//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// \brief This file implements semantic analysis for CUDA constructs. /// //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/ExprCXX.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Sema.h" #include "clang/Sema/SemaDiagnostic.h" #include "clang/Sema/Template.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" using namespace clang; ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, MultiExprArg ExecConfig, SourceLocation GGGLoc) { FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl(); if (!ConfigDecl) return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use) << "cudaConfigureCall"); QualType ConfigQTy = ConfigDecl->getType(); DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc); MarkFunctionReferenced(LLLLoc, ConfigDecl); return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr, /*IsExecConfig=*/true); } /// IdentifyCUDATarget - Determine the CUDA compilation target for this function Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) { if (D->hasAttr<CUDAInvalidTargetAttr>()) return CFT_InvalidTarget; if (D->hasAttr<CUDAGlobalAttr>()) return CFT_Global; if (D->hasAttr<CUDADeviceAttr>()) { if (D->hasAttr<CUDAHostAttr>()) return CFT_HostDevice; return CFT_Device; } else if (D->hasAttr<CUDAHostAttr>()) { return CFT_Host; } else if (D->isImplicit()) { // Some implicit declarations (like intrinsic functions) are not marked. // Set the most lenient target on them for maximal flexibility. return CFT_HostDevice; } return CFT_Host; } // * CUDA Call preference table // // F - from, // T - to // Ph - preference in host mode // Pd - preference in device mode // H - handled in (x) // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never. // // | F | T | Ph | Pd | H | // |----+----+-----+-----+-----+ // | d | d | N | N | (c) | // | d | g | -- | -- | (a) | // | d | h | -- | -- | (e) | // | d | hd | HD | HD | (b) | // | g | d | N | N | (c) | // | g | g | -- | -- | (a) | // | g | h | -- | -- | (e) | // | g | hd | HD | HD | (b) | // | h | d | -- | -- | (e) | // | h | g | N | N | (c) | // | h | h | N | N | (c) | // | h | hd | HD | HD | (b) | // | hd | d | WS | SS | (d) | // | hd | g | SS | -- |(d/a)| // | hd | h | SS | WS | (d) | // | hd | hd | HD | HD | (b) | Sema::CUDAFunctionPreference Sema::IdentifyCUDAPreference(const FunctionDecl *Caller, const FunctionDecl *Callee) { assert(Callee && "Callee must be valid."); CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee); CUDAFunctionTarget CallerTarget = (Caller != nullptr) ? IdentifyCUDATarget(Caller) : Sema::CFT_Host; // If one of the targets is invalid, the check always fails, no matter what // the other target is. if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget) return CFP_Never; // (a) Can't call global from some contexts until we support CUDA's // dynamic parallelism. if (CalleeTarget == CFT_Global && (CallerTarget == CFT_Global || CallerTarget == CFT_Device || (CallerTarget == CFT_HostDevice && getLangOpts().CUDAIsDevice))) return CFP_Never; // (b) Calling HostDevice is OK for everyone. if (CalleeTarget == CFT_HostDevice) return CFP_HostDevice; // (c) Best case scenarios if (CalleeTarget == CallerTarget || (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) || (CallerTarget == CFT_Global && CalleeTarget == CFT_Device)) return CFP_Native; // (d) HostDevice behavior depends on compilation mode. if (CallerTarget == CFT_HostDevice) { // It's OK to call a compilation-mode matching function from an HD one. if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) || (!getLangOpts().CUDAIsDevice && (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))) return CFP_SameSide; // Calls from HD to non-mode-matching functions (i.e., to host functions // when compiling in device mode or to device functions when compiling in // host mode) are allowed at the sema level, but eventually rejected if // they're ever codegened. TODO: Reject said calls earlier. return CFP_WrongSide; } // (e) Calling across device/host boundary is not something you should do. if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) || (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) || (CallerTarget == CFT_Global && CalleeTarget == CFT_Host)) return CFP_Never; llvm_unreachable("All cases should've been handled by now."); } template <typename T> static void EraseUnwantedCUDAMatchesImpl( Sema &S, const FunctionDecl *Caller, llvm::SmallVectorImpl<T> &Matches, std::function<const FunctionDecl *(const T &)> FetchDecl) { if (Matches.size() <= 1) return; // Gets the CUDA function preference for a call from Caller to Match. auto GetCFP = [&](const T &Match) { return S.IdentifyCUDAPreference(Caller, FetchDecl(Match)); }; // Find the best call preference among the functions in Matches. Sema::CUDAFunctionPreference BestCFP = GetCFP(*std::max_element( Matches.begin(), Matches.end(), [&](const T &M1, const T &M2) { return GetCFP(M1) < GetCFP(M2); })); // Erase all functions with lower priority. Matches.erase( llvm::remove_if(Matches, [&](const T &Match) { return GetCFP(Match) < BestCFP; }), Matches.end()); } void Sema::EraseUnwantedCUDAMatches(const FunctionDecl *Caller, SmallVectorImpl<FunctionDecl *> &Matches){ EraseUnwantedCUDAMatchesImpl<FunctionDecl *>( *this, Caller, Matches, [](const FunctionDecl *item) { return item; }); } void Sema::EraseUnwantedCUDAMatches(const FunctionDecl *Caller, SmallVectorImpl<DeclAccessPair> &Matches) { EraseUnwantedCUDAMatchesImpl<DeclAccessPair>( *this, Caller, Matches, [](const DeclAccessPair &item) { return dyn_cast<FunctionDecl>(item.getDecl()); }); } void Sema::EraseUnwantedCUDAMatches( const FunctionDecl *Caller, SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches){ EraseUnwantedCUDAMatchesImpl<std::pair<DeclAccessPair, FunctionDecl *>>( *this, Caller, Matches, [](const std::pair<DeclAccessPair, FunctionDecl *> &item) { return dyn_cast<FunctionDecl>(item.second); }); } /// When an implicitly-declared special member has to invoke more than one /// base/field special member, conflicts may occur in the targets of these /// members. For example, if one base's member __host__ and another's is /// __device__, it's a conflict. /// This function figures out if the given targets \param Target1 and /// \param Target2 conflict, and if they do not it fills in /// \param ResolvedTarget with a target that resolves for both calls. /// \return true if there's a conflict, false otherwise. static bool resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1, Sema::CUDAFunctionTarget Target2, Sema::CUDAFunctionTarget *ResolvedTarget) { // Only free functions and static member functions may be global. assert(Target1 != Sema::CFT_Global); assert(Target2 != Sema::CFT_Global); if (Target1 == Sema::CFT_HostDevice) { *ResolvedTarget = Target2; } else if (Target2 == Sema::CFT_HostDevice) { *ResolvedTarget = Target1; } else if (Target1 != Target2) { return true; } else { *ResolvedTarget = Target1; } return false; } bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl, CXXSpecialMember CSM, CXXMethodDecl *MemberDecl, bool ConstRHS, bool Diagnose) { llvm::Optional<CUDAFunctionTarget> InferredTarget; // We're going to invoke special member lookup; mark that these special // members are called from this one, and not from its caller. ContextRAII MethodContext(*this, MemberDecl); // Look for special members in base classes that should be invoked from here. // Infer the target of this member base on the ones it should call. // Skip direct and indirect virtual bases for abstract classes. llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases; for (const auto &B : ClassDecl->bases()) { if (!B.isVirtual()) { Bases.push_back(&B); } } if (!ClassDecl->isAbstract()) { for (const auto &VB : ClassDecl->vbases()) { Bases.push_back(&VB); } } for (const auto *B : Bases) { const RecordType *BaseType = B->getType()->getAs<RecordType>(); if (!BaseType) { continue; } CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); Sema::SpecialMemberOverloadResult *SMOR = LookupSpecialMember(BaseClassDecl, CSM, /* ConstArg */ ConstRHS, /* VolatileArg */ false, /* RValueThis */ false, /* ConstThis */ false, /* VolatileThis */ false); if (!SMOR || !SMOR->getMethod()) { continue; } CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR->getMethod()); if (!InferredTarget.hasValue()) { InferredTarget = BaseMethodTarget; } else { bool ResolutionError = resolveCalleeCUDATargetConflict( InferredTarget.getValue(), BaseMethodTarget, InferredTarget.getPointer()); if (ResolutionError) { if (Diagnose) { Diag(ClassDecl->getLocation(), diag::note_implicit_member_target_infer_collision) << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget; } MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); return true; } } } // Same as for bases, but now for special members of fields. for (const auto *F : ClassDecl->fields()) { if (F->isInvalidDecl()) { continue; } const RecordType *FieldType = Context.getBaseElementType(F->getType())->getAs<RecordType>(); if (!FieldType) { continue; } CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl()); Sema::SpecialMemberOverloadResult *SMOR = LookupSpecialMember(FieldRecDecl, CSM, /* ConstArg */ ConstRHS && !F->isMutable(), /* VolatileArg */ false, /* RValueThis */ false, /* ConstThis */ false, /* VolatileThis */ false); if (!SMOR || !SMOR->getMethod()) { continue; } CUDAFunctionTarget FieldMethodTarget = IdentifyCUDATarget(SMOR->getMethod()); if (!InferredTarget.hasValue()) { InferredTarget = FieldMethodTarget; } else { bool ResolutionError = resolveCalleeCUDATargetConflict( InferredTarget.getValue(), FieldMethodTarget, InferredTarget.getPointer()); if (ResolutionError) { if (Diagnose) { Diag(ClassDecl->getLocation(), diag::note_implicit_member_target_infer_collision) << (unsigned)CSM << InferredTarget.getValue() << FieldMethodTarget; } MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); return true; } } } if (InferredTarget.hasValue()) { if (InferredTarget.getValue() == CFT_Device) { MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); } else if (InferredTarget.getValue() == CFT_Host) { MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); } else { MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); } } else { // If no target was inferred, mark this member as __host__ __device__; // it's the least restrictive option that can be invoked from any target. MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); } return false; } bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) { if (!CD->isDefined() && CD->isTemplateInstantiation()) InstantiateFunctionDefinition(Loc, CD->getFirstDecl()); // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered // empty at a point in the translation unit, if it is either a // trivial constructor if (CD->isTrivial()) return true; // ... or it satisfies all of the following conditions: // The constructor function has been defined. // The constructor function has no parameters, // and the function body is an empty compound statement. if (!(CD->hasTrivialBody() && CD->getNumParams() == 0)) return false; // Its class has no virtual functions and no virtual base classes. if (CD->getParent()->isDynamicClass()) return false; // The only form of initializer allowed is an empty constructor. // This will recursively check all base classes and member initializers if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) { if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(CI->getInit())) return isEmptyCudaConstructor(Loc, CE->getConstructor()); return false; })) return false; return true; } bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) { // No destructor -> no problem. if (!DD) return true; if (!DD->isDefined() && DD->isTemplateInstantiation()) InstantiateFunctionDefinition(Loc, DD->getFirstDecl()); // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered // empty at a point in the translation unit, if it is either a // trivial constructor if (DD->isTrivial()) return true; // ... or it satisfies all of the following conditions: // The destructor function has been defined. // and the function body is an empty compound statement. if (!DD->hasTrivialBody()) return false; const CXXRecordDecl *ClassDecl = DD->getParent(); // Its class has no virtual functions and no virtual base classes. if (ClassDecl->isDynamicClass()) return false; // Only empty destructors are allowed. This will recursively check // destructors for all base classes... if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) { if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl()) return isEmptyCudaDestructor(Loc, RD->getDestructor()); return true; })) return false; // ... and member fields. if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) { if (CXXRecordDecl *RD = Field->getType() ->getBaseElementTypeUnsafe() ->getAsCXXRecordDecl()) return isEmptyCudaDestructor(Loc, RD->getDestructor()); return true; })) return false; return true; } // With -fcuda-host-device-constexpr, an unattributed constexpr function is // treated as implicitly __host__ __device__, unless: // * it is a variadic function (device-side variadic functions are not // allowed), or // * a __device__ function with this signature was already declared, in which // case in which case we output an error, unless the __device__ decl is in a // system header, in which case we leave the constexpr function unattributed. void Sema::maybeAddCUDAHostDeviceAttrs(Scope *S, FunctionDecl *NewD, const LookupResult &Previous) { assert(getLangOpts().CUDA && "May be called only for CUDA compilations."); if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() || NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() || NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>()) return; // Is D a __device__ function with the same signature as NewD, ignoring CUDA // attributes? auto IsMatchingDeviceFn = [&](NamedDecl *D) { if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D)) D = Using->getTargetDecl(); FunctionDecl *OldD = D->getAsFunction(); return OldD && OldD->hasAttr<CUDADeviceAttr>() && !OldD->hasAttr<CUDAHostAttr>() && !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false, /* ConsiderCudaAttrs = */ false); }; auto It = llvm::find_if(Previous, IsMatchingDeviceFn); if (It != Previous.end()) { // We found a __device__ function with the same name and signature as NewD // (ignoring CUDA attrs). This is an error unless that function is defined // in a system header, in which case we simply return without making NewD // host+device. NamedDecl *Match = *It; if (!getSourceManager().isInSystemHeader(Match->getLocation())) { Diag(NewD->getLocation(), diag::err_cuda_unattributed_constexpr_cannot_overload_device) << NewD->getName(); Diag(Match->getLocation(), diag::note_cuda_conflicting_device_function_declared_here); } return; } NewD->addAttr(CUDAHostAttr::CreateImplicit(Context)); NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context)); }