//===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file This file defines CallEvent and its subclasses, which represent path- /// sensitive instances of different kinds of function and method calls /// (C, C++, and Objective-C). // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/AST/ParentMap.h" #include "clang/Analysis/ProgramPoint.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; QualType CallEvent::getResultType() const { const Expr *E = getOriginExpr(); assert(E && "Calls without origin expressions do not have results"); QualType ResultTy = E->getType(); ASTContext &Ctx = getState()->getStateManager().getContext(); // A function that returns a reference to 'int' will have a result type // of simply 'int'. Check the origin expr's value kind to recover the // proper type. switch (E->getValueKind()) { case VK_LValue: ResultTy = Ctx.getLValueReferenceType(ResultTy); break; case VK_XValue: ResultTy = Ctx.getRValueReferenceType(ResultTy); break; case VK_RValue: // No adjustment is necessary. break; } return ResultTy; } static bool isCallback(QualType T) { // If a parameter is a block or a callback, assume it can modify pointer. if (T->isBlockPointerType() || T->isFunctionPointerType() || T->isObjCSelType()) return true; // Check if a callback is passed inside a struct (for both, struct passed by // reference and by value). Dig just one level into the struct for now. if (T->isAnyPointerType() || T->isReferenceType()) T = T->getPointeeType(); if (const RecordType *RT = T->getAsStructureType()) { const RecordDecl *RD = RT->getDecl(); for (const auto *I : RD->fields()) { QualType FieldT = I->getType(); if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType()) return true; } } return false; } static bool isVoidPointerToNonConst(QualType T) { if (const PointerType *PT = T->getAs<PointerType>()) { QualType PointeeTy = PT->getPointeeType(); if (PointeeTy.isConstQualified()) return false; return PointeeTy->isVoidType(); } else return false; } bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const { unsigned NumOfArgs = getNumArgs(); // If calling using a function pointer, assume the function does not // satisfy the callback. // TODO: We could check the types of the arguments here. if (!getDecl()) return false; unsigned Idx = 0; for (CallEvent::param_type_iterator I = param_type_begin(), E = param_type_end(); I != E && Idx < NumOfArgs; ++I, ++Idx) { if (NumOfArgs <= Idx) break; // If the parameter is 0, it's harmless. if (getArgSVal(Idx).isZeroConstant()) continue; if (Condition(*I)) return true; } return false; } bool CallEvent::hasNonZeroCallbackArg() const { return hasNonNullArgumentsWithType(isCallback); } bool CallEvent::hasVoidPointerToNonConstArg() const { return hasNonNullArgumentsWithType(isVoidPointerToNonConst); } bool CallEvent::isGlobalCFunction(StringRef FunctionName) const { const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); if (!FD) return false; return CheckerContext::isCLibraryFunction(FD, FunctionName); } /// \brief Returns true if a type is a pointer-to-const or reference-to-const /// with no further indirection. static bool isPointerToConst(QualType Ty) { QualType PointeeTy = Ty->getPointeeType(); if (PointeeTy == QualType()) return false; if (!PointeeTy.isConstQualified()) return false; if (PointeeTy->isAnyPointerType()) return false; return true; } // Try to retrieve the function declaration and find the function parameter // types which are pointers/references to a non-pointer const. // We will not invalidate the corresponding argument regions. static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs, const CallEvent &Call) { unsigned Idx = 0; for (CallEvent::param_type_iterator I = Call.param_type_begin(), E = Call.param_type_end(); I != E; ++I, ++Idx) { if (isPointerToConst(*I)) PreserveArgs.insert(Idx); } } ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount, ProgramStateRef Orig) const { ProgramStateRef Result = (Orig ? Orig : getState()); // Don't invalidate anything if the callee is marked pure/const. if (const Decl *callee = getDecl()) if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>()) return Result; SmallVector<SVal, 8> ValuesToInvalidate; RegionAndSymbolInvalidationTraits ETraits; getExtraInvalidatedValues(ValuesToInvalidate, &ETraits); // Indexes of arguments whose values will be preserved by the call. llvm::SmallSet<unsigned, 4> PreserveArgs; if (!argumentsMayEscape()) findPtrToConstParams(PreserveArgs, *this); for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) { // Mark this region for invalidation. We batch invalidate regions // below for efficiency. if (PreserveArgs.count(Idx)) if (const MemRegion *MR = getArgSVal(Idx).getAsRegion()) ETraits.setTrait(MR->getBaseRegion(), RegionAndSymbolInvalidationTraits::TK_PreserveContents); // TODO: Factor this out + handle the lower level const pointers. ValuesToInvalidate.push_back(getArgSVal(Idx)); } // Invalidate designated regions using the batch invalidation API. // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate // global variables. return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(), BlockCount, getLocationContext(), /*CausedByPointerEscape*/ true, /*Symbols=*/nullptr, this, &ETraits); } ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit, const ProgramPointTag *Tag) const { if (const Expr *E = getOriginExpr()) { if (IsPreVisit) return PreStmt(E, getLocationContext(), Tag); return PostStmt(E, getLocationContext(), Tag); } const Decl *D = getDecl(); assert(D && "Cannot get a program point without a statement or decl"); SourceLocation Loc = getSourceRange().getBegin(); if (IsPreVisit) return PreImplicitCall(D, Loc, getLocationContext(), Tag); return PostImplicitCall(D, Loc, getLocationContext(), Tag); } bool CallEvent::isCalled(const CallDescription &CD) const { assert(getKind() != CE_ObjCMessage && "Obj-C methods are not supported"); if (!CD.II) CD.II = &getState()->getStateManager().getContext().Idents.get(CD.FuncName); if (getCalleeIdentifier() != CD.II) return false; return (CD.RequiredArgs == CallDescription::NoArgRequirement || CD.RequiredArgs == getNumArgs()); } SVal CallEvent::getArgSVal(unsigned Index) const { const Expr *ArgE = getArgExpr(Index); if (!ArgE) return UnknownVal(); return getSVal(ArgE); } SourceRange CallEvent::getArgSourceRange(unsigned Index) const { const Expr *ArgE = getArgExpr(Index); if (!ArgE) return SourceRange(); return ArgE->getSourceRange(); } SVal CallEvent::getReturnValue() const { const Expr *E = getOriginExpr(); if (!E) return UndefinedVal(); return getSVal(E); } LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); } void CallEvent::dump(raw_ostream &Out) const { ASTContext &Ctx = getState()->getStateManager().getContext(); if (const Expr *E = getOriginExpr()) { E->printPretty(Out, nullptr, Ctx.getPrintingPolicy()); Out << "\n"; return; } if (const Decl *D = getDecl()) { Out << "Call to "; D->print(Out, Ctx.getPrintingPolicy()); return; } // FIXME: a string representation of the kind would be nice. Out << "Unknown call (type " << getKind() << ")"; } bool CallEvent::isCallStmt(const Stmt *S) { return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S) || isa<CXXConstructExpr>(S) || isa<CXXNewExpr>(S); } QualType CallEvent::getDeclaredResultType(const Decl *D) { assert(D); if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) return FD->getReturnType(); if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D)) return MD->getReturnType(); if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { // Blocks are difficult because the return type may not be stored in the // BlockDecl itself. The AST should probably be enhanced, but for now we // just do what we can. // If the block is declared without an explicit argument list, the // signature-as-written just includes the return type, not the entire // function type. // FIXME: All blocks should have signatures-as-written, even if the return // type is inferred. (That's signified with a dependent result type.) if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) { QualType Ty = TSI->getType(); if (const FunctionType *FT = Ty->getAs<FunctionType>()) Ty = FT->getReturnType(); if (!Ty->isDependentType()) return Ty; } return QualType(); } llvm_unreachable("unknown callable kind"); } bool CallEvent::isVariadic(const Decl *D) { assert(D); if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) return FD->isVariadic(); if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) return MD->isVariadic(); if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) return BD->isVariadic(); llvm_unreachable("unknown callable kind"); } static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx, CallEvent::BindingsTy &Bindings, SValBuilder &SVB, const CallEvent &Call, ArrayRef<ParmVarDecl*> parameters) { MemRegionManager &MRMgr = SVB.getRegionManager(); // If the function has fewer parameters than the call has arguments, we simply // do not bind any values to them. unsigned NumArgs = Call.getNumArgs(); unsigned Idx = 0; ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end(); for (; I != E && Idx < NumArgs; ++I, ++Idx) { const ParmVarDecl *ParamDecl = *I; assert(ParamDecl && "Formal parameter has no decl?"); SVal ArgVal = Call.getArgSVal(Idx); if (!ArgVal.isUnknown()) { Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx)); Bindings.push_back(std::make_pair(ParamLoc, ArgVal)); } } // FIXME: Variadic arguments are not handled at all right now. } ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const { const FunctionDecl *D = getDecl(); if (!D) return None; return D->parameters(); } void AnyFunctionCall::getInitialStackFrameContents( const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const { const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl()); SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, D->parameters()); } bool AnyFunctionCall::argumentsMayEscape() const { if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg()) return true; const FunctionDecl *D = getDecl(); if (!D) return true; const IdentifierInfo *II = D->getIdentifier(); if (!II) return false; // This set of "escaping" APIs is // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a // value into thread local storage. The value can later be retrieved with // 'void *ptheread_getspecific(pthread_key)'. So even thought the // parameter is 'const void *', the region escapes through the call. if (II->isStr("pthread_setspecific")) return true; // - xpc_connection_set_context stores a value which can be retrieved later // with xpc_connection_get_context. if (II->isStr("xpc_connection_set_context")) return true; // - funopen - sets a buffer for future IO calls. if (II->isStr("funopen")) return true; StringRef FName = II->getName(); // - CoreFoundation functions that end with "NoCopy" can free a passed-in // buffer even if it is const. if (FName.endswith("NoCopy")) return true; // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can // be deallocated by NSMapRemove. if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) return true; // - Many CF containers allow objects to escape through custom // allocators/deallocators upon container construction. (PR12101) if (FName.startswith("CF") || FName.startswith("CG")) { return StrInStrNoCase(FName, "InsertValue") != StringRef::npos || StrInStrNoCase(FName, "AddValue") != StringRef::npos || StrInStrNoCase(FName, "SetValue") != StringRef::npos || StrInStrNoCase(FName, "WithData") != StringRef::npos || StrInStrNoCase(FName, "AppendValue") != StringRef::npos || StrInStrNoCase(FName, "SetAttribute") != StringRef::npos; } return false; } const FunctionDecl *SimpleFunctionCall::getDecl() const { const FunctionDecl *D = getOriginExpr()->getDirectCallee(); if (D) return D; return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl(); } const FunctionDecl *CXXInstanceCall::getDecl() const { const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr()); if (!CE) return AnyFunctionCall::getDecl(); const FunctionDecl *D = CE->getDirectCallee(); if (D) return D; return getSVal(CE->getCallee()).getAsFunctionDecl(); } void CXXInstanceCall::getExtraInvalidatedValues( ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { SVal ThisVal = getCXXThisVal(); Values.push_back(ThisVal); // Don't invalidate if the method is const and there are no mutable fields. if (const CXXMethodDecl *D = cast_or_null<CXXMethodDecl>(getDecl())) { if (!D->isConst()) return; // Get the record decl for the class of 'This'. D->getParent() may return a // base class decl, rather than the class of the instance which needs to be // checked for mutable fields. const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts(); const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl(); if (!ParentRecord || ParentRecord->hasMutableFields()) return; // Preserve CXXThis. const MemRegion *ThisRegion = ThisVal.getAsRegion(); if (!ThisRegion) return; ETraits->setTrait(ThisRegion->getBaseRegion(), RegionAndSymbolInvalidationTraits::TK_PreserveContents); } } SVal CXXInstanceCall::getCXXThisVal() const { const Expr *Base = getCXXThisExpr(); // FIXME: This doesn't handle an overloaded ->* operator. if (!Base) return UnknownVal(); SVal ThisVal = getSVal(Base); assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()); return ThisVal; } RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const { // Do we have a decl at all? const Decl *D = getDecl(); if (!D) return RuntimeDefinition(); // If the method is non-virtual, we know we can inline it. const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); if (!MD->isVirtual()) return AnyFunctionCall::getRuntimeDefinition(); // Do we know the implicit 'this' object being called? const MemRegion *R = getCXXThisVal().getAsRegion(); if (!R) return RuntimeDefinition(); // Do we know anything about the type of 'this'? DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R); if (!DynType.isValid()) return RuntimeDefinition(); // Is the type a C++ class? (This is mostly a defensive check.) QualType RegionType = DynType.getType()->getPointeeType(); assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer."); const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl(); if (!RD || !RD->hasDefinition()) return RuntimeDefinition(); // Find the decl for this method in that class. const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true); if (!Result) { // We might not even get the original statically-resolved method due to // some particularly nasty casting (e.g. casts to sister classes). // However, we should at least be able to search up and down our own class // hierarchy, and some real bugs have been caught by checking this. assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method"); // FIXME: This is checking that our DynamicTypeInfo is at least as good as // the static type. However, because we currently don't update // DynamicTypeInfo when an object is cast, we can't actually be sure the // DynamicTypeInfo is up to date. This assert should be re-enabled once // this is fixed. <rdar://problem/12287087> //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo"); return RuntimeDefinition(); } // Does the decl that we found have an implementation? const FunctionDecl *Definition; if (!Result->hasBody(Definition)) return RuntimeDefinition(); // We found a definition. If we're not sure that this devirtualization is // actually what will happen at runtime, make sure to provide the region so // that ExprEngine can decide what to do with it. if (DynType.canBeASubClass()) return RuntimeDefinition(Definition, R->StripCasts()); return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr); } void CXXInstanceCall::getInitialStackFrameContents( const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const { AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); // Handle the binding of 'this' in the new stack frame. SVal ThisVal = getCXXThisVal(); if (!ThisVal.isUnknown()) { ProgramStateManager &StateMgr = getState()->getStateManager(); SValBuilder &SVB = StateMgr.getSValBuilder(); const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); // If we devirtualized to a different member function, we need to make sure // we have the proper layering of CXXBaseObjectRegions. if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) { ASTContext &Ctx = SVB.getContext(); const CXXRecordDecl *Class = MD->getParent(); QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class)); // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager. bool Failed; ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed); assert(!Failed && "Calling an incorrectly devirtualized method"); } if (!ThisVal.isUnknown()) Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); } } const Expr *CXXMemberCall::getCXXThisExpr() const { return getOriginExpr()->getImplicitObjectArgument(); } RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const { // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the // id-expression in the class member access expression is a qualified-id, // that function is called. Otherwise, its final overrider in the dynamic type // of the object expression is called. if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee())) if (ME->hasQualifier()) return AnyFunctionCall::getRuntimeDefinition(); return CXXInstanceCall::getRuntimeDefinition(); } const Expr *CXXMemberOperatorCall::getCXXThisExpr() const { return getOriginExpr()->getArg(0); } const BlockDataRegion *BlockCall::getBlockRegion() const { const Expr *Callee = getOriginExpr()->getCallee(); const MemRegion *DataReg = getSVal(Callee).getAsRegion(); return dyn_cast_or_null<BlockDataRegion>(DataReg); } ArrayRef<ParmVarDecl*> BlockCall::parameters() const { const BlockDecl *D = getDecl(); if (!D) return nullptr; return D->parameters(); } void BlockCall::getExtraInvalidatedValues(ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { // FIXME: This also needs to invalidate captured globals. if (const MemRegion *R = getBlockRegion()) Values.push_back(loc::MemRegionVal(R)); } void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const { SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); ArrayRef<ParmVarDecl*> Params; if (isConversionFromLambda()) { auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl()); Params = LambdaOperatorDecl->parameters(); // For blocks converted from a C++ lambda, the callee declaration is the // operator() method on the lambda so we bind "this" to // the lambda captured by the block. const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda(); SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion); Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx); Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); } else { Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters(); } addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, Params); } SVal CXXConstructorCall::getCXXThisVal() const { if (Data) return loc::MemRegionVal(static_cast<const MemRegion *>(Data)); return UnknownVal(); } void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { if (Data) Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data))); } void CXXConstructorCall::getInitialStackFrameContents( const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const { AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); SVal ThisVal = getCXXThisVal(); if (!ThisVal.isUnknown()) { SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); } } SVal CXXDestructorCall::getCXXThisVal() const { if (Data) return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer()); return UnknownVal(); } RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const { // Base destructors are always called non-virtually. // Skip CXXInstanceCall's devirtualization logic in this case. if (isBaseDestructor()) return AnyFunctionCall::getRuntimeDefinition(); return CXXInstanceCall::getRuntimeDefinition(); } ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const { const ObjCMethodDecl *D = getDecl(); if (!D) return None; return D->parameters(); } void ObjCMethodCall::getExtraInvalidatedValues( ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { // If the method call is a setter for property known to be backed by // an instance variable, don't invalidate the entire receiver, just // the storage for that instance variable. if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) { if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) { SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal()); const MemRegion *IvarRegion = IvarLVal.getAsRegion(); ETraits->setTrait( IvarRegion, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); ETraits->setTrait(IvarRegion, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); Values.push_back(IvarLVal); return; } } Values.push_back(getReceiverSVal()); } SVal ObjCMethodCall::getSelfSVal() const { const LocationContext *LCtx = getLocationContext(); const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl(); if (!SelfDecl) return SVal(); return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx)); } SVal ObjCMethodCall::getReceiverSVal() const { // FIXME: Is this the best way to handle class receivers? if (!isInstanceMessage()) return UnknownVal(); if (const Expr *RecE = getOriginExpr()->getInstanceReceiver()) return getSVal(RecE); // An instance message with no expression means we are sending to super. // In this case the object reference is the same as 'self'. assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance); SVal SelfVal = getSelfSVal(); assert(SelfVal.isValid() && "Calling super but not in ObjC method"); return SelfVal; } bool ObjCMethodCall::isReceiverSelfOrSuper() const { if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance || getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass) return true; if (!isInstanceMessage()) return false; SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver()); return (RecVal == getSelfSVal()); } SourceRange ObjCMethodCall::getSourceRange() const { switch (getMessageKind()) { case OCM_Message: return getOriginExpr()->getSourceRange(); case OCM_PropertyAccess: case OCM_Subscript: return getContainingPseudoObjectExpr()->getSourceRange(); } llvm_unreachable("unknown message kind"); } typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy; const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const { assert(Data && "Lazy lookup not yet performed."); assert(getMessageKind() != OCM_Message && "Explicit message send."); return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer(); } static const Expr * getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) { const Expr *Syntactic = POE->getSyntacticForm(); // This handles the funny case of assigning to the result of a getter. // This can happen if the getter returns a non-const reference. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic)) Syntactic = BO->getLHS(); return Syntactic; } ObjCMessageKind ObjCMethodCall::getMessageKind() const { if (!Data) { // Find the parent, ignoring implicit casts. ParentMap &PM = getLocationContext()->getParentMap(); const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr()); // Check if parent is a PseudoObjectExpr. if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) { const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); ObjCMessageKind K; switch (Syntactic->getStmtClass()) { case Stmt::ObjCPropertyRefExprClass: K = OCM_PropertyAccess; break; case Stmt::ObjCSubscriptRefExprClass: K = OCM_Subscript; break; default: // FIXME: Can this ever happen? K = OCM_Message; break; } if (K != OCM_Message) { const_cast<ObjCMethodCall *>(this)->Data = ObjCMessageDataTy(POE, K).getOpaqueValue(); assert(getMessageKind() == K); return K; } } const_cast<ObjCMethodCall *>(this)->Data = ObjCMessageDataTy(nullptr, 1).getOpaqueValue(); assert(getMessageKind() == OCM_Message); return OCM_Message; } ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data); if (!Info.getPointer()) return OCM_Message; return static_cast<ObjCMessageKind>(Info.getInt()); } const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const { // Look for properties accessed with property syntax (foo.bar = ...) if ( getMessageKind() == OCM_PropertyAccess) { const PseudoObjectExpr *POE = getContainingPseudoObjectExpr(); assert(POE && "Property access without PseudoObjectExpr?"); const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic); if (RefExpr->isExplicitProperty()) return RefExpr->getExplicitProperty(); } // Look for properties accessed with method syntax ([foo setBar:...]). const ObjCMethodDecl *MD = getDecl(); if (!MD || !MD->isPropertyAccessor()) return nullptr; // Note: This is potentially quite slow. return MD->findPropertyDecl(); } bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, Selector Sel) const { assert(IDecl); const SourceManager &SM = getState()->getStateManager().getContext().getSourceManager(); // If the class interface is declared inside the main file, assume it is not // subcassed. // TODO: It could actually be subclassed if the subclass is private as well. // This is probably very rare. SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc(); if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc)) return false; // Assume that property accessors are not overridden. if (getMessageKind() == OCM_PropertyAccess) return false; // We assume that if the method is public (declared outside of main file) or // has a parent which publicly declares the method, the method could be // overridden in a subclass. // Find the first declaration in the class hierarchy that declares // the selector. ObjCMethodDecl *D = nullptr; while (true) { D = IDecl->lookupMethod(Sel, true); // Cannot find a public definition. if (!D) return false; // If outside the main file, if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation())) return true; if (D->isOverriding()) { // Search in the superclass on the next iteration. IDecl = D->getClassInterface(); if (!IDecl) return false; IDecl = IDecl->getSuperClass(); if (!IDecl) return false; continue; } return false; }; llvm_unreachable("The while loop should always terminate."); } RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const { const ObjCMessageExpr *E = getOriginExpr(); assert(E); Selector Sel = E->getSelector(); if (E->isInstanceMessage()) { // Find the receiver type. const ObjCObjectPointerType *ReceiverT = nullptr; bool CanBeSubClassed = false; QualType SupersType = E->getSuperType(); const MemRegion *Receiver = nullptr; if (!SupersType.isNull()) { // Super always means the type of immediate predecessor to the method // where the call occurs. ReceiverT = cast<ObjCObjectPointerType>(SupersType); } else { Receiver = getReceiverSVal().getAsRegion(); if (!Receiver) return RuntimeDefinition(); DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver); QualType DynType = DTI.getType(); CanBeSubClassed = DTI.canBeASubClass(); ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType); if (ReceiverT && CanBeSubClassed) if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) if (!canBeOverridenInSubclass(IDecl, Sel)) CanBeSubClassed = false; } // Lookup the method implementation. if (ReceiverT) if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) { // Repeatedly calling lookupPrivateMethod() is expensive, especially // when in many cases it returns null. We cache the results so // that repeated queries on the same ObjCIntefaceDecl and Selector // don't incur the same cost. On some test cases, we can see the // same query being issued thousands of times. // // NOTE: This cache is essentially a "global" variable, but it // only gets lazily created when we get here. The value of the // cache probably comes from it being global across ExprEngines, // where the same queries may get issued. If we are worried about // concurrency, or possibly loading/unloading ASTs, etc., we may // need to revisit this someday. In terms of memory, this table // stays around until clang quits, which also may be bad if we // need to release memory. typedef std::pair<const ObjCInterfaceDecl*, Selector> PrivateMethodKey; typedef llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *> > PrivateMethodCache; static PrivateMethodCache PMC; Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)]; // Query lookupPrivateMethod() if the cache does not hit. if (!Val.hasValue()) { Val = IDecl->lookupPrivateMethod(Sel); // If the method is a property accessor, we should try to "inline" it // even if we don't actually have an implementation. if (!*Val) if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl()) if (CompileTimeMD->isPropertyAccessor()) { if (!CompileTimeMD->getSelfDecl() && isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) { // If the method is an accessor in a category, and it doesn't // have a self declaration, first // try to find the method in a class extension. This // works around a bug in Sema where multiple accessors // are synthesized for properties in class // extensions that are redeclared in a category and the // the implicit parameters are not filled in for // the method on the category. // This ensures we find the accessor in the extension, which // has the implicit parameters filled in. auto *ID = CompileTimeMD->getClassInterface(); for (auto *CatDecl : ID->visible_extensions()) { Val = CatDecl->getMethod(Sel, CompileTimeMD->isInstanceMethod()); if (*Val) break; } } if (!*Val) Val = IDecl->lookupInstanceMethod(Sel); } } const ObjCMethodDecl *MD = Val.getValue(); if (CanBeSubClassed) return RuntimeDefinition(MD, Receiver); else return RuntimeDefinition(MD, nullptr); } } else { // This is a class method. // If we have type info for the receiver class, we are calling via // class name. if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) { // Find/Return the method implementation. return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel)); } } return RuntimeDefinition(); } bool ObjCMethodCall::argumentsMayEscape() const { if (isInSystemHeader() && !isInstanceMessage()) { Selector Sel = getSelector(); if (Sel.getNumArgs() == 1 && Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer")) return true; } return CallEvent::argumentsMayEscape(); } void ObjCMethodCall::getInitialStackFrameContents( const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const { const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl()); SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, D->parameters()); SVal SelfVal = getReceiverSVal(); if (!SelfVal.isUnknown()) { const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl(); MemRegionManager &MRMgr = SVB.getRegionManager(); Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx)); Bindings.push_back(std::make_pair(SelfLoc, SelfVal)); } } CallEventRef<> CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State, const LocationContext *LCtx) { if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE)) return create<CXXMemberCall>(MCE, State, LCtx); if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) { const FunctionDecl *DirectCallee = OpCE->getDirectCallee(); if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) if (MD->isInstance()) return create<CXXMemberOperatorCall>(OpCE, State, LCtx); } else if (CE->getCallee()->getType()->isBlockPointerType()) { return create<BlockCall>(CE, State, LCtx); } // Otherwise, it's a normal function call, static member function call, or // something we can't reason about. return create<SimpleFunctionCall>(CE, State, LCtx); } CallEventRef<> CallEventManager::getCaller(const StackFrameContext *CalleeCtx, ProgramStateRef State) { const LocationContext *ParentCtx = CalleeCtx->getParent(); const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame(); assert(CallerCtx && "This should not be used for top-level stack frames"); const Stmt *CallSite = CalleeCtx->getCallSite(); if (CallSite) { if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite)) return getSimpleCall(CE, State, CallerCtx); switch (CallSite->getStmtClass()) { case Stmt::CXXConstructExprClass: case Stmt::CXXTemporaryObjectExprClass: { SValBuilder &SVB = State->getStateManager().getSValBuilder(); const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl()); Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx); SVal ThisVal = State->getSVal(ThisPtr); return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite), ThisVal.getAsRegion(), State, CallerCtx); } case Stmt::CXXNewExprClass: return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx); case Stmt::ObjCMessageExprClass: return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite), State, CallerCtx); default: llvm_unreachable("This is not an inlineable statement."); } } // Fall back to the CFG. The only thing we haven't handled yet is // destructors, though this could change in the future. const CFGBlock *B = CalleeCtx->getCallSiteBlock(); CFGElement E = (*B)[CalleeCtx->getIndex()]; assert(E.getAs<CFGImplicitDtor>() && "All other CFG elements should have exprs"); assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet"); SValBuilder &SVB = State->getStateManager().getSValBuilder(); const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl()); Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx); SVal ThisVal = State->getSVal(ThisPtr); const Stmt *Trigger; if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>()) Trigger = AutoDtor->getTriggerStmt(); else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>()) Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr()); else Trigger = Dtor->getBody(); return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(), E.getAs<CFGBaseDtor>().hasValue(), State, CallerCtx); }