//=-- ExprEngineObjC.cpp - ExprEngine support for Objective-C ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines ExprEngine's support for Objective-C expressions. // //===----------------------------------------------------------------------===// #include "clang/AST/StmtObjC.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" using namespace clang; using namespace ento; void ExprEngine::VisitLvalObjCIvarRefExpr(const ObjCIvarRefExpr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst) { ProgramStateRef state = Pred->getState(); const LocationContext *LCtx = Pred->getLocationContext(); SVal baseVal = state->getSVal(Ex->getBase(), LCtx); SVal location = state->getLValue(Ex->getDecl(), baseVal); ExplodedNodeSet dstIvar; StmtNodeBuilder Bldr(Pred, dstIvar, *currBldrCtx); Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, location)); // Perform the post-condition check of the ObjCIvarRefExpr and store // the created nodes in 'Dst'. getCheckerManager().runCheckersForPostStmt(Dst, dstIvar, Ex, *this); } void ExprEngine::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S, ExplodedNode *Pred, ExplodedNodeSet &Dst) { getCheckerManager().runCheckersForPreStmt(Dst, Pred, S, *this); } void ExprEngine::VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S, ExplodedNode *Pred, ExplodedNodeSet &Dst) { // ObjCForCollectionStmts are processed in two places. This method // handles the case where an ObjCForCollectionStmt* occurs as one of the // statements within a basic block. This transfer function does two things: // // (1) binds the next container value to 'element'. This creates a new // node in the ExplodedGraph. // // (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating // whether or not the container has any more elements. This value // will be tested in ProcessBranch. We need to explicitly bind // this value because a container can contain nil elements. // // FIXME: Eventually this logic should actually do dispatches to // 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration). // This will require simulating a temporary NSFastEnumerationState, either // through an SVal or through the use of MemRegions. This value can // be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop // terminates we reclaim the temporary (it goes out of scope) and we // we can test if the SVal is 0 or if the MemRegion is null (depending // on what approach we take). // // For now: simulate (1) by assigning either a symbol or nil if the // container is empty. Thus this transfer function will by default // result in state splitting. const Stmt *elem = S->getElement(); ProgramStateRef state = Pred->getState(); SVal elementV; if (const DeclStmt *DS = dyn_cast<DeclStmt>(elem)) { const VarDecl *elemD = cast<VarDecl>(DS->getSingleDecl()); assert(elemD->getInit() == nullptr); elementV = state->getLValue(elemD, Pred->getLocationContext()); } else { elementV = state->getSVal(elem, Pred->getLocationContext()); } ExplodedNodeSet dstLocation; evalLocation(dstLocation, S, elem, Pred, state, elementV, nullptr, false); ExplodedNodeSet Tmp; StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); for (ExplodedNodeSet::iterator NI = dstLocation.begin(), NE = dstLocation.end(); NI!=NE; ++NI) { Pred = *NI; ProgramStateRef state = Pred->getState(); const LocationContext *LCtx = Pred->getLocationContext(); // Handle the case where the container still has elements. SVal TrueV = svalBuilder.makeTruthVal(1); ProgramStateRef hasElems = state->BindExpr(S, LCtx, TrueV); // Handle the case where the container has no elements. SVal FalseV = svalBuilder.makeTruthVal(0); ProgramStateRef noElems = state->BindExpr(S, LCtx, FalseV); if (Optional<loc::MemRegionVal> MV = elementV.getAs<loc::MemRegionVal>()) if (const TypedValueRegion *R = dyn_cast<TypedValueRegion>(MV->getRegion())) { // FIXME: The proper thing to do is to really iterate over the // container. We will do this with dispatch logic to the store. // For now, just 'conjure' up a symbolic value. QualType T = R->getValueType(); assert(Loc::isLocType(T)); SymbolRef Sym = SymMgr.conjureSymbol(elem, LCtx, T, currBldrCtx->blockCount()); SVal V = svalBuilder.makeLoc(Sym); hasElems = hasElems->bindLoc(elementV, V); // Bind the location to 'nil' on the false branch. SVal nilV = svalBuilder.makeIntVal(0, T); noElems = noElems->bindLoc(elementV, nilV); } // Create the new nodes. Bldr.generateNode(S, Pred, hasElems); Bldr.generateNode(S, Pred, noElems); } // Finally, run any custom checkers. // FIXME: Eventually all pre- and post-checks should live in VisitStmt. getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this); } void ExprEngine::VisitObjCMessage(const ObjCMessageExpr *ME, ExplodedNode *Pred, ExplodedNodeSet &Dst) { CallEventManager &CEMgr = getStateManager().getCallEventManager(); CallEventRef<ObjCMethodCall> Msg = CEMgr.getObjCMethodCall(ME, Pred->getState(), Pred->getLocationContext()); // There are three cases for the receiver: // (1) it is definitely nil, // (2) it is definitely non-nil, and // (3) we don't know. // // If the receiver is definitely nil, we skip the pre/post callbacks and // instead call the ObjCMessageNil callbacks and return. // // If the receiver is definitely non-nil, we call the pre- callbacks, // evaluate the call, and call the post- callbacks. // // If we don't know, we drop the potential nil flow and instead // continue from the assumed non-nil state as in (2). This approach // intentionally drops coverage in order to prevent false alarms // in the following scenario: // // id result = [o someMethod] // if (result) { // if (!o) { // // <-- This program point should be unreachable because if o is nil // // it must the case that result is nil as well. // } // } // // We could avoid dropping coverage by performing an explicit case split // on each method call -- but this would get very expensive. An alternative // would be to introduce lazy constraints. // FIXME: This ignores many potential bugs (<rdar://problem/11733396>). // Revisit once we have lazier constraints. if (Msg->isInstanceMessage()) { SVal recVal = Msg->getReceiverSVal(); if (!recVal.isUndef()) { // Bifurcate the state into nil and non-nil ones. DefinedOrUnknownSVal receiverVal = recVal.castAs<DefinedOrUnknownSVal>(); ProgramStateRef State = Pred->getState(); ProgramStateRef notNilState, nilState; std::tie(notNilState, nilState) = State->assume(receiverVal); // Receiver is definitely nil, so run ObjCMessageNil callbacks and return. if (nilState && !notNilState) { StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); bool HasTag = Pred->getLocation().getTag(); Pred = Bldr.generateNode(ME, Pred, nilState, nullptr, ProgramPoint::PreStmtKind); assert((Pred || HasTag) && "Should have cached out already!"); (void)HasTag; if (!Pred) return; getCheckerManager().runCheckersForObjCMessageNil(Dst, Pred, *Msg, *this); return; } ExplodedNodeSet dstNonNil; StmtNodeBuilder Bldr(Pred, dstNonNil, *currBldrCtx); // Generate a transition to the non-nil state, dropping any potential // nil flow. if (notNilState != State) { bool HasTag = Pred->getLocation().getTag(); Pred = Bldr.generateNode(ME, Pred, notNilState); assert((Pred || HasTag) && "Should have cached out already!"); (void)HasTag; if (!Pred) return; } } } // Handle the previsits checks. ExplodedNodeSet dstPrevisit; getCheckerManager().runCheckersForPreObjCMessage(dstPrevisit, Pred, *Msg, *this); ExplodedNodeSet dstGenericPrevisit; getCheckerManager().runCheckersForPreCall(dstGenericPrevisit, dstPrevisit, *Msg, *this); // Proceed with evaluate the message expression. ExplodedNodeSet dstEval; StmtNodeBuilder Bldr(dstGenericPrevisit, dstEval, *currBldrCtx); for (ExplodedNodeSet::iterator DI = dstGenericPrevisit.begin(), DE = dstGenericPrevisit.end(); DI != DE; ++DI) { ExplodedNode *Pred = *DI; ProgramStateRef State = Pred->getState(); CallEventRef<ObjCMethodCall> UpdatedMsg = Msg.cloneWithState(State); if (UpdatedMsg->isInstanceMessage()) { SVal recVal = UpdatedMsg->getReceiverSVal(); if (!recVal.isUndef()) { if (ObjCNoRet.isImplicitNoReturn(ME)) { // If we raise an exception, for now treat it as a sink. // Eventually we will want to handle exceptions properly. Bldr.generateSink(ME, Pred, State); continue; } } } else { // Check for special class methods that are known to not return // and that we should treat as a sink. if (ObjCNoRet.isImplicitNoReturn(ME)) { // If we raise an exception, for now treat it as a sink. // Eventually we will want to handle exceptions properly. Bldr.generateSink(ME, Pred, Pred->getState()); continue; } } defaultEvalCall(Bldr, Pred, *UpdatedMsg); } ExplodedNodeSet dstPostvisit; getCheckerManager().runCheckersForPostCall(dstPostvisit, dstEval, *Msg, *this); // Finally, perform the post-condition check of the ObjCMessageExpr and store // the created nodes in 'Dst'. getCheckerManager().runCheckersForPostObjCMessage(Dst, dstPostvisit, *Msg, *this); }