == 1) { // The use occurs if a range-based for loop's body never executes. // That may be impossible, and there's no syntactic fix for this, // so treat it as a 'may be uninitialized' case. continue; } DiagKind = 1; Str = "for"; Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange(); break; // "condition is true / loop is exited". case Stmt::DoStmtClass: DiagKind = 2; Str = "do"; Range = cast<DoStmt>(Term)->getCond()->getSourceRange(); RemoveDiagKind = 1; Fixit1 = FixItHint::CreateReplacement(Range, FixitStr); break; // "switch case is taken". case Stmt::CaseStmtClass: DiagKind = 3; Str = "case"; Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange(); break; case Stmt::DefaultStmtClass: DiagKind = 3; Str = "default"; Range = cast<DefaultStmt>(Term)->getDefaultLoc(); break; } S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var) << VD->getDeclName() << IsCapturedByBlock << DiagKind << Str << I->Output << Range; S.Diag(User->getLocStart(), diag::note_uninit_var_use) << IsCapturedByBlock << User->getSourceRange(); if (RemoveDiagKind != -1) S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond) << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2; Diagnosed = true; } if (!Diagnosed) S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var) << VD->getDeclName() << IsCapturedByBlock << Use.getUser()->getSourceRange(); } /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an /// uninitialized variable. This manages the different forms of diagnostic /// emitted for particular types of uses. Returns true if the use was diagnosed /// as a warning. If a particular use is one we omit warnings for, returns /// false. static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD, const UninitUse &Use, bool alwaysReportSelfInit = false) { if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) { // Inspect the initializer of the variable declaration which is // being referenced prior to its initialization. We emit // specialized diagnostics for self-initialization, and we // specifically avoid warning about self references which take the // form of: // // int x = x; // // This is used to indicate to GCC that 'x' is intentionally left // uninitialized. Proven code paths which access 'x' in // an uninitialized state after this will still warn. if (const Expr *Initializer = VD->getInit()) { if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts()) return false; ContainsReference CR(S.Context, DRE); CR.Visit(Initializer); if (CR.doesContainReference()) { S.Diag(DRE->getLocStart(), diag::warn_uninit_self_reference_in_init) << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange(); return true; } } DiagUninitUse(S, VD, Use, false); } else { const BlockExpr *BE = cast<BlockExpr>(Use.getUser()); if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>()) S.Diag(BE->getLocStart(), diag::warn_uninit_byref_blockvar_captured_by_block) << VD->getDeclName(); else DiagUninitUse(S, VD, Use, true); } // Report where the variable was declared when the use wasn't within // the initializer of that declaration & we didn't already suggest // an initialization fixit. if (!SuggestInitializationFixit(S, VD)) S.Diag(VD->getLocStart(), diag::note_var_declared_here) << VD->getDeclName(); return true; } namespace { class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> { public: FallthroughMapper(Sema &S) : FoundSwitchStatements(false), S(S) { } bool foundSwitchStatements() const { return FoundSwitchStatements; } void markFallthroughVisited(const AttributedStmt *Stmt) { bool Found = FallthroughStmts.erase(Stmt); assert(Found); (void)Found; } typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts; const AttrStmts &getFallthroughStmts() const { return FallthroughStmts; } void fillReachableBlocks(CFG *Cfg) { assert(ReachableBlocks.empty() && "ReachableBlocks already filled"); std::deque<const CFGBlock *> BlockQueue; ReachableBlocks.insert(&Cfg->getEntry()); BlockQueue.push_back(&Cfg->getEntry()); // Mark all case blocks reachable to avoid problems with switching on // constants, covered enums, etc. // These blocks can contain fall-through annotations, and we don't want to // issue a warn_fallthrough_attr_unreachable for them. for (const auto *B : *Cfg) { const Stmt *L = B->getLabel(); if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second) BlockQueue.push_back(B); } while (!BlockQueue.empty()) { const CFGBlock *P = BlockQueue.front(); BlockQueue.pop_front(); for (CFGBlock::const_succ_iterator I = P->succ_begin(), E = P->succ_end(); I != E; ++I) { if (*I && ReachableBlocks.insert(*I).second) BlockQueue.push_back(*I); } } } bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) { assert(!ReachableBlocks.empty() && "ReachableBlocks empty"); int UnannotatedCnt = 0; AnnotatedCnt = 0; std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end()); while (!BlockQueue.empty()) { const CFGBlock *P = BlockQueue.front(); BlockQueue.pop_front(); if (!P) continue; const Stmt *Term = P->getTerminator(); if (Term && isa<SwitchStmt>(Term)) continue; // Switch statement, good. const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel()); if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end()) continue; // Previous case label has no statements, good. const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel()); if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end()) continue; // Case label is preceded with a normal label, good. if (!ReachableBlocks.count(P)) { for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(), ElemEnd = P->rend(); ElemIt != ElemEnd; ++ElemIt) { if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) { if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) { S.Diag(AS->getLocStart(), diag::warn_fallthrough_attr_unreachable); markFallthroughVisited(AS); ++AnnotatedCnt; break; } // Don't care about other unreachable statements. } } // If there are no unreachable statements, this may be a special // case in CFG: // case X: { // A a; // A has a destructor. // break; // } // // <<<< This place is represented by a 'hanging' CFG block. // case Y: continue; } const Stmt *LastStmt = getLastStmt(*P); if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) { markFallthroughVisited(AS); ++AnnotatedCnt; continue; // Fallthrough annotation, good. } if (!LastStmt) { // This block contains no executable statements. // Traverse its predecessors. std::copy(P->pred_begin(), P->pred_end(), std::back_inserter(BlockQueue)); continue; } ++UnannotatedCnt; } return !!UnannotatedCnt; } // RecursiveASTVisitor setup. bool shouldWalkTypesOfTypeLocs() const { return false; } bool VisitAttributedStmt(AttributedStmt *S) { if (asFallThroughAttr(S)) FallthroughStmts.insert(S); return true; } bool VisitSwitchStmt(SwitchStmt *S) { FoundSwitchStatements = true; return true; } // We don't want to traverse local type declarations. We analyze their // methods separately. bool TraverseDecl(Decl *D) { return true; } // We analyze lambda bodies separately. Skip them here. bool TraverseLambdaBody(LambdaExpr *LE) { return true; } private: static const AttributedStmt *asFallThroughAttr(const Stmt *S) { if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) { if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs())) return AS; } return nullptr; } static const Stmt *getLastStmt(const CFGBlock &B) { if (const Stmt *Term = B.getTerminator()) return Term; for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(), ElemEnd = B.rend(); ElemIt != ElemEnd; ++ElemIt) { if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) return CS->getStmt(); } // Workaround to detect a statement thrown out by CFGBuilder: // case X: {} case Y: // case X: ; case Y: if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel())) if (!isa<SwitchCase>(SW->getSubStmt())) return SW->getSubStmt(); return nullptr; } bool FoundSwitchStatements; AttrStmts FallthroughStmts; Sema &S; llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks; }; } // anonymous namespace static StringRef getFallthroughAttrSpelling(Preprocessor &PP, SourceLocation Loc) { TokenValue FallthroughTokens[] = { tok::l_square, tok::l_square, PP.getIdentifierInfo("fallthrough"), tok::r_square, tok::r_square }; TokenValue ClangFallthroughTokens[] = { tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"), tok::coloncolon, PP.getIdentifierInfo("fallthrough"), tok::r_square, tok::r_square }; bool PreferClangAttr = !PP.getLangOpts().CPlusPlus1z; StringRef MacroName; if (PreferClangAttr) MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens); if (MacroName.empty()) MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens); if (MacroName.empty() && !PreferClangAttr) MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens); if (MacroName.empty()) MacroName = PreferClangAttr ? "[[clang::fallthrough]]" : "[[fallthrough]]"; return MacroName; } static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC, bool PerFunction) { // Only perform this analysis when using C++11. There is no good workflow // for this warning when not using C++11. There is no good way to silence // the warning (no attribute is available) unless we are using C++11's support // for generalized attributes. Once could use pragmas to silence the warning, // but as a general solution that is gross and not in the spirit of this // warning. // // NOTE: This an intermediate solution. There are on-going discussions on // how to properly support this warning outside of C++11 with an annotation. if (!AC.getASTContext().getLangOpts().CPlusPlus11) return; FallthroughMapper FM(S); FM.TraverseStmt(AC.getBody()); if (!FM.foundSwitchStatements()) return; if (PerFunction && FM.getFallthroughStmts().empty()) return; CFG *Cfg = AC.getCFG(); if (!Cfg) return; FM.fillReachableBlocks(Cfg); for (const CFGBlock *B : llvm::reverse(*Cfg)) { const Stmt *Label = B->getLabel(); if (!Label || !isa<SwitchCase>(Label)) continue; int AnnotatedCnt; if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt)) continue; S.Diag(Label->getLocStart(), PerFunction ? diag::warn_unannotated_fallthrough_per_function : diag::warn_unannotated_fallthrough); if (!AnnotatedCnt) { SourceLocation L = Label->getLocStart(); if (L.isMacroID()) continue; if (S.getLangOpts().CPlusPlus11) { const Stmt *Term = B->getTerminator(); // Skip empty cases. while (B->empty() && !Term && B->succ_size() == 1) { B = *B->succ_begin(); Term = B->getTerminator(); } if (!(B->empty() && Term && isa<BreakStmt>(Term))) { Preprocessor &PP = S.getPreprocessor(); StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L); SmallString<64> TextToInsert(AnnotationSpelling); TextToInsert += "; "; S.Diag(L, diag::note_insert_fallthrough_fixit) << AnnotationSpelling << FixItHint::CreateInsertion(L, TextToInsert); } } S.Diag(L, diag::note_insert_break_fixit) << FixItHint::CreateInsertion(L, "break; "); } } for (const auto *F : FM.getFallthroughStmts()) S.Diag(F->getLocStart(), diag::err_fallthrough_attr_invalid_placement); } static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM, const Stmt *S) { assert(S); do { switch (S->getStmtClass()) { case Stmt::ForStmtClass: case Stmt::WhileStmtClass: case Stmt::CXXForRangeStmtClass: case Stmt::ObjCForCollectionStmtClass: return true; case Stmt::DoStmtClass: { const Expr *Cond = cast<DoStmt>(S)->getCond(); llvm::APSInt Val; if (!Cond->EvaluateAsInt(Val, Ctx)) return true; return Val.getBoolValue(); } default: break; } } while ((S = PM.getParent(S))); return false; } static void diagnoseRepeatedUseOfWeak(Sema &S, const sema::FunctionScopeInfo *CurFn, const Decl *D, const ParentMap &PM) { typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy; typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap; typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector; typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator> StmtUsesPair; ASTContext &Ctx = S.getASTContext(); const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses(); // Extract all weak objects that are referenced more than once. SmallVector<StmtUsesPair, 8> UsesByStmt; for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end(); I != E; ++I) { const WeakUseVector &Uses = I->second; // Find the first read of the weak object. WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end(); for ( ; UI != UE; ++UI) { if (UI->isUnsafe()) break; } // If there were only writes to this object, don't warn. if (UI == UE) continue; // If there was only one read, followed by any number of writes, and the // read is not within a loop, don't warn. Additionally, don't warn in a // loop if the base object is a local variable -- local variables are often // changed in loops. if (UI == Uses.begin()) { WeakUseVector::const_iterator UI2 = UI; for (++UI2; UI2 != UE; ++UI2) if (UI2->isUnsafe()) break; if (UI2 == UE) { if (!isInLoop(Ctx, PM, UI->getUseExpr())) continue; const WeakObjectProfileTy &Profile = I->first; if (!Profile.isExactProfile()) continue; const NamedDecl *Base = Profile.getBase(); if (!Base) Base = Profile.getProperty(); assert(Base && "A profile always has a base or property."); if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base)) if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base)) continue; } } UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I)); } if (UsesByStmt.empty()) return; // Sort by first use so that we emit the warnings in a deterministic order. SourceManager &SM = S.getSourceManager(); std::sort(UsesByStmt.begin(), UsesByStmt.end(), [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) { return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(), RHS.first->getLocStart()); }); // Classify the current code body for better warning text. // This enum should stay in sync with the cases in // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak. // FIXME: Should we use a common classification enum and the same set of // possibilities all throughout Sema? enum { Function, Method, Block, Lambda } FunctionKind; if (isa<sema::BlockScopeInfo>(CurFn)) FunctionKind = Block; else if (isa<sema::LambdaScopeInfo>(CurFn)) FunctionKind = Lambda; else if (isa<ObjCMethodDecl>(D)) FunctionKind = Method; else FunctionKind = Function; // Iterate through the sorted problems and emit warnings for each. for (const auto &P : UsesByStmt) { const Stmt *FirstRead = P.first; const WeakObjectProfileTy &Key = P.second->first; const WeakUseVector &Uses = P.second->second; // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy // may not contain enough information to determine that these are different // properties. We can only be 100% sure of a repeated use in certain cases, // and we adjust the diagnostic kind accordingly so that the less certain // case can be turned off if it is too noisy. unsigned DiagKind; if (Key.isExactProfile()) DiagKind = diag::warn_arc_repeated_use_of_weak; else DiagKind = diag::warn_arc_possible_repeated_use_of_weak; // Classify the weak object being accessed for better warning text. // This enum should stay in sync with the cases in // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak. enum { Variable, Property, ImplicitProperty, Ivar } ObjectKind; const NamedDecl *KeyProp = Key.getProperty(); if (isa<VarDecl>(KeyProp)) ObjectKind = Variable; else if (isa<ObjCPropertyDecl>(KeyProp)) ObjectKind = Property; else if (isa<ObjCMethodDecl>(KeyProp)) ObjectKind = ImplicitProperty; else if (isa<ObjCIvarDecl>(KeyProp)) ObjectKind = Ivar; else llvm_unreachable("Unexpected weak object kind!"); // Do not warn about IBOutlet weak property receivers being set to null // since they are typically only used from the main thread. if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp)) if (Prop->hasAttr<IBOutletAttr>()) continue; // Show the first time the object was read. S.Diag(FirstRead->getLocStart(), DiagKind) << int(ObjectKind) << KeyProp << int(FunctionKind) << FirstRead->getSourceRange(); // Print all the other accesses as notes. for (const auto &Use : Uses) { if (Use.getUseExpr() == FirstRead) continue; S.Diag(Use.getUseExpr()->getLocStart(), diag::note_arc_weak_also_accessed_here) << Use.getUseExpr()->getSourceRange(); } } } namespace { class UninitValsDiagReporter : public UninitVariablesHandler { Sema &S; typedef SmallVector<UninitUse, 2> UsesVec; typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType; // Prefer using MapVector to DenseMap, so that iteration order will be // the same as insertion order. This is needed to obtain a deterministic // order of diagnostics when calling flushDiagnostics(). typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap; UsesMap uses; public: UninitValsDiagReporter(Sema &S) : S(S) {} ~UninitValsDiagReporter() override { flushDiagnostics(); } MappedType &getUses(const VarDecl *vd) { MappedType &V = uses[vd]; if (!V.getPointer()) V.setPointer(new UsesVec()); return V; } void handleUseOfUninitVariable(const VarDecl *vd, const UninitUse &use) override { getUses(vd).getPointer()->push_back(use); } void handleSelfInit(const VarDecl *vd) override { getUses(vd).setInt(true); } void flushDiagnostics() { for (const auto &P : uses) { const VarDecl *vd = P.first; const MappedType &V = P.second; UsesVec *vec = V.getPointer(); bool hasSelfInit = V.getInt(); // Specially handle the case where we have uses of an uninitialized // variable, but the root cause is an idiomatic self-init. We want // to report the diagnostic at the self-init since that is the root cause. if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec)) DiagnoseUninitializedUse(S, vd, UninitUse(vd->getInit()->IgnoreParenCasts(), /* isAlwaysUninit */ true), /* alwaysReportSelfInit */ true); else { // Sort the uses by their SourceLocations. While not strictly // guaranteed to produce them in line/column order, this will provide // a stable ordering. std::sort(vec->begin(), vec->end(), [](const UninitUse &a, const UninitUse &b) { // Prefer a more confident report over a less confident one. if (a.getKind() != b.getKind()) return a.getKind() > b.getKind(); return a.getUser()->getLocStart() < b.getUser()->getLocStart(); }); for (const auto &U : *vec) { // If we have self-init, downgrade all uses to 'may be uninitialized'. UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U; if (DiagnoseUninitializedUse(S, vd, Use)) // Skip further diagnostics for this variable. We try to warn only // on the first point at which a variable is used uninitialized. break; } } // Release the uses vector. delete vec; } uses.clear(); } private: static bool hasAlwaysUninitializedUse(const UsesVec* vec) { return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) { return U.getKind() == UninitUse::Always || U.getKind() == UninitUse::AfterCall || U.getKind() == UninitUse::AfterDecl; }); } }; } // anonymous namespace namespace clang { namespace { typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes; typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag; typedef std::list<DelayedDiag> DiagList; struct SortDiagBySourceLocation { SourceManager &SM; SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {} bool operator()(const DelayedDiag &left, const DelayedDiag &right) { // Although this call will be slow, this is only called when outputting // multiple warnings. return SM.isBeforeInTranslationUnit(left.first.first, right.first.first); } }; } // anonymous namespace } // namespace clang //===----------------------------------------------------------------------===// // -Wthread-safety //===----------------------------------------------------------------------===// namespace clang { namespace threadSafety { namespace { class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler { Sema &S; DiagList Warnings; SourceLocation FunLocation, FunEndLocation; const FunctionDecl *CurrentFunction; bool Verbose; OptionalNotes getNotes() const { if (Verbose && CurrentFunction) { PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(), S.PDiag(diag::note_thread_warning_in_fun) << CurrentFunction->getNameAsString()); return OptionalNotes(1, FNote); } return OptionalNotes(); } OptionalNotes getNotes(const PartialDiagnosticAt &Note) const { OptionalNotes ONS(1, Note); if (Verbose && CurrentFunction) { PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(), S.PDiag(diag::note_thread_warning_in_fun) << CurrentFunction->getNameAsString()); ONS.push_back(std::move(FNote)); } return ONS; } OptionalNotes getNotes(const PartialDiagnosticAt &Note1, const PartialDiagnosticAt &Note2) const { OptionalNotes ONS; ONS.push_back(Note1); ONS.push_back(Note2); if (Verbose && CurrentFunction) { PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(), S.PDiag(diag::note_thread_warning_in_fun) << CurrentFunction->getNameAsString()); ONS.push_back(std::move(FNote)); } return ONS; } // Helper functions void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName, SourceLocation Loc) { // Gracefully handle rare cases when the analysis can't get a more // precise source location. if (!Loc.isValid()) Loc = FunLocation; PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName); Warnings.emplace_back(std::move(Warning), getNotes()); } public: ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL) : S(S), FunLocation(FL), FunEndLocation(FEL), CurrentFunction(nullptr), Verbose(false) {} void setVerbose(bool b) { Verbose = b; } /// \brief Emit all buffered diagnostics in order of sourcelocation. /// We need to output diagnostics produced while iterating through /// the lockset in deterministic order, so this function orders diagnostics /// and outputs them. void emitDiagnostics() { Warnings.sort(SortDiagBySourceLocation(S.getSourceManager())); for (const auto &Diag : Warnings) { S.Diag(Diag.first.first, Diag.first.second); for (const auto &Note : Diag.second) S.Diag(Note.first, Note.second); } } void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock) << Loc); Warnings.emplace_back(std::move(Warning), getNotes()); } void handleUnmatchedUnlock(StringRef Kind, Name LockName, SourceLocation Loc) override { warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc); } void handleIncorrectUnlockKind(StringRef Kind, Name LockName, LockKind Expected, LockKind Received, SourceLocation Loc) override { if (Loc.isInvalid()) Loc = FunLocation; PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch) << Kind << LockName << Received << Expected); Warnings.emplace_back(std::move(Warning), getNotes()); } void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override { warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc); } void handleMutexHeldEndOfScope(StringRef Kind, Name LockName, SourceLocation LocLocked, SourceLocation LocEndOfScope, LockErrorKind LEK) override { unsigned DiagID = 0; switch (LEK) { case LEK_LockedSomePredecessors: DiagID = diag::warn_lock_some_predecessors; break; case LEK_LockedSomeLoopIterations: DiagID = diag::warn_expecting_lock_held_on_loop; break; case LEK_LockedAtEndOfFunction: DiagID = diag::warn_no_unlock; break; case LEK_NotLockedAtEndOfFunction: DiagID = diag::warn_expecting_locked; break; } if (LocEndOfScope.isInvalid()) LocEndOfScope = FunEndLocation; PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind << LockName); if (LocLocked.isValid()) { PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here) << Kind); Warnings.emplace_back(std::move(Warning), getNotes(Note)); return; } Warnings.emplace_back(std::move(Warning), getNotes()); } void handleExclusiveAndShared(StringRef Kind, Name LockName, SourceLocation Loc1, SourceLocation Loc2) override { PartialDiagnosticAt Warning(Loc1, S.PDiag(diag::warn_lock_exclusive_and_shared) << Kind << LockName); PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared) << Kind << LockName); Warnings.emplace_back(std::move(Warning), getNotes(Note)); } void handleNoMutexHeld(StringRef Kind, const NamedDecl *D, ProtectedOperationKind POK, AccessKind AK, SourceLocation Loc) override { assert((POK == POK_VarAccess || POK == POK_VarDereference) && "Only works for variables"); unsigned DiagID = POK == POK_VarAccess? diag::warn_variable_requires_any_lock: diag::warn_var_deref_requires_any_lock; PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << D->getNameAsString() << getLockKindFromAccessKind(AK)); Warnings.emplace_back(std::move(Warning), getNotes()); } void handleMutexNotHeld(StringRef Kind, const NamedDecl *D, ProtectedOperationKind POK, Name LockName, LockKind LK, SourceLocation Loc, Name *PossibleMatch) override { unsigned DiagID = 0; if (PossibleMatch) { switch (POK) { case POK_VarAccess: DiagID = diag::warn_variable_requires_lock_precise; break; case POK_VarDereference: DiagID = diag::warn_var_deref_requires_lock_precise; break; case POK_FunctionCall: DiagID = diag::warn_fun_requires_lock_precise; break; case POK_PassByRef: DiagID = diag::warn_guarded_pass_by_reference; break; case POK_PtPassByRef: DiagID = diag::warn_pt_guarded_pass_by_reference; break; } PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << D->getNameAsString() << LockName << LK); PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match) << *PossibleMatch); if (Verbose && POK == POK_VarAccess) { PartialDiagnosticAt VNote(D->getLocation(), S.PDiag(diag::note_guarded_by_declared_here) << D->getNameAsString()); Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote)); } else Warnings.emplace_back(std::move(Warning), getNotes(Note)); } else { switch (POK) { case POK_VarAccess: DiagID = diag::warn_variable_requires_lock; break; case POK_VarDereference: DiagID = diag::warn_var_deref_requires_lock; break; case POK_FunctionCall: DiagID = diag::warn_fun_requires_lock; break; case POK_PassByRef: DiagID = diag::warn_guarded_pass_by_reference; break; case POK_PtPassByRef: DiagID = diag::warn_pt_guarded_pass_by_reference; break; } PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << D->getNameAsString() << LockName << LK); if (Verbose && POK == POK_VarAccess) { PartialDiagnosticAt Note(D->getLocation(), S.PDiag(diag::note_guarded_by_declared_here) << D->getNameAsString()); Warnings.emplace_back(std::move(Warning), getNotes(Note)); } else Warnings.emplace_back(std::move(Warning), getNotes()); } } void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_acquire_requires_negative_cap) << Kind << LockName << Neg); Warnings.emplace_back(std::move(Warning), getNotes()); } void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex) << Kind << FunName << LockName); Warnings.emplace_back(std::move(Warning), getNotes()); } void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name); Warnings.emplace_back(std::move(Warning), getNotes()); } void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name); Warnings.emplace_back(std::move(Warning), getNotes()); } void enterFunction(const FunctionDecl* FD) override { CurrentFunction = FD; } void leaveFunction(const FunctionDecl* FD) override { CurrentFunction = nullptr; } }; } // anonymous namespace } // namespace threadSafety } // namespace clang //===----------------------------------------------------------------------===// // -Wconsumed //===----------------------------------------------------------------------===// namespace clang { namespace consumed { namespace { class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase { Sema &S; DiagList Warnings; public: ConsumedWarningsHandler(Sema &S) : S(S) {} void emitDiagnostics() override { Warnings.sort(SortDiagBySourceLocation(S.getSourceManager())); for (const auto &Diag : Warnings) { S.Diag(Diag.first.first, Diag.first.second); for (const auto &Note : Diag.second) S.Diag(Note.first, Note.second); } } void warnLoopStateMismatch(SourceLocation Loc, StringRef VariableName) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) << VariableName); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } void warnParamReturnTypestateMismatch(SourceLocation Loc, StringRef VariableName, StringRef ExpectedState, StringRef ObservedState) override { PartialDiagnosticAt Warning(Loc, S.PDiag( diag::warn_param_return_typestate_mismatch) << VariableName << ExpectedState << ObservedState); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState, StringRef ObservedState) override { PartialDiagnosticAt Warning(Loc, S.PDiag( diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } void warnReturnTypestateForUnconsumableType(SourceLocation Loc, StringRef TypeName) override { PartialDiagnosticAt Warning(Loc, S.PDiag( diag::warn_return_typestate_for_unconsumable_type) << TypeName); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState, StringRef ObservedState) override { PartialDiagnosticAt Warning(Loc, S.PDiag( diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag( diag::warn_use_of_temp_in_invalid_state) << MethodName << State); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } void warnUseInInvalidState(StringRef MethodName, StringRef VariableName, StringRef State, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) << MethodName << VariableName << State); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } }; } // anonymous namespace } // namespace consumed } // namespace clang //===----------------------------------------------------------------------===// // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based // warnings on a function, method, or block. //===----------------------------------------------------------------------===// clang::sema::AnalysisBasedWarnings::Policy::Policy() { enableCheckFallThrough = 1; enableCheckUnreachable = 0; enableThreadSafetyAnalysis = 0; enableConsumedAnalysis = 0; } static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) { return (unsigned)!D.isIgnored(diag, SourceLocation()); } clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s) : S(s), NumFunctionsAnalyzed(0), NumFunctionsWithBadCFGs(0), NumCFGBlocks(0), MaxCFGBlocksPerFunction(0), NumUninitAnalysisFunctions(0), NumUninitAnalysisVariables(0), MaxUninitAnalysisVariablesPerFunction(0), NumUninitAnalysisBlockVisits(0), MaxUninitAnalysisBlockVisitsPerFunction(0) { using namespace diag; DiagnosticsEngine &D = S.getDiagnostics(); DefaultPolicy.enableCheckUnreachable = isEnabled(D, warn_unreachable) || isEnabled(D, warn_unreachable_break) || isEnabled(D, warn_unreachable_return) || isEnabled(D, warn_unreachable_loop_increment); DefaultPolicy.enableThreadSafetyAnalysis = isEnabled(D, warn_double_lock); DefaultPolicy.enableConsumedAnalysis = isEnabled(D, warn_use_in_invalid_state); } static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) { for (const auto &D : fscope->PossiblyUnreachableDiags) S.Diag(D.Loc, D.PD); } void clang::sema:: AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P, sema::FunctionScopeInfo *fscope, const Decl *D, const BlockExpr *blkExpr) { // We avoid doing analysis-based warnings when there are errors for // two reasons: // (1) The CFGs often can't be constructed (if the body is invalid), so // don't bother trying. // (2) The code already has problems; running the analysis just takes more // time. DiagnosticsEngine &Diags = S.getDiagnostics(); // Do not do any analysis for declarations in system headers if we are // going to just ignore them. if (Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemHeader(D->getLocation())) return; // For code in dependent contexts, we'll do this at instantiation time. if (cast<DeclContext>(D)->isDependentContext()) return; if (Diags.hasUncompilableErrorOccurred()) { // Flush out any possibly unreachable diagnostics. flushDiagnostics(S, fscope); return; } const Stmt *Body = D->getBody(); assert(Body); // Construct the analysis context with the specified CFG build options. AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D); // Don't generate EH edges for CallExprs as we'd like to avoid the n^2 // explosion for destructors that can result and the compile time hit. AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true; AC.getCFGBuildOptions().AddEHEdges = false; AC.getCFGBuildOptions().AddInitializers = true; AC.getCFGBuildOptions().AddImplicitDtors = true; AC.getCFGBuildOptions().AddTemporaryDtors = true; AC.getCFGBuildOptions().AddCXXNewAllocator = false; AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true; // Force that certain expressions appear as CFGElements in the CFG. This // is used to speed up various analyses. // FIXME: This isn't the right factoring. This is here for initial // prototyping, but we need a way for analyses to say what expressions they // expect to always be CFGElements and then fill in the BuildOptions // appropriately. This is essentially a layering violation. if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis || P.enableConsumedAnalysis) { // Unreachable code analysis and thread safety require a linearized CFG. AC.getCFGBuildOptions().setAllAlwaysAdd(); } else { AC.getCFGBuildOptions() .setAlwaysAdd(Stmt::BinaryOperatorClass) .setAlwaysAdd(Stmt::CompoundAssignOperatorClass) .setAlwaysAdd(Stmt::BlockExprClass) .setAlwaysAdd(Stmt::CStyleCastExprClass) .setAlwaysAdd(Stmt::DeclRefExprClass) .setAlwaysAdd(Stmt::ImplicitCastExprClass) .setAlwaysAdd(Stmt::UnaryOperatorClass) .setAlwaysAdd(Stmt::AttributedStmtClass); } // Install the logical handler for -Wtautological-overlap-compare std::unique_ptr<LogicalErrorHandler> LEH; if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison, D->getLocStart())) { LEH.reset(new LogicalErrorHandler(S)); AC.getCFGBuildOptions().Observer = LEH.get(); } // Emit delayed diagnostics. if (!fscope->PossiblyUnreachableDiags.empty()) { bool analyzed = false; // Register the expressions with the CFGBuilder. for (const auto &D : fscope->PossiblyUnreachableDiags) { if (D.stmt) AC.registerForcedBlockExpression(D.stmt); } if (AC.getCFG()) { analyzed = true; for (const auto &D : fscope->PossiblyUnreachableDiags) { bool processed = false; if (D.stmt) { const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt); CFGReverseBlockReachabilityAnalysis *cra = AC.getCFGReachablityAnalysis(); // FIXME: We should be able to assert that block is non-null, but // the CFG analysis can skip potentially-evaluated expressions in // edge cases; see test/Sema/vla-2.c. if (block && cra) { // Can this block be reached from the entrance? if (cra->isReachable(&AC.getCFG()->getEntry(), block)) S.Diag(D.Loc, D.PD); processed = true; } } if (!processed) { // Emit the warning anyway if we cannot map to a basic block. S.Diag(D.Loc, D.PD); } } } if (!analyzed) flushDiagnostics(S, fscope); } // Warning: check missing 'return' if (P.enableCheckFallThrough) { const CheckFallThroughDiagnostics &CD = (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock() : (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call && cast<CXXMethodDecl>(D)->getParent()->isLambda()) ? CheckFallThroughDiagnostics::MakeForLambda() : CheckFallThroughDiagnostics::MakeForFunction(D)); CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC); } // Warning: check for unreachable code if (P.enableCheckUnreachable) { // Only check for unreachable code on non-template instantiations. // Different template instantiations can effectively change the control-flow // and it is very difficult to prove that a snippet of code in a template // is unreachable for all instantiations. bool isTemplateInstantiation = false; if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) isTemplateInstantiation = Function->isTemplateInstantiation(); if (!isTemplateInstantiation) CheckUnreachable(S, AC); } // Check for thread safety violations if (P.enableThreadSafetyAnalysis) { SourceLocation FL = AC.getDecl()->getLocation(); SourceLocation FEL = AC.getDecl()->getLocEnd(); threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL); if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart())) Reporter.setIssueBetaWarnings(true); if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getLocStart())) Reporter.setVerbose(true); threadSafety::runThreadSafetyAnalysis(AC, Reporter, &S.ThreadSafetyDeclCache); Reporter.emitDiagnostics(); } // Check for violations of consumed properties. if (P.enableConsumedAnalysis) { consumed::ConsumedWarningsHandler WarningHandler(S); consumed::ConsumedAnalyzer Analyzer(WarningHandler); Analyzer.run(AC); } if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) || !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) || !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) { if (CFG *cfg = AC.getCFG()) { UninitValsDiagReporter reporter(S); UninitVariablesAnalysisStats stats; std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats)); runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC, reporter, stats); if (S.CollectStats && stats.NumVariablesAnalyzed > 0) { ++NumUninitAnalysisFunctions; NumUninitAnalysisVariables += stats.NumVariablesAnalyzed; NumUninitAnalysisBlockVisits += stats.NumBlockVisits; MaxUninitAnalysisVariablesPerFunction = std::max(MaxUninitAnalysisVariablesPerFunction, stats.NumVariablesAnalyzed); MaxUninitAnalysisBlockVisitsPerFunction = std::max(MaxUninitAnalysisBlockVisitsPerFunction, stats.NumBlockVisits); } } } bool FallThroughDiagFull = !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart()); bool FallThroughDiagPerFunction = !Diags.isIgnored( diag::warn_unannotated_fallthrough_per_function, D->getLocStart()); if (FallThroughDiagFull || FallThroughDiagPerFunction || fscope->HasFallthroughStmt) { DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull); } if (S.getLangOpts().ObjCWeak && !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart())) diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap()); // Check for infinite self-recursion in functions if (!Diags.isIgnored(diag::warn_infinite_recursive_function, D->getLocStart())) { if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { checkRecursiveFunction(S, FD, Body, AC); } } // If none of the previous checks caused a CFG build, trigger one here // for -Wtautological-overlap-compare if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison, D->getLocStart())) { AC.getCFG(); } // Collect statistics about the CFG if it was built. if (S.CollectStats && AC.isCFGBuilt()) { ++NumFunctionsAnalyzed; if (CFG *cfg = AC.getCFG()) { // If we successfully built a CFG for this context, record some more // detail information about it. NumCFGBlocks += cfg->getNumBlockIDs(); MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction, cfg->getNumBlockIDs()); } else { ++NumFunctionsWithBadCFGs; } } } void clang::sema::AnalysisBasedWarnings::PrintStats() const { llvm::errs() << "\n*** Analysis Based Warnings Stats:\n"; unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs; unsigned AvgCFGBlocksPerFunction = !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt; llvm::errs() << NumFunctionsAnalyzed << " functions analyzed (" << NumFunctionsWithBadCFGs << " w/o CFGs).\n" << " " << NumCFGBlocks << " CFG blocks built.\n" << " " << AvgCFGBlocksPerFunction << " average CFG blocks per function.\n" << " " << MaxCFGBlocksPerFunction << " max CFG blocks per function.\n"; unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0 : NumUninitAnalysisVariables/NumUninitAnalysisFunctions; unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0 : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions; llvm::errs() << NumUninitAnalysisFunctions << " functions analyzed for uninitialiazed variables\n" << " " << NumUninitAnalysisVariables << " variables analyzed.\n" << " " << AvgUninitVariablesPerFunction << " average variables per function.\n" << " " << MaxUninitAnalysisVariablesPerFunction << " max variables per function.\n" << " " << NumUninitAnalysisBlockVisits << " block visits.\n" << " " << AvgUninitBlockVisitsPerFunction << " average block visits per function.\n" << " " << MaxUninitAnalysisBlockVisitsPerFunction << " max block visits per function.\n"; }