//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the template classes ExplodedNode and ExplodedGraph, // which represent a path-sensitive, intra-procedural "exploded graph." // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "clang/AST/ParentMap.h" #include "clang/AST/Stmt.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include <vector> using namespace clang; using namespace ento; //===----------------------------------------------------------------------===// // Node auditing. //===----------------------------------------------------------------------===// // An out of line virtual method to provide a home for the class vtable. ExplodedNode::Auditor::~Auditor() {} #ifndef NDEBUG static ExplodedNode::Auditor* NodeAuditor = nullptr; #endif void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) { #ifndef NDEBUG NodeAuditor = A; #endif } //===----------------------------------------------------------------------===// // Cleanup. //===----------------------------------------------------------------------===// ExplodedGraph::ExplodedGraph() : NumNodes(0), ReclaimNodeInterval(0) {} ExplodedGraph::~ExplodedGraph() {} //===----------------------------------------------------------------------===// // Node reclamation. //===----------------------------------------------------------------------===// bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) { if (!Ex->isLValue()) return false; return isa<DeclRefExpr>(Ex) || isa<MemberExpr>(Ex) || isa<ObjCIvarRefExpr>(Ex); } bool ExplodedGraph::shouldCollect(const ExplodedNode *node) { // First, we only consider nodes for reclamation of the following // conditions apply: // // (1) 1 predecessor (that has one successor) // (2) 1 successor (that has one predecessor) // // If a node has no successor it is on the "frontier", while a node // with no predecessor is a root. // // After these prerequisites, we discard all "filler" nodes that // are used only for intermediate processing, and are not essential // for analyzer history: // // (a) PreStmtPurgeDeadSymbols // // We then discard all other nodes where *all* of the following conditions // apply: // // (3) The ProgramPoint is for a PostStmt, but not a PostStore. // (4) There is no 'tag' for the ProgramPoint. // (5) The 'store' is the same as the predecessor. // (6) The 'GDM' is the same as the predecessor. // (7) The LocationContext is the same as the predecessor. // (8) Expressions that are *not* lvalue expressions. // (9) The PostStmt isn't for a non-consumed Stmt or Expr. // (10) The successor is neither a CallExpr StmtPoint nor a CallEnter or // PreImplicitCall (so that we would be able to find it when retrying a // call with no inlining). // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well. // Conditions 1 and 2. if (node->pred_size() != 1 || node->succ_size() != 1) return false; const ExplodedNode *pred = *(node->pred_begin()); if (pred->succ_size() != 1) return false; const ExplodedNode *succ = *(node->succ_begin()); if (succ->pred_size() != 1) return false; // Now reclaim any nodes that are (by definition) not essential to // analysis history and are not consulted by any client code. ProgramPoint progPoint = node->getLocation(); if (progPoint.getAs<PreStmtPurgeDeadSymbols>()) return !progPoint.getTag(); // Condition 3. if (!progPoint.getAs<PostStmt>() || progPoint.getAs<PostStore>()) return false; // Condition 4. if (progPoint.getTag()) return false; // Conditions 5, 6, and 7. ProgramStateRef state = node->getState(); ProgramStateRef pred_state = pred->getState(); if (state->store != pred_state->store || state->GDM != pred_state->GDM || progPoint.getLocationContext() != pred->getLocationContext()) return false; // All further checks require expressions. As per #3, we know that we have // a PostStmt. const Expr *Ex = dyn_cast<Expr>(progPoint.castAs<PostStmt>().getStmt()); if (!Ex) return false; // Condition 8. // Do not collect nodes for "interesting" lvalue expressions since they are // used extensively for generating path diagnostics. if (isInterestingLValueExpr(Ex)) return false; // Condition 9. // Do not collect nodes for non-consumed Stmt or Expr to ensure precise // diagnostic generation; specifically, so that we could anchor arrows // pointing to the beginning of statements (as written in code). ParentMap &PM = progPoint.getLocationContext()->getParentMap(); if (!PM.isConsumedExpr(Ex)) return false; // Condition 10. const ProgramPoint SuccLoc = succ->getLocation(); if (Optional<StmtPoint> SP = SuccLoc.getAs<StmtPoint>()) if (CallEvent::isCallStmt(SP->getStmt())) return false; // Condition 10, continuation. if (SuccLoc.getAs<CallEnter>() || SuccLoc.getAs<PreImplicitCall>()) return false; return true; } void ExplodedGraph::collectNode(ExplodedNode *node) { // Removing a node means: // (a) changing the predecessors successor to the successor of this node // (b) changing the successors predecessor to the predecessor of this node // (c) Putting 'node' onto freeNodes. assert(node->pred_size() == 1 || node->succ_size() == 1); ExplodedNode *pred = *(node->pred_begin()); ExplodedNode *succ = *(node->succ_begin()); pred->replaceSuccessor(succ); succ->replacePredecessor(pred); FreeNodes.push_back(node); Nodes.RemoveNode(node); --NumNodes; node->~ExplodedNode(); } void ExplodedGraph::reclaimRecentlyAllocatedNodes() { if (ChangedNodes.empty()) return; // Only periodically reclaim nodes so that we can build up a set of // nodes that meet the reclamation criteria. Freshly created nodes // by definition have no successor, and thus cannot be reclaimed (see below). assert(ReclaimCounter > 0); if (--ReclaimCounter != 0) return; ReclaimCounter = ReclaimNodeInterval; for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end(); it != et; ++it) { ExplodedNode *node = *it; if (shouldCollect(node)) collectNode(node); } ChangedNodes.clear(); } //===----------------------------------------------------------------------===// // ExplodedNode. //===----------------------------------------------------------------------===// // An NodeGroup's storage type is actually very much like a TinyPtrVector: // it can be either a pointer to a single ExplodedNode, or a pointer to a // BumpVector allocated with the ExplodedGraph's allocator. This allows the // common case of single-node NodeGroups to be implemented with no extra memory. // // Consequently, each of the NodeGroup methods have up to four cases to handle: // 1. The flag is set and this group does not actually contain any nodes. // 2. The group is empty, in which case the storage value is null. // 3. The group contains a single node. // 4. The group contains more than one node. typedef BumpVector<ExplodedNode *> ExplodedNodeVector; typedef llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *> GroupStorage; void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) { assert (!V->isSink()); Preds.addNode(V, G); V->Succs.addNode(this, G); #ifndef NDEBUG if (NodeAuditor) NodeAuditor->AddEdge(V, this); #endif } void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) { assert(!getFlag()); GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P); assert(Storage.is<ExplodedNode *>()); Storage = node; assert(Storage.is<ExplodedNode *>()); } void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) { assert(!getFlag()); GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P); if (Storage.isNull()) { Storage = N; assert(Storage.is<ExplodedNode *>()); return; } ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>(); if (!V) { // Switch from single-node to multi-node representation. ExplodedNode *Old = Storage.get<ExplodedNode *>(); BumpVectorContext &Ctx = G.getNodeAllocator(); V = G.getAllocator().Allocate<ExplodedNodeVector>(); new (V) ExplodedNodeVector(Ctx, 4); V->push_back(Old, Ctx); Storage = V; assert(!getFlag()); assert(Storage.is<ExplodedNodeVector *>()); } V->push_back(N, G.getNodeAllocator()); } unsigned ExplodedNode::NodeGroup::size() const { if (getFlag()) return 0; const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); if (Storage.isNull()) return 0; if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) return V->size(); return 1; } ExplodedNode * const *ExplodedNode::NodeGroup::begin() const { if (getFlag()) return nullptr; const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); if (Storage.isNull()) return nullptr; if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) return V->begin(); return Storage.getAddrOfPtr1(); } ExplodedNode * const *ExplodedNode::NodeGroup::end() const { if (getFlag()) return nullptr; const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); if (Storage.isNull()) return nullptr; if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) return V->end(); return Storage.getAddrOfPtr1() + 1; } ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L, ProgramStateRef State, bool IsSink, bool* IsNew) { // Profile 'State' to determine if we already have an existing node. llvm::FoldingSetNodeID profile; void *InsertPos = nullptr; NodeTy::Profile(profile, L, State, IsSink); NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); if (!V) { if (!FreeNodes.empty()) { V = FreeNodes.back(); FreeNodes.pop_back(); } else { // Allocate a new node. V = (NodeTy*) getAllocator().Allocate<NodeTy>(); } new (V) NodeTy(L, State, IsSink); if (ReclaimNodeInterval) ChangedNodes.push_back(V); // Insert the node into the node set and return it. Nodes.InsertNode(V, InsertPos); ++NumNodes; if (IsNew) *IsNew = true; } else if (IsNew) *IsNew = false; return V; } ExplodedNode *ExplodedGraph::createUncachedNode(const ProgramPoint &L, ProgramStateRef State, bool IsSink) { NodeTy *V = (NodeTy *) getAllocator().Allocate<NodeTy>(); new (V) NodeTy(L, State, IsSink); return V; } std::unique_ptr<ExplodedGraph> ExplodedGraph::trim(ArrayRef<const NodeTy *> Sinks, InterExplodedGraphMap *ForwardMap, InterExplodedGraphMap *InverseMap) const { if (Nodes.empty()) return nullptr; typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty; Pass1Ty Pass1; typedef InterExplodedGraphMap Pass2Ty; InterExplodedGraphMap Pass2Scratch; Pass2Ty &Pass2 = ForwardMap ? *ForwardMap : Pass2Scratch; SmallVector<const ExplodedNode*, 10> WL1, WL2; // ===- Pass 1 (reverse DFS) -=== for (ArrayRef<const NodeTy *>::iterator I = Sinks.begin(), E = Sinks.end(); I != E; ++I) { if (*I) WL1.push_back(*I); } // Process the first worklist until it is empty. while (!WL1.empty()) { const ExplodedNode *N = WL1.pop_back_val(); // Have we already visited this node? If so, continue to the next one. if (!Pass1.insert(N).second) continue; // If this is a root enqueue it to the second worklist. if (N->Preds.empty()) { WL2.push_back(N); continue; } // Visit our predecessors and enqueue them. WL1.append(N->Preds.begin(), N->Preds.end()); } // We didn't hit a root? Return with a null pointer for the new graph. if (WL2.empty()) return nullptr; // Create an empty graph. std::unique_ptr<ExplodedGraph> G = MakeEmptyGraph(); // ===- Pass 2 (forward DFS to construct the new graph) -=== while (!WL2.empty()) { const ExplodedNode *N = WL2.pop_back_val(); // Skip this node if we have already processed it. if (Pass2.find(N) != Pass2.end()) continue; // Create the corresponding node in the new graph and record the mapping // from the old node to the new node. ExplodedNode *NewN = G->createUncachedNode(N->getLocation(), N->State, N->isSink()); Pass2[N] = NewN; // Also record the reverse mapping from the new node to the old node. if (InverseMap) (*InverseMap)[NewN] = N; // If this node is a root, designate it as such in the graph. if (N->Preds.empty()) G->addRoot(NewN); // In the case that some of the intended predecessors of NewN have already // been created, we should hook them up as predecessors. // Walk through the predecessors of 'N' and hook up their corresponding // nodes in the new graph (if any) to the freshly created node. for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end(); I != E; ++I) { Pass2Ty::iterator PI = Pass2.find(*I); if (PI == Pass2.end()) continue; NewN->addPredecessor(const_cast<ExplodedNode *>(PI->second), *G); } // In the case that some of the intended successors of NewN have already // been created, we should hook them up as successors. Otherwise, enqueue // the new nodes from the original graph that should have nodes created // in the new graph. for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end(); I != E; ++I) { Pass2Ty::iterator PI = Pass2.find(*I); if (PI != Pass2.end()) { const_cast<ExplodedNode *>(PI->second)->addPredecessor(NewN, *G); continue; } // Enqueue nodes to the worklist that were marked during pass 1. if (Pass1.count(*I)) WL2.push_back(*I); } } return G; }