//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides Sema routines for C++ exception specification testing. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/SourceManager.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" namespace clang { static const FunctionProtoType *GetUnderlyingFunction(QualType T) { if (const PointerType *PtrTy = T->getAs<PointerType>()) T = PtrTy->getPointeeType(); else if (const ReferenceType *RefTy = T->getAs<ReferenceType>()) T = RefTy->getPointeeType(); else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) T = MPTy->getPointeeType(); return T->getAs<FunctionProtoType>(); } /// HACK: libstdc++ has a bug where it shadows std::swap with a member /// swap function then tries to call std::swap unqualified from the exception /// specification of that function. This function detects whether we're in /// such a case and turns off delay-parsing of exception specifications. bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) { auto *RD = dyn_cast<CXXRecordDecl>(CurContext); // All the problem cases are member functions named "swap" within class // templates declared directly within namespace std. if (!RD || RD->getEnclosingNamespaceContext() != getStdNamespace() || !RD->getIdentifier() || !RD->getDescribedClassTemplate() || !D.getIdentifier() || !D.getIdentifier()->isStr("swap")) return false; // Only apply this hack within a system header. if (!Context.getSourceManager().isInSystemHeader(D.getLocStart())) return false; return llvm::StringSwitch<bool>(RD->getIdentifier()->getName()) .Case("array", true) .Case("pair", true) .Case("priority_queue", true) .Case("stack", true) .Case("queue", true) .Default(false); } /// CheckSpecifiedExceptionType - Check if the given type is valid in an /// exception specification. Incomplete types, or pointers to incomplete types /// other than void are not allowed. /// /// \param[in,out] T The exception type. This will be decayed to a pointer type /// when the input is an array or a function type. bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) { // C++11 [except.spec]p2: // A type cv T, "array of T", or "function returning T" denoted // in an exception-specification is adjusted to type T, "pointer to T", or // "pointer to function returning T", respectively. // // We also apply this rule in C++98. if (T->isArrayType()) T = Context.getArrayDecayedType(T); else if (T->isFunctionType()) T = Context.getPointerType(T); int Kind = 0; QualType PointeeT = T; if (const PointerType *PT = T->getAs<PointerType>()) { PointeeT = PT->getPointeeType(); Kind = 1; // cv void* is explicitly permitted, despite being a pointer to an // incomplete type. if (PointeeT->isVoidType()) return false; } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { PointeeT = RT->getPointeeType(); Kind = 2; if (RT->isRValueReferenceType()) { // C++11 [except.spec]p2: // A type denoted in an exception-specification shall not denote [...] // an rvalue reference type. Diag(Range.getBegin(), diag::err_rref_in_exception_spec) << T << Range; return true; } } // C++11 [except.spec]p2: // A type denoted in an exception-specification shall not denote an // incomplete type other than a class currently being defined [...]. // A type denoted in an exception-specification shall not denote a // pointer or reference to an incomplete type, other than (cv) void* or a // pointer or reference to a class currently being defined. // In Microsoft mode, downgrade this to a warning. unsigned DiagID = diag::err_incomplete_in_exception_spec; bool ReturnValueOnError = true; if (getLangOpts().MicrosoftExt) { DiagID = diag::ext_incomplete_in_exception_spec; ReturnValueOnError = false; } if (!(PointeeT->isRecordType() && PointeeT->getAs<RecordType>()->isBeingDefined()) && RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range)) return ReturnValueOnError; return false; } /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer /// to member to a function with an exception specification. This means that /// it is invalid to add another level of indirection. bool Sema::CheckDistantExceptionSpec(QualType T) { if (const PointerType *PT = T->getAs<PointerType>()) T = PT->getPointeeType(); else if (const MemberPointerType *PT = T->getAs<MemberPointerType>()) T = PT->getPointeeType(); else return false; const FunctionProtoType *FnT = T->getAs<FunctionProtoType>(); if (!FnT) return false; return FnT->hasExceptionSpec(); } const FunctionProtoType * Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) { if (FPT->getExceptionSpecType() == EST_Unparsed) { Diag(Loc, diag::err_exception_spec_not_parsed); return nullptr; } if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) return FPT; FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl(); const FunctionProtoType *SourceFPT = SourceDecl->getType()->castAs<FunctionProtoType>(); // If the exception specification has already been resolved, just return it. if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType())) return SourceFPT; // Compute or instantiate the exception specification now. if (SourceFPT->getExceptionSpecType() == EST_Unevaluated) EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl)); else InstantiateExceptionSpec(Loc, SourceDecl); const FunctionProtoType *Proto = SourceDecl->getType()->castAs<FunctionProtoType>(); if (Proto->getExceptionSpecType() == clang::EST_Unparsed) { Diag(Loc, diag::err_exception_spec_not_parsed); Proto = nullptr; } return Proto; } void Sema::UpdateExceptionSpec(FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI) { // If we've fully resolved the exception specification, notify listeners. if (!isUnresolvedExceptionSpec(ESI.Type)) if (auto *Listener = getASTMutationListener()) Listener->ResolvedExceptionSpec(FD); for (auto *Redecl : FD->redecls()) Context.adjustExceptionSpec(cast<FunctionDecl>(Redecl), ESI); } /// Determine whether a function has an implicitly-generated exception /// specification. static bool hasImplicitExceptionSpec(FunctionDecl *Decl) { if (!isa<CXXDestructorDecl>(Decl) && Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete && Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) return false; // For a function that the user didn't declare: // - if this is a destructor, its exception specification is implicit. // - if this is 'operator delete' or 'operator delete[]', the exception // specification is as-if an explicit exception specification was given // (per [basic.stc.dynamic]p2). if (!Decl->getTypeSourceInfo()) return isa<CXXDestructorDecl>(Decl); const FunctionProtoType *Ty = Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>(); return !Ty->hasExceptionSpec(); } bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) { OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator(); bool IsOperatorNew = OO == OO_New || OO == OO_Array_New; bool MissingExceptionSpecification = false; bool MissingEmptyExceptionSpecification = false; unsigned DiagID = diag::err_mismatched_exception_spec; bool ReturnValueOnError = true; if (getLangOpts().MicrosoftExt) { DiagID = diag::ext_mismatched_exception_spec; ReturnValueOnError = false; } // Check the types as written: they must match before any exception // specification adjustment is applied. if (!CheckEquivalentExceptionSpec( PDiag(DiagID), PDiag(diag::note_previous_declaration), Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), New->getType()->getAs<FunctionProtoType>(), New->getLocation(), &MissingExceptionSpecification, &MissingEmptyExceptionSpecification, /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) { // C++11 [except.spec]p4 [DR1492]: // If a declaration of a function has an implicit // exception-specification, other declarations of the function shall // not specify an exception-specification. if (getLangOpts().CPlusPlus11 && hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) { Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch) << hasImplicitExceptionSpec(Old); if (Old->getLocation().isValid()) Diag(Old->getLocation(), diag::note_previous_declaration); } return false; } // The failure was something other than an missing exception // specification; return an error, except in MS mode where this is a warning. if (!MissingExceptionSpecification) return ReturnValueOnError; const FunctionProtoType *NewProto = New->getType()->castAs<FunctionProtoType>(); // The new function declaration is only missing an empty exception // specification "throw()". If the throw() specification came from a // function in a system header that has C linkage, just add an empty // exception specification to the "new" declaration. This is an // egregious workaround for glibc, which adds throw() specifications // to many libc functions as an optimization. Unfortunately, that // optimization isn't permitted by the C++ standard, so we're forced // to work around it here. if (MissingEmptyExceptionSpecification && NewProto && (Old->getLocation().isInvalid() || Context.getSourceManager().isInSystemHeader(Old->getLocation())) && Old->isExternC()) { New->setType(Context.getFunctionType( NewProto->getReturnType(), NewProto->getParamTypes(), NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone))); return false; } const FunctionProtoType *OldProto = Old->getType()->castAs<FunctionProtoType>(); FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType(); if (ESI.Type == EST_Dynamic) { ESI.Exceptions = OldProto->exceptions(); } if (ESI.Type == EST_ComputedNoexcept) { // For computed noexcept, we can't just take the expression from the old // prototype. It likely contains references to the old prototype's // parameters. New->setInvalidDecl(); } else { // Update the type of the function with the appropriate exception // specification. New->setType(Context.getFunctionType( NewProto->getReturnType(), NewProto->getParamTypes(), NewProto->getExtProtoInfo().withExceptionSpec(ESI))); } if (getLangOpts().MicrosoftExt && ESI.Type != EST_ComputedNoexcept) { // Allow missing exception specifications in redeclarations as an extension. DiagID = diag::ext_ms_missing_exception_specification; ReturnValueOnError = false; } else if (New->isReplaceableGlobalAllocationFunction() && ESI.Type != EST_ComputedNoexcept) { // Allow missing exception specifications in redeclarations as an extension, // when declaring a replaceable global allocation function. DiagID = diag::ext_missing_exception_specification; ReturnValueOnError = false; } else { DiagID = diag::err_missing_exception_specification; ReturnValueOnError = true; } // Warn about the lack of exception specification. SmallString<128> ExceptionSpecString; llvm::raw_svector_ostream OS(ExceptionSpecString); switch (OldProto->getExceptionSpecType()) { case EST_DynamicNone: OS << "throw()"; break; case EST_Dynamic: { OS << "throw("; bool OnFirstException = true; for (const auto &E : OldProto->exceptions()) { if (OnFirstException) OnFirstException = false; else OS << ", "; OS << E.getAsString(getPrintingPolicy()); } OS << ")"; break; } case EST_BasicNoexcept: OS << "noexcept"; break; case EST_ComputedNoexcept: OS << "noexcept("; assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr"); OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy()); OS << ")"; break; default: llvm_unreachable("This spec type is compatible with none."); } SourceLocation FixItLoc; if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) { TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); // FIXME: Preserve enough information so that we can produce a correct fixit // location when there is a trailing return type. if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>()) if (!FTLoc.getTypePtr()->hasTrailingReturn()) FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd()); } if (FixItLoc.isInvalid()) Diag(New->getLocation(), DiagID) << New << OS.str(); else { Diag(New->getLocation(), DiagID) << New << OS.str() << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str()); } if (Old->getLocation().isValid()) Diag(Old->getLocation(), diag::note_previous_declaration); return ReturnValueOnError; } /// CheckEquivalentExceptionSpec - Check if the two types have equivalent /// exception specifications. Exception specifications are equivalent if /// they allow exactly the same set of exception types. It does not matter how /// that is achieved. See C++ [except.spec]p2. bool Sema::CheckEquivalentExceptionSpec( const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc) { unsigned DiagID = diag::err_mismatched_exception_spec; if (getLangOpts().MicrosoftExt) DiagID = diag::ext_mismatched_exception_spec; bool Result = CheckEquivalentExceptionSpec(PDiag(DiagID), PDiag(diag::note_previous_declaration), Old, OldLoc, New, NewLoc); // In Microsoft mode, mismatching exception specifications just cause a warning. if (getLangOpts().MicrosoftExt) return false; return Result; } /// CheckEquivalentExceptionSpec - Check if the two types have compatible /// exception specifications. See C++ [except.spec]p3. /// /// \return \c false if the exception specifications match, \c true if there is /// a problem. If \c true is returned, either a diagnostic has already been /// produced or \c *MissingExceptionSpecification is set to \c true. bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc, bool *MissingExceptionSpecification, bool*MissingEmptyExceptionSpecification, bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) { // Just completely ignore this under -fno-exceptions. if (!getLangOpts().CXXExceptions) return false; if (MissingExceptionSpecification) *MissingExceptionSpecification = false; if (MissingEmptyExceptionSpecification) *MissingEmptyExceptionSpecification = false; Old = ResolveExceptionSpec(NewLoc, Old); if (!Old) return false; New = ResolveExceptionSpec(NewLoc, New); if (!New) return false; // C++0x [except.spec]p3: Two exception-specifications are compatible if: // - both are non-throwing, regardless of their form, // - both have the form noexcept(constant-expression) and the constant- // expressions are equivalent, // - both are dynamic-exception-specifications that have the same set of // adjusted types. // // C++0x [except.spec]p12: An exception-specification is non-throwing if it is // of the form throw(), noexcept, or noexcept(constant-expression) where the // constant-expression yields true. // // C++0x [except.spec]p4: If any declaration of a function has an exception- // specifier that is not a noexcept-specification allowing all exceptions, // all declarations [...] of that function shall have a compatible // exception-specification. // // That last point basically means that noexcept(false) matches no spec. // It's considered when AllowNoexceptAllMatchWithNoSpec is true. ExceptionSpecificationType OldEST = Old->getExceptionSpecType(); ExceptionSpecificationType NewEST = New->getExceptionSpecType(); assert(!isUnresolvedExceptionSpec(OldEST) && !isUnresolvedExceptionSpec(NewEST) && "Shouldn't see unknown exception specifications here"); // Shortcut the case where both have no spec. if (OldEST == EST_None && NewEST == EST_None) return false; FunctionProtoType::NoexceptResult OldNR = Old->getNoexceptSpec(Context); FunctionProtoType::NoexceptResult NewNR = New->getNoexceptSpec(Context); if (OldNR == FunctionProtoType::NR_BadNoexcept || NewNR == FunctionProtoType::NR_BadNoexcept) return false; // Dependent noexcept specifiers are compatible with each other, but nothing // else. // One noexcept is compatible with another if the argument is the same if (OldNR == NewNR && OldNR != FunctionProtoType::NR_NoNoexcept && NewNR != FunctionProtoType::NR_NoNoexcept) return false; if (OldNR != NewNR && OldNR != FunctionProtoType::NR_NoNoexcept && NewNR != FunctionProtoType::NR_NoNoexcept) { Diag(NewLoc, DiagID); if (NoteID.getDiagID() != 0 && OldLoc.isValid()) Diag(OldLoc, NoteID); return true; } // The MS extension throw(...) is compatible with itself. if (OldEST == EST_MSAny && NewEST == EST_MSAny) return false; // It's also compatible with no spec. if ((OldEST == EST_None && NewEST == EST_MSAny) || (OldEST == EST_MSAny && NewEST == EST_None)) return false; // It's also compatible with noexcept(false). if (OldEST == EST_MSAny && NewNR == FunctionProtoType::NR_Throw) return false; if (NewEST == EST_MSAny && OldNR == FunctionProtoType::NR_Throw) return false; // As described above, noexcept(false) matches no spec only for functions. if (AllowNoexceptAllMatchWithNoSpec) { if (OldEST == EST_None && NewNR == FunctionProtoType::NR_Throw) return false; if (NewEST == EST_None && OldNR == FunctionProtoType::NR_Throw) return false; } // Any non-throwing specifications are compatible. bool OldNonThrowing = OldNR == FunctionProtoType::NR_Nothrow || OldEST == EST_DynamicNone; bool NewNonThrowing = NewNR == FunctionProtoType::NR_Nothrow || NewEST == EST_DynamicNone; if (OldNonThrowing && NewNonThrowing) return false; // As a special compatibility feature, under C++0x we accept no spec and // throw(std::bad_alloc) as equivalent for operator new and operator new[]. // This is because the implicit declaration changed, but old code would break. if (getLangOpts().CPlusPlus11 && IsOperatorNew) { const FunctionProtoType *WithExceptions = nullptr; if (OldEST == EST_None && NewEST == EST_Dynamic) WithExceptions = New; else if (OldEST == EST_Dynamic && NewEST == EST_None) WithExceptions = Old; if (WithExceptions && WithExceptions->getNumExceptions() == 1) { // One has no spec, the other throw(something). If that something is // std::bad_alloc, all conditions are met. QualType Exception = *WithExceptions->exception_begin(); if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) { IdentifierInfo* Name = ExRecord->getIdentifier(); if (Name && Name->getName() == "bad_alloc") { // It's called bad_alloc, but is it in std? if (ExRecord->isInStdNamespace()) { return false; } } } } } // At this point, the only remaining valid case is two matching dynamic // specifications. We return here unless both specifications are dynamic. if (OldEST != EST_Dynamic || NewEST != EST_Dynamic) { if (MissingExceptionSpecification && Old->hasExceptionSpec() && !New->hasExceptionSpec()) { // The old type has an exception specification of some sort, but // the new type does not. *MissingExceptionSpecification = true; if (MissingEmptyExceptionSpecification && OldNonThrowing) { // The old type has a throw() or noexcept(true) exception specification // and the new type has no exception specification, and the caller asked // to handle this itself. *MissingEmptyExceptionSpecification = true; } return true; } Diag(NewLoc, DiagID); if (NoteID.getDiagID() != 0 && OldLoc.isValid()) Diag(OldLoc, NoteID); return true; } assert(OldEST == EST_Dynamic && NewEST == EST_Dynamic && "Exception compatibility logic error: non-dynamic spec slipped through."); bool Success = true; // Both have a dynamic exception spec. Collect the first set, then compare // to the second. llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes; for (const auto &I : Old->exceptions()) OldTypes.insert(Context.getCanonicalType(I).getUnqualifiedType()); for (const auto &I : New->exceptions()) { CanQualType TypePtr = Context.getCanonicalType(I).getUnqualifiedType(); if(OldTypes.count(TypePtr)) NewTypes.insert(TypePtr); else Success = false; } Success = Success && OldTypes.size() == NewTypes.size(); if (Success) { return false; } Diag(NewLoc, DiagID); if (NoteID.getDiagID() != 0 && OldLoc.isValid()) Diag(OldLoc, NoteID); return true; } /// CheckExceptionSpecSubset - Check whether the second function type's /// exception specification is a subset (or equivalent) of the first function /// type. This is used by override and pointer assignment checks. bool Sema::CheckExceptionSpecSubset( const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, const FunctionProtoType *Superset, SourceLocation SuperLoc, const FunctionProtoType *Subset, SourceLocation SubLoc) { // Just auto-succeed under -fno-exceptions. if (!getLangOpts().CXXExceptions) return false; // FIXME: As usual, we could be more specific in our error messages, but // that better waits until we've got types with source locations. if (!SubLoc.isValid()) SubLoc = SuperLoc; // Resolve the exception specifications, if needed. Superset = ResolveExceptionSpec(SuperLoc, Superset); if (!Superset) return false; Subset = ResolveExceptionSpec(SubLoc, Subset); if (!Subset) return false; ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType(); // If superset contains everything, we're done. if (SuperEST == EST_None || SuperEST == EST_MSAny) return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc); // If there are dependent noexcept specs, assume everything is fine. Unlike // with the equivalency check, this is safe in this case, because we don't // want to merge declarations. Checks after instantiation will catch any // omissions we make here. // We also shortcut checking if a noexcept expression was bad. FunctionProtoType::NoexceptResult SuperNR =Superset->getNoexceptSpec(Context); if (SuperNR == FunctionProtoType::NR_BadNoexcept || SuperNR == FunctionProtoType::NR_Dependent) return false; // Another case of the superset containing everything. if (SuperNR == FunctionProtoType::NR_Throw) return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc); ExceptionSpecificationType SubEST = Subset->getExceptionSpecType(); assert(!isUnresolvedExceptionSpec(SuperEST) && !isUnresolvedExceptionSpec(SubEST) && "Shouldn't see unknown exception specifications here"); // It does not. If the subset contains everything, we've failed. if (SubEST == EST_None || SubEST == EST_MSAny) { Diag(SubLoc, DiagID); if (NoteID.getDiagID() != 0) Diag(SuperLoc, NoteID); return true; } FunctionProtoType::NoexceptResult SubNR = Subset->getNoexceptSpec(Context); if (SubNR == FunctionProtoType::NR_BadNoexcept || SubNR == FunctionProtoType::NR_Dependent) return false; // Another case of the subset containing everything. if (SubNR == FunctionProtoType::NR_Throw) { Diag(SubLoc, DiagID); if (NoteID.getDiagID() != 0) Diag(SuperLoc, NoteID); return true; } // If the subset contains nothing, we're done. if (SubEST == EST_DynamicNone || SubNR == FunctionProtoType::NR_Nothrow) return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc); // Otherwise, if the superset contains nothing, we've failed. if (SuperEST == EST_DynamicNone || SuperNR == FunctionProtoType::NR_Nothrow) { Diag(SubLoc, DiagID); if (NoteID.getDiagID() != 0) Diag(SuperLoc, NoteID); return true; } assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic && "Exception spec subset: non-dynamic case slipped through."); // Neither contains everything or nothing. Do a proper comparison. for (const auto &SubI : Subset->exceptions()) { // Take one type from the subset. QualType CanonicalSubT = Context.getCanonicalType(SubI); // Unwrap pointers and references so that we can do checks within a class // hierarchy. Don't unwrap member pointers; they don't have hierarchy // conversions on the pointee. bool SubIsPointer = false; if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>()) CanonicalSubT = RefTy->getPointeeType(); if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) { CanonicalSubT = PtrTy->getPointeeType(); SubIsPointer = true; } bool SubIsClass = CanonicalSubT->isRecordType(); CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType(); CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); bool Contained = false; // Make sure it's in the superset. for (const auto &SuperI : Superset->exceptions()) { QualType CanonicalSuperT = Context.getCanonicalType(SuperI); // SubT must be SuperT or derived from it, or pointer or reference to // such types. if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>()) CanonicalSuperT = RefTy->getPointeeType(); if (SubIsPointer) { if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>()) CanonicalSuperT = PtrTy->getPointeeType(); else { continue; } } CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType(); // If the types are the same, move on to the next type in the subset. if (CanonicalSubT == CanonicalSuperT) { Contained = true; break; } // Otherwise we need to check the inheritance. if (!SubIsClass || !CanonicalSuperT->isRecordType()) continue; Paths.clear(); if (!IsDerivedFrom(SubLoc, CanonicalSubT, CanonicalSuperT, Paths)) continue; if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT))) continue; // Do this check from a context without privileges. switch (CheckBaseClassAccess(SourceLocation(), CanonicalSuperT, CanonicalSubT, Paths.front(), /*Diagnostic*/ 0, /*ForceCheck*/ true, /*ForceUnprivileged*/ true)) { case AR_accessible: break; case AR_inaccessible: continue; case AR_dependent: llvm_unreachable("access check dependent for unprivileged context"); case AR_delayed: llvm_unreachable("access check delayed in non-declaration"); } Contained = true; break; } if (!Contained) { Diag(SubLoc, DiagID); if (NoteID.getDiagID() != 0) Diag(SuperLoc, NoteID); return true; } } // We've run half the gauntlet. return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc); } static bool CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, QualType Target, SourceLocation TargetLoc, QualType Source, SourceLocation SourceLoc) { const FunctionProtoType *TFunc = GetUnderlyingFunction(Target); if (!TFunc) return false; const FunctionProtoType *SFunc = GetUnderlyingFunction(Source); if (!SFunc) return false; return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc, SFunc, SourceLoc); } /// CheckParamExceptionSpec - Check if the parameter and return types of the /// two functions have equivalent exception specs. This is part of the /// assignment and override compatibility check. We do not check the parameters /// of parameter function pointers recursively, as no sane programmer would /// even be able to write such a function type. bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &NoteID, const FunctionProtoType *Target, SourceLocation TargetLoc, const FunctionProtoType *Source, SourceLocation SourceLoc) { if (CheckSpecForTypesEquivalent( *this, PDiag(diag::err_deep_exception_specs_differ) << 0, PDiag(), Target->getReturnType(), TargetLoc, Source->getReturnType(), SourceLoc)) return true; // We shouldn't even be testing this unless the arguments are otherwise // compatible. assert(Target->getNumParams() == Source->getNumParams() && "Functions have different argument counts."); for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) { if (CheckSpecForTypesEquivalent( *this, PDiag(diag::err_deep_exception_specs_differ) << 1, PDiag(), Target->getParamType(i), TargetLoc, Source->getParamType(i), SourceLoc)) return true; } return false; } bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) { // First we check for applicability. // Target type must be a function, function pointer or function reference. const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType); if (!ToFunc || ToFunc->hasDependentExceptionSpec()) return false; // SourceType must be a function or function pointer. const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType()); if (!FromFunc || FromFunc->hasDependentExceptionSpec()) return false; // Now we've got the correct types on both sides, check their compatibility. // This means that the source of the conversion can only throw a subset of // the exceptions of the target, and any exception specs on arguments or // return types must be equivalent. // // FIXME: If there is a nested dependent exception specification, we should // not be checking it here. This is fine: // template<typename T> void f() { // void (*p)(void (*) throw(T)); // void (*q)(void (*) throw(int)) = p; // } // ... because it might be instantiated with T=int. return CheckExceptionSpecSubset(PDiag(diag::err_incompatible_exception_specs), PDiag(), ToFunc, From->getSourceRange().getBegin(), FromFunc, SourceLocation()); } bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, const CXXMethodDecl *Old) { // If the new exception specification hasn't been parsed yet, skip the check. // We'll get called again once it's been parsed. if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() == EST_Unparsed) return false; if (getLangOpts().CPlusPlus11 && isa<CXXDestructorDecl>(New)) { // Don't check uninstantiated template destructors at all. We can only // synthesize correct specs after the template is instantiated. if (New->getParent()->isDependentType()) return false; if (New->getParent()->isBeingDefined()) { // The destructor might be updated once the definition is finished. So // remember it and check later. DelayedExceptionSpecChecks.push_back(std::make_pair(New, Old)); return false; } } // If the old exception specification hasn't been parsed yet, remember that // we need to perform this check when we get to the end of the outermost // lexically-surrounding class. if (Old->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() == EST_Unparsed) { DelayedExceptionSpecChecks.push_back(std::make_pair(New, Old)); return false; } unsigned DiagID = diag::err_override_exception_spec; if (getLangOpts().MicrosoftExt) DiagID = diag::ext_override_exception_spec; return CheckExceptionSpecSubset(PDiag(DiagID), PDiag(diag::note_overridden_virtual_function), Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), New->getType()->getAs<FunctionProtoType>(), New->getLocation()); } static CanThrowResult canSubExprsThrow(Sema &S, const Expr *E) { CanThrowResult R = CT_Cannot; for (const Stmt *SubStmt : E->children()) { R = mergeCanThrow(R, S.canThrow(cast<Expr>(SubStmt))); if (R == CT_Can) break; } return R; } static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D) { assert(D && "Expected decl"); // See if we can get a function type from the decl somehow. const ValueDecl *VD = dyn_cast<ValueDecl>(D); if (!VD) // If we have no clue what we're calling, assume the worst. return CT_Can; // As an extension, we assume that __attribute__((nothrow)) functions don't // throw. if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) return CT_Cannot; QualType T = VD->getType(); const FunctionProtoType *FT; if ((FT = T->getAs<FunctionProtoType>())) { } else if (const PointerType *PT = T->getAs<PointerType>()) FT = PT->getPointeeType()->getAs<FunctionProtoType>(); else if (const ReferenceType *RT = T->getAs<ReferenceType>()) FT = RT->getPointeeType()->getAs<FunctionProtoType>(); else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) FT = MT->getPointeeType()->getAs<FunctionProtoType>(); else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) FT = BT->getPointeeType()->getAs<FunctionProtoType>(); if (!FT) return CT_Can; FT = S.ResolveExceptionSpec(E->getLocStart(), FT); if (!FT) return CT_Can; return FT->isNothrow(S.Context) ? CT_Cannot : CT_Can; } static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) { if (DC->isTypeDependent()) return CT_Dependent; if (!DC->getTypeAsWritten()->isReferenceType()) return CT_Cannot; if (DC->getSubExpr()->isTypeDependent()) return CT_Dependent; return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot; } static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) { if (DC->isTypeOperand()) return CT_Cannot; Expr *Op = DC->getExprOperand(); if (Op->isTypeDependent()) return CT_Dependent; const RecordType *RT = Op->getType()->getAs<RecordType>(); if (!RT) return CT_Cannot; if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) return CT_Cannot; if (Op->Classify(S.Context).isPRValue()) return CT_Cannot; return CT_Can; } CanThrowResult Sema::canThrow(const Expr *E) { // C++ [expr.unary.noexcept]p3: // [Can throw] if in a potentially-evaluated context the expression would // contain: switch (E->getStmtClass()) { case Expr::CXXThrowExprClass: // - a potentially evaluated throw-expression return CT_Can; case Expr::CXXDynamicCastExprClass: { // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), // where T is a reference type, that requires a run-time check CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E)); if (CT == CT_Can) return CT; return mergeCanThrow(CT, canSubExprsThrow(*this, E)); } case Expr::CXXTypeidExprClass: // - a potentially evaluated typeid expression applied to a glvalue // expression whose type is a polymorphic class type return canTypeidThrow(*this, cast<CXXTypeidExpr>(E)); // - a potentially evaluated call to a function, member function, function // pointer, or member function pointer that does not have a non-throwing // exception-specification case Expr::CallExprClass: case Expr::CXXMemberCallExprClass: case Expr::CXXOperatorCallExprClass: case Expr::UserDefinedLiteralClass: { const CallExpr *CE = cast<CallExpr>(E); CanThrowResult CT; if (E->isTypeDependent()) CT = CT_Dependent; else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) CT = CT_Cannot; else if (CE->getCalleeDecl()) CT = canCalleeThrow(*this, E, CE->getCalleeDecl()); else CT = CT_Can; if (CT == CT_Can) return CT; return mergeCanThrow(CT, canSubExprsThrow(*this, E)); } case Expr::CXXConstructExprClass: case Expr::CXXTemporaryObjectExprClass: { CanThrowResult CT = canCalleeThrow(*this, E, cast<CXXConstructExpr>(E)->getConstructor()); if (CT == CT_Can) return CT; return mergeCanThrow(CT, canSubExprsThrow(*this, E)); } case Expr::CXXInheritedCtorInitExprClass: return canCalleeThrow(*this, E, cast<CXXInheritedCtorInitExpr>(E)->getConstructor()); case Expr::LambdaExprClass: { const LambdaExpr *Lambda = cast<LambdaExpr>(E); CanThrowResult CT = CT_Cannot; for (LambdaExpr::const_capture_init_iterator Cap = Lambda->capture_init_begin(), CapEnd = Lambda->capture_init_end(); Cap != CapEnd; ++Cap) CT = mergeCanThrow(CT, canThrow(*Cap)); return CT; } case Expr::CXXNewExprClass: { CanThrowResult CT; if (E->isTypeDependent()) CT = CT_Dependent; else CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew()); if (CT == CT_Can) return CT; return mergeCanThrow(CT, canSubExprsThrow(*this, E)); } case Expr::CXXDeleteExprClass: { CanThrowResult CT; QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType(); if (DTy.isNull() || DTy->isDependentType()) { CT = CT_Dependent; } else { CT = canCalleeThrow(*this, E, cast<CXXDeleteExpr>(E)->getOperatorDelete()); if (const RecordType *RT = DTy->getAs<RecordType>()) { const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); const CXXDestructorDecl *DD = RD->getDestructor(); if (DD) CT = mergeCanThrow(CT, canCalleeThrow(*this, E, DD)); } if (CT == CT_Can) return CT; } return mergeCanThrow(CT, canSubExprsThrow(*this, E)); } case Expr::CXXBindTemporaryExprClass: { // The bound temporary has to be destroyed again, which might throw. CanThrowResult CT = canCalleeThrow(*this, E, cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor()); if (CT == CT_Can) return CT; return mergeCanThrow(CT, canSubExprsThrow(*this, E)); } // ObjC message sends are like function calls, but never have exception // specs. case Expr::ObjCMessageExprClass: case Expr::ObjCPropertyRefExprClass: case Expr::ObjCSubscriptRefExprClass: return CT_Can; // All the ObjC literals that are implemented as calls are // potentially throwing unless we decide to close off that // possibility. case Expr::ObjCArrayLiteralClass: case Expr::ObjCDictionaryLiteralClass: case Expr::ObjCBoxedExprClass: return CT_Can; // Many other things have subexpressions, so we have to test those. // Some are simple: case Expr::CoawaitExprClass: case Expr::ConditionalOperatorClass: case Expr::CompoundLiteralExprClass: case Expr::CoyieldExprClass: case Expr::CXXConstCastExprClass: case Expr::CXXReinterpretCastExprClass: case Expr::CXXStdInitializerListExprClass: case Expr::DesignatedInitExprClass: case Expr::DesignatedInitUpdateExprClass: case Expr::ExprWithCleanupsClass: case Expr::ExtVectorElementExprClass: case Expr::InitListExprClass: case Expr::MemberExprClass: case Expr::ObjCIsaExprClass: case Expr::ObjCIvarRefExprClass: case Expr::ParenExprClass: case Expr::ParenListExprClass: case Expr::ShuffleVectorExprClass: case Expr::ConvertVectorExprClass: case Expr::VAArgExprClass: return canSubExprsThrow(*this, E); // Some might be dependent for other reasons. case Expr::ArraySubscriptExprClass: case Expr::OMPArraySectionExprClass: case Expr::BinaryOperatorClass: case Expr::CompoundAssignOperatorClass: case Expr::CStyleCastExprClass: case Expr::CXXStaticCastExprClass: case Expr::CXXFunctionalCastExprClass: case Expr::ImplicitCastExprClass: case Expr::MaterializeTemporaryExprClass: case Expr::UnaryOperatorClass: { CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot; return mergeCanThrow(CT, canSubExprsThrow(*this, E)); } // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms. case Expr::StmtExprClass: return CT_Can; case Expr::CXXDefaultArgExprClass: return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr()); case Expr::CXXDefaultInitExprClass: return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr()); case Expr::ChooseExprClass: if (E->isTypeDependent() || E->isValueDependent()) return CT_Dependent; return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr()); case Expr::GenericSelectionExprClass: if (cast<GenericSelectionExpr>(E)->isResultDependent()) return CT_Dependent; return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr()); // Some expressions are always dependent. case Expr::CXXDependentScopeMemberExprClass: case Expr::CXXUnresolvedConstructExprClass: case Expr::DependentScopeDeclRefExprClass: case Expr::CXXFoldExprClass: return CT_Dependent; case Expr::AsTypeExprClass: case Expr::BinaryConditionalOperatorClass: case Expr::BlockExprClass: case Expr::CUDAKernelCallExprClass: case Expr::DeclRefExprClass: case Expr::ObjCBridgedCastExprClass: case Expr::ObjCIndirectCopyRestoreExprClass: case Expr::ObjCProtocolExprClass: case Expr::ObjCSelectorExprClass: case Expr::OffsetOfExprClass: case Expr::PackExpansionExprClass: case Expr::PseudoObjectExprClass: case Expr::SubstNonTypeTemplateParmExprClass: case Expr::SubstNonTypeTemplateParmPackExprClass: case Expr::FunctionParmPackExprClass: case Expr::UnaryExprOrTypeTraitExprClass: case Expr::UnresolvedLookupExprClass: case Expr::UnresolvedMemberExprClass: case Expr::TypoExprClass: // FIXME: Can any of the above throw? If so, when? return CT_Cannot; case Expr::AddrLabelExprClass: case Expr::ArrayTypeTraitExprClass: case Expr::AtomicExprClass: case Expr::TypeTraitExprClass: case Expr::CXXBoolLiteralExprClass: case Expr::CXXNoexceptExprClass: case Expr::CXXNullPtrLiteralExprClass: case Expr::CXXPseudoDestructorExprClass: case Expr::CXXScalarValueInitExprClass: case Expr::CXXThisExprClass: case Expr::CXXUuidofExprClass: case Expr::CharacterLiteralClass: case Expr::ExpressionTraitExprClass: case Expr::FloatingLiteralClass: case Expr::GNUNullExprClass: case Expr::ImaginaryLiteralClass: case Expr::ImplicitValueInitExprClass: case Expr::IntegerLiteralClass: case Expr::NoInitExprClass: case Expr::ObjCEncodeExprClass: case Expr::ObjCStringLiteralClass: case Expr::ObjCBoolLiteralExprClass: case Expr::OpaqueValueExprClass: case Expr::PredefinedExprClass: case Expr::SizeOfPackExprClass: case Expr::StringLiteralClass: // These expressions can never throw. return CT_Cannot; case Expr::MSPropertyRefExprClass: case Expr::MSPropertySubscriptExprClass: llvm_unreachable("Invalid class for expression"); #define STMT(CLASS, PARENT) case Expr::CLASS##Class: #define STMT_RANGE(Base, First, Last) #define LAST_STMT_RANGE(BASE, FIRST, LAST) #define EXPR(CLASS, PARENT) #define ABSTRACT_STMT(STMT) #include "clang/AST/StmtNodes.inc" case Expr::NoStmtClass: llvm_unreachable("Invalid class for expression"); } llvm_unreachable("Bogus StmtClass"); } } // end namespace clang