//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a basic region store model. In this model, we do have field // sensitivity. But we assume nothing about the heap shape. So recursive data // structures are largely ignored. Basically we do 1-limiting analysis. // Parameter pointers are assumed with no aliasing. Pointee objects of // parameters are created lazily. // //===----------------------------------------------------------------------===// #include "clang/AST/Attr.h" #include "clang/AST/CharUnits.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Basic/TargetInfo.h" #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" #include "llvm/ADT/ImmutableList.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/Optional.h" #include "llvm/Support/raw_ostream.h" #include <utility> using namespace clang; using namespace ento; //===----------------------------------------------------------------------===// // Representation of binding keys. //===----------------------------------------------------------------------===// namespace { class BindingKey { public: enum Kind { Default = 0x0, Direct = 0x1 }; private: enum { Symbolic = 0x2 }; llvm::PointerIntPair<const MemRegion *, 2> P; uint64_t Data; /// Create a key for a binding to region \p r, which has a symbolic offset /// from region \p Base. explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k) : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) { assert(r && Base && "Must have known regions."); assert(getConcreteOffsetRegion() == Base && "Failed to store base region"); } /// Create a key for a binding at \p offset from base region \p r. explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) : P(r, k), Data(offset) { assert(r && "Must have known regions."); assert(getOffset() == offset && "Failed to store offset"); assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base"); } public: bool isDirect() const { return P.getInt() & Direct; } bool hasSymbolicOffset() const { return P.getInt() & Symbolic; } const MemRegion *getRegion() const { return P.getPointer(); } uint64_t getOffset() const { assert(!hasSymbolicOffset()); return Data; } const SubRegion *getConcreteOffsetRegion() const { assert(hasSymbolicOffset()); return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data)); } const MemRegion *getBaseRegion() const { if (hasSymbolicOffset()) return getConcreteOffsetRegion()->getBaseRegion(); return getRegion()->getBaseRegion(); } void Profile(llvm::FoldingSetNodeID& ID) const { ID.AddPointer(P.getOpaqueValue()); ID.AddInteger(Data); } static BindingKey Make(const MemRegion *R, Kind k); bool operator<(const BindingKey &X) const { if (P.getOpaqueValue() < X.P.getOpaqueValue()) return true; if (P.getOpaqueValue() > X.P.getOpaqueValue()) return false; return Data < X.Data; } bool operator==(const BindingKey &X) const { return P.getOpaqueValue() == X.P.getOpaqueValue() && Data == X.Data; } void dump() const; }; } // end anonymous namespace BindingKey BindingKey::Make(const MemRegion *R, Kind k) { const RegionOffset &RO = R->getAsOffset(); if (RO.hasSymbolicOffset()) return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k); return BindingKey(RO.getRegion(), RO.getOffset(), k); } namespace llvm { static inline raw_ostream &operator<<(raw_ostream &os, BindingKey K) { os << '(' << K.getRegion(); if (!K.hasSymbolicOffset()) os << ',' << K.getOffset(); os << ',' << (K.isDirect() ? "direct" : "default") << ')'; return os; } template <typename T> struct isPodLike; template <> struct isPodLike<BindingKey> { static const bool value = true; }; } // end llvm namespace LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; } //===----------------------------------------------------------------------===// // Actual Store type. //===----------------------------------------------------------------------===// typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings; typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef; typedef std::pair<BindingKey, SVal> BindingPair; typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings> RegionBindings; namespace { class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *, ClusterBindings> { ClusterBindings::Factory *CBFactory; public: typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings> ParentTy; RegionBindingsRef(ClusterBindings::Factory &CBFactory, const RegionBindings::TreeTy *T, RegionBindings::TreeTy::Factory *F) : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F), CBFactory(&CBFactory) {} RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory) : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P), CBFactory(&CBFactory) {} RegionBindingsRef add(key_type_ref K, data_type_ref D) const { return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D), *CBFactory); } RegionBindingsRef remove(key_type_ref K) const { return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K), *CBFactory); } RegionBindingsRef addBinding(BindingKey K, SVal V) const; RegionBindingsRef addBinding(const MemRegion *R, BindingKey::Kind k, SVal V) const; const SVal *lookup(BindingKey K) const; const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const; using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup; RegionBindingsRef removeBinding(BindingKey K); RegionBindingsRef removeBinding(const MemRegion *R, BindingKey::Kind k); RegionBindingsRef removeBinding(const MemRegion *R) { return removeBinding(R, BindingKey::Direct). removeBinding(R, BindingKey::Default); } Optional<SVal> getDirectBinding(const MemRegion *R) const; /// getDefaultBinding - Returns an SVal* representing an optional default /// binding associated with a region and its subregions. Optional<SVal> getDefaultBinding(const MemRegion *R) const; /// Return the internal tree as a Store. Store asStore() const { return asImmutableMap().getRootWithoutRetain(); } void dump(raw_ostream &OS, const char *nl) const { for (iterator I = begin(), E = end(); I != E; ++I) { const ClusterBindings &Cluster = I.getData(); for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); CI != CE; ++CI) { OS << ' ' << CI.getKey() << " : " << CI.getData() << nl; } OS << nl; } } LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); } }; } // end anonymous namespace typedef const RegionBindingsRef& RegionBindingsConstRef; Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const { return Optional<SVal>::create(lookup(R, BindingKey::Direct)); } Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const { if (R->isBoundable()) if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) if (TR->getValueType()->isUnionType()) return UnknownVal(); return Optional<SVal>::create(lookup(R, BindingKey::Default)); } RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const { const MemRegion *Base = K.getBaseRegion(); const ClusterBindings *ExistingCluster = lookup(Base); ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap()); ClusterBindings NewCluster = CBFactory->add(Cluster, K, V); return add(Base, NewCluster); } RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R, BindingKey::Kind k, SVal V) const { return addBinding(BindingKey::Make(R, k), V); } const SVal *RegionBindingsRef::lookup(BindingKey K) const { const ClusterBindings *Cluster = lookup(K.getBaseRegion()); if (!Cluster) return nullptr; return Cluster->lookup(K); } const SVal *RegionBindingsRef::lookup(const MemRegion *R, BindingKey::Kind k) const { return lookup(BindingKey::Make(R, k)); } RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) { const MemRegion *Base = K.getBaseRegion(); const ClusterBindings *Cluster = lookup(Base); if (!Cluster) return *this; ClusterBindings NewCluster = CBFactory->remove(*Cluster, K); if (NewCluster.isEmpty()) return remove(Base); return add(Base, NewCluster); } RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R, BindingKey::Kind k){ return removeBinding(BindingKey::Make(R, k)); } //===----------------------------------------------------------------------===// // Fine-grained control of RegionStoreManager. //===----------------------------------------------------------------------===// namespace { struct minimal_features_tag {}; struct maximal_features_tag {}; class RegionStoreFeatures { bool SupportsFields; public: RegionStoreFeatures(minimal_features_tag) : SupportsFields(false) {} RegionStoreFeatures(maximal_features_tag) : SupportsFields(true) {} void enableFields(bool t) { SupportsFields = t; } bool supportsFields() const { return SupportsFields; } }; } //===----------------------------------------------------------------------===// // Main RegionStore logic. //===----------------------------------------------------------------------===// namespace { class invalidateRegionsWorker; class RegionStoreManager : public StoreManager { public: const RegionStoreFeatures Features; RegionBindings::Factory RBFactory; mutable ClusterBindings::Factory CBFactory; typedef std::vector<SVal> SValListTy; private: typedef llvm::DenseMap<const LazyCompoundValData *, SValListTy> LazyBindingsMapTy; LazyBindingsMapTy LazyBindingsMap; /// The largest number of fields a struct can have and still be /// considered "small". /// /// This is currently used to decide whether or not it is worth "forcing" a /// LazyCompoundVal on bind. /// /// This is controlled by 'region-store-small-struct-limit' option. /// To disable all small-struct-dependent behavior, set the option to "0". unsigned SmallStructLimit; /// \brief A helper used to populate the work list with the given set of /// regions. void populateWorkList(invalidateRegionsWorker &W, ArrayRef<SVal> Values, InvalidatedRegions *TopLevelRegions); public: RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f) : StoreManager(mgr), Features(f), RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()), SmallStructLimit(0) { if (SubEngine *Eng = StateMgr.getOwningEngine()) { AnalyzerOptions &Options = Eng->getAnalysisManager().options; SmallStructLimit = Options.getOptionAsInteger("region-store-small-struct-limit", 2); } } /// setImplicitDefaultValue - Set the default binding for the provided /// MemRegion to the value implicitly defined for compound literals when /// the value is not specified. RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B, const MemRegion *R, QualType T); /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by ExprEngine when evaluating /// casts from arrays to pointers. SVal ArrayToPointer(Loc Array, QualType ElementTy) override; StoreRef getInitialStore(const LocationContext *InitLoc) override { return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this); } //===-------------------------------------------------------------------===// // Binding values to regions. //===-------------------------------------------------------------------===// RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K, const Expr *Ex, unsigned Count, const LocationContext *LCtx, RegionBindingsRef B, InvalidatedRegions *Invalidated); StoreRef invalidateRegions(Store store, ArrayRef<SVal> Values, const Expr *E, unsigned Count, const LocationContext *LCtx, const CallEvent *Call, InvalidatedSymbols &IS, RegionAndSymbolInvalidationTraits &ITraits, InvalidatedRegions *Invalidated, InvalidatedRegions *InvalidatedTopLevel) override; bool scanReachableSymbols(Store S, const MemRegion *R, ScanReachableSymbols &Callbacks) override; RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B, const SubRegion *R); public: // Part of public interface to class. StoreRef Bind(Store store, Loc LV, SVal V) override { return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this); } RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V); // BindDefault is only used to initialize a region with a default value. StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override { RegionBindingsRef B = getRegionBindings(store); assert(!B.lookup(R, BindingKey::Direct)); BindingKey Key = BindingKey::Make(R, BindingKey::Default); if (B.lookup(Key)) { const SubRegion *SR = cast<SubRegion>(R); assert(SR->getAsOffset().getOffset() == SR->getSuperRegion()->getAsOffset().getOffset() && "A default value must come from a super-region"); B = removeSubRegionBindings(B, SR); } else { B = B.addBinding(Key, V); } return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this); } /// Attempt to extract the fields of \p LCV and bind them to the struct region /// \p R. /// /// This path is used when it seems advantageous to "force" loading the values /// within a LazyCompoundVal to bind memberwise to the struct region, rather /// than using a Default binding at the base of the entire region. This is a /// heuristic attempting to avoid building long chains of LazyCompoundVals. /// /// \returns The updated store bindings, or \c None if binding non-lazily /// would be too expensive. Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B, const TypedValueRegion *R, const RecordDecl *RD, nonloc::LazyCompoundVal LCV); /// BindStruct - Bind a compound value to a structure. RegionBindingsRef bindStruct(RegionBindingsConstRef B, const TypedValueRegion* R, SVal V); /// BindVector - Bind a compound value to a vector. RegionBindingsRef bindVector(RegionBindingsConstRef B, const TypedValueRegion* R, SVal V); RegionBindingsRef bindArray(RegionBindingsConstRef B, const TypedValueRegion* R, SVal V); /// Clears out all bindings in the given region and assigns a new value /// as a Default binding. RegionBindingsRef bindAggregate(RegionBindingsConstRef B, const TypedRegion *R, SVal DefaultVal); /// \brief Create a new store with the specified binding removed. /// \param ST the original store, that is the basis for the new store. /// \param L the location whose binding should be removed. StoreRef killBinding(Store ST, Loc L) override; void incrementReferenceCount(Store store) override { getRegionBindings(store).manualRetain(); } /// If the StoreManager supports it, decrement the reference count of /// the specified Store object. If the reference count hits 0, the memory /// associated with the object is recycled. void decrementReferenceCount(Store store) override { getRegionBindings(store).manualRelease(); } bool includedInBindings(Store store, const MemRegion *region) const override; /// \brief Return the value bound to specified location in a given state. /// /// The high level logic for this method is this: /// getBinding (L) /// if L has binding /// return L's binding /// else if L is in killset /// return unknown /// else /// if L is on stack or heap /// return undefined /// else /// return symbolic SVal getBinding(Store S, Loc L, QualType T) override { return getBinding(getRegionBindings(S), L, T); } SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType()); SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R); SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R); SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R); SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R); SVal getBindingForLazySymbol(const TypedValueRegion *R); SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B, const TypedValueRegion *R, QualType Ty); SVal getLazyBinding(const SubRegion *LazyBindingRegion, RegionBindingsRef LazyBinding); /// Get bindings for the values in a struct and return a CompoundVal, used /// when doing struct copy: /// struct s x, y; /// x = y; /// y's value is retrieved by this method. SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R); SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R); NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R); /// Used to lazily generate derived symbols for bindings that are defined /// implicitly by default bindings in a super region. /// /// Note that callers may need to specially handle LazyCompoundVals, which /// are returned as is in case the caller needs to treat them differently. Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B, const MemRegion *superR, const TypedValueRegion *R, QualType Ty); /// Get the state and region whose binding this region \p R corresponds to. /// /// If there is no lazy binding for \p R, the returned value will have a null /// \c second. Note that a null pointer can represents a valid Store. std::pair<Store, const SubRegion *> findLazyBinding(RegionBindingsConstRef B, const SubRegion *R, const SubRegion *originalRegion); /// Returns the cached set of interesting SVals contained within a lazy /// binding. /// /// The precise value of "interesting" is determined for the purposes of /// RegionStore's internal analysis. It must always contain all regions and /// symbols, but may omit constants and other kinds of SVal. const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV); //===------------------------------------------------------------------===// // State pruning. //===------------------------------------------------------------------===// /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. /// It returns a new Store with these values removed. StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx, SymbolReaper& SymReaper) override; //===------------------------------------------------------------------===// // Region "extents". //===------------------------------------------------------------------===// // FIXME: This method will soon be eliminated; see the note in Store.h. DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state, const MemRegion* R, QualType EleTy) override; //===------------------------------------------------------------------===// // Utility methods. //===------------------------------------------------------------------===// RegionBindingsRef getRegionBindings(Store store) const { return RegionBindingsRef(CBFactory, static_cast<const RegionBindings::TreeTy*>(store), RBFactory.getTreeFactory()); } void print(Store store, raw_ostream &Out, const char* nl, const char *sep) override; void iterBindings(Store store, BindingsHandler& f) override { RegionBindingsRef B = getRegionBindings(store); for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) { const ClusterBindings &Cluster = I.getData(); for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); CI != CE; ++CI) { const BindingKey &K = CI.getKey(); if (!K.isDirect()) continue; if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) { // FIXME: Possibly incorporate the offset? if (!f.HandleBinding(*this, store, R, CI.getData())) return; } } } } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // RegionStore creation. //===----------------------------------------------------------------------===// std::unique_ptr<StoreManager> ento::CreateRegionStoreManager(ProgramStateManager &StMgr) { RegionStoreFeatures F = maximal_features_tag(); return llvm::make_unique<RegionStoreManager>(StMgr, F); } std::unique_ptr<StoreManager> ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) { RegionStoreFeatures F = minimal_features_tag(); F.enableFields(true); return llvm::make_unique<RegionStoreManager>(StMgr, F); } //===----------------------------------------------------------------------===// // Region Cluster analysis. //===----------------------------------------------------------------------===// namespace { /// Used to determine which global regions are automatically included in the /// initial worklist of a ClusterAnalysis. enum GlobalsFilterKind { /// Don't include any global regions. GFK_None, /// Only include system globals. GFK_SystemOnly, /// Include all global regions. GFK_All }; template <typename DERIVED> class ClusterAnalysis { protected: typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap; typedef const MemRegion * WorkListElement; typedef SmallVector<WorkListElement, 10> WorkList; llvm::SmallPtrSet<const ClusterBindings *, 16> Visited; WorkList WL; RegionStoreManager &RM; ASTContext &Ctx; SValBuilder &svalBuilder; RegionBindingsRef B; protected: const ClusterBindings *getCluster(const MemRegion *R) { return B.lookup(R); } /// Returns true if all clusters in the given memspace should be initially /// included in the cluster analysis. Subclasses may provide their /// own implementation. bool includeEntireMemorySpace(const MemRegion *Base) { return false; } public: ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr, RegionBindingsRef b) : RM(rm), Ctx(StateMgr.getContext()), svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {} RegionBindingsRef getRegionBindings() const { return B; } bool isVisited(const MemRegion *R) { return Visited.count(getCluster(R)); } void GenerateClusters() { // Scan the entire set of bindings and record the region clusters. for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ const MemRegion *Base = RI.getKey(); const ClusterBindings &Cluster = RI.getData(); assert(!Cluster.isEmpty() && "Empty clusters should be removed"); static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster); // If the base's memspace should be entirely invalidated, add the cluster // to the workspace up front. if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base)) AddToWorkList(WorkListElement(Base), &Cluster); } } bool AddToWorkList(WorkListElement E, const ClusterBindings *C) { if (C && !Visited.insert(C).second) return false; WL.push_back(E); return true; } bool AddToWorkList(const MemRegion *R) { return static_cast<DERIVED*>(this)->AddToWorkList(R); } void RunWorkList() { while (!WL.empty()) { WorkListElement E = WL.pop_back_val(); const MemRegion *BaseR = E; static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR)); } } void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {} void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {} void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C, bool Flag) { static_cast<DERIVED*>(this)->VisitCluster(BaseR, C); } }; } //===----------------------------------------------------------------------===// // Binding invalidation. //===----------------------------------------------------------------------===// bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R, ScanReachableSymbols &Callbacks) { assert(R == R->getBaseRegion() && "Should only be called for base regions"); RegionBindingsRef B = getRegionBindings(S); const ClusterBindings *Cluster = B.lookup(R); if (!Cluster) return true; for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end(); RI != RE; ++RI) { if (!Callbacks.scan(RI.getData())) return false; } return true; } static inline bool isUnionField(const FieldRegion *FR) { return FR->getDecl()->getParent()->isUnion(); } typedef SmallVector<const FieldDecl *, 8> FieldVector; static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) { assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); const MemRegion *Base = K.getConcreteOffsetRegion(); const MemRegion *R = K.getRegion(); while (R != Base) { if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) if (!isUnionField(FR)) Fields.push_back(FR->getDecl()); R = cast<SubRegion>(R)->getSuperRegion(); } } static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) { assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); if (Fields.empty()) return true; FieldVector FieldsInBindingKey; getSymbolicOffsetFields(K, FieldsInBindingKey); ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size(); if (Delta >= 0) return std::equal(FieldsInBindingKey.begin() + Delta, FieldsInBindingKey.end(), Fields.begin()); else return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(), Fields.begin() - Delta); } /// Collects all bindings in \p Cluster that may refer to bindings within /// \p Top. /// /// Each binding is a pair whose \c first is the key (a BindingKey) and whose /// \c second is the value (an SVal). /// /// The \p IncludeAllDefaultBindings parameter specifies whether to include /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is /// an aggregate within a larger aggregate with a default binding. static void collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, SValBuilder &SVB, const ClusterBindings &Cluster, const SubRegion *Top, BindingKey TopKey, bool IncludeAllDefaultBindings) { FieldVector FieldsInSymbolicSubregions; if (TopKey.hasSymbolicOffset()) { getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions); Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion()); TopKey = BindingKey::Make(Top, BindingKey::Default); } // Find the length (in bits) of the region being invalidated. uint64_t Length = UINT64_MAX; SVal Extent = Top->getExtent(SVB); if (Optional<nonloc::ConcreteInt> ExtentCI = Extent.getAs<nonloc::ConcreteInt>()) { const llvm::APSInt &ExtentInt = ExtentCI->getValue(); assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned()); // Extents are in bytes but region offsets are in bits. Be careful! Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth(); } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) { if (FR->getDecl()->isBitField()) Length = FR->getDecl()->getBitWidthValue(SVB.getContext()); } for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end(); I != E; ++I) { BindingKey NextKey = I.getKey(); if (NextKey.getRegion() == TopKey.getRegion()) { // FIXME: This doesn't catch the case where we're really invalidating a // region with a symbolic offset. Example: // R: points[i].y // Next: points[0].x if (NextKey.getOffset() > TopKey.getOffset() && NextKey.getOffset() - TopKey.getOffset() < Length) { // Case 1: The next binding is inside the region we're invalidating. // Include it. Bindings.push_back(*I); } else if (NextKey.getOffset() == TopKey.getOffset()) { // Case 2: The next binding is at the same offset as the region we're // invalidating. In this case, we need to leave default bindings alone, // since they may be providing a default value for a regions beyond what // we're invalidating. // FIXME: This is probably incorrect; consider invalidating an outer // struct whose first field is bound to a LazyCompoundVal. if (IncludeAllDefaultBindings || NextKey.isDirect()) Bindings.push_back(*I); } } else if (NextKey.hasSymbolicOffset()) { const MemRegion *Base = NextKey.getConcreteOffsetRegion(); if (Top->isSubRegionOf(Base)) { // Case 3: The next key is symbolic and we just changed something within // its concrete region. We don't know if the binding is still valid, so // we'll be conservative and include it. if (IncludeAllDefaultBindings || NextKey.isDirect()) if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) Bindings.push_back(*I); } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) { // Case 4: The next key is symbolic, but we changed a known // super-region. In this case the binding is certainly included. if (Top == Base || BaseSR->isSubRegionOf(Top)) if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) Bindings.push_back(*I); } } } } static void collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, SValBuilder &SVB, const ClusterBindings &Cluster, const SubRegion *Top, bool IncludeAllDefaultBindings) { collectSubRegionBindings(Bindings, SVB, Cluster, Top, BindingKey::Make(Top, BindingKey::Default), IncludeAllDefaultBindings); } RegionBindingsRef RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B, const SubRegion *Top) { BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default); const MemRegion *ClusterHead = TopKey.getBaseRegion(); if (Top == ClusterHead) { // We can remove an entire cluster's bindings all in one go. return B.remove(Top); } const ClusterBindings *Cluster = B.lookup(ClusterHead); if (!Cluster) { // If we're invalidating a region with a symbolic offset, we need to make // sure we don't treat the base region as uninitialized anymore. if (TopKey.hasSymbolicOffset()) { const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); return B.addBinding(Concrete, BindingKey::Default, UnknownVal()); } return B; } SmallVector<BindingPair, 32> Bindings; collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey, /*IncludeAllDefaultBindings=*/false); ClusterBindingsRef Result(*Cluster, CBFactory); for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(), E = Bindings.end(); I != E; ++I) Result = Result.remove(I->first); // If we're invalidating a region with a symbolic offset, we need to make sure // we don't treat the base region as uninitialized anymore. // FIXME: This isn't very precise; see the example in // collectSubRegionBindings. if (TopKey.hasSymbolicOffset()) { const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default), UnknownVal()); } if (Result.isEmpty()) return B.remove(ClusterHead); return B.add(ClusterHead, Result.asImmutableMap()); } namespace { class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker> { const Expr *Ex; unsigned Count; const LocationContext *LCtx; InvalidatedSymbols &IS; RegionAndSymbolInvalidationTraits &ITraits; StoreManager::InvalidatedRegions *Regions; GlobalsFilterKind GlobalsFilter; public: invalidateRegionsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr, RegionBindingsRef b, const Expr *ex, unsigned count, const LocationContext *lctx, InvalidatedSymbols &is, RegionAndSymbolInvalidationTraits &ITraitsIn, StoreManager::InvalidatedRegions *r, GlobalsFilterKind GFK) : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b), Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r), GlobalsFilter(GFK) {} void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); void VisitBinding(SVal V); using ClusterAnalysis::AddToWorkList; bool AddToWorkList(const MemRegion *R); /// Returns true if all clusters in the memory space for \p Base should be /// be invalidated. bool includeEntireMemorySpace(const MemRegion *Base); /// Returns true if the memory space of the given region is one of the global /// regions specially included at the start of invalidation. bool isInitiallyIncludedGlobalRegion(const MemRegion *R); }; } bool invalidateRegionsWorker::AddToWorkList(const MemRegion *R) { bool doNotInvalidateSuperRegion = ITraits.hasTrait( R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion(); return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); } void invalidateRegionsWorker::VisitBinding(SVal V) { // A symbol? Mark it touched by the invalidation. if (SymbolRef Sym = V.getAsSymbol()) IS.insert(Sym); if (const MemRegion *R = V.getAsRegion()) { AddToWorkList(R); return; } // Is it a LazyCompoundVal? All references get invalidated as well. if (Optional<nonloc::LazyCompoundVal> LCS = V.getAs<nonloc::LazyCompoundVal>()) { const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS); for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(), E = Vals.end(); I != E; ++I) VisitBinding(*I); return; } } void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR, const ClusterBindings *C) { bool PreserveRegionsContents = ITraits.hasTrait(baseR, RegionAndSymbolInvalidationTraits::TK_PreserveContents); if (C) { for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) VisitBinding(I.getData()); // Invalidate regions contents. if (!PreserveRegionsContents) B = B.remove(baseR); } // BlockDataRegion? If so, invalidate captured variables that are passed // by reference. if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) { for (BlockDataRegion::referenced_vars_iterator BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ; BI != BE; ++BI) { const VarRegion *VR = BI.getCapturedRegion(); const VarDecl *VD = VR->getDecl(); if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) { AddToWorkList(VR); } else if (Loc::isLocType(VR->getValueType())) { // Map the current bindings to a Store to retrieve the value // of the binding. If that binding itself is a region, we should // invalidate that region. This is because a block may capture // a pointer value, but the thing pointed by that pointer may // get invalidated. SVal V = RM.getBinding(B, loc::MemRegionVal(VR)); if (Optional<Loc> L = V.getAs<Loc>()) { if (const MemRegion *LR = L->getAsRegion()) AddToWorkList(LR); } } } return; } // Symbolic region? if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) IS.insert(SR->getSymbol()); // Nothing else should be done in the case when we preserve regions context. if (PreserveRegionsContents) return; // Otherwise, we have a normal data region. Record that we touched the region. if (Regions) Regions->push_back(baseR); if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) { // Invalidate the region by setting its default value to // conjured symbol. The type of the symbol is irrelevant. DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count); B = B.addBinding(baseR, BindingKey::Default, V); return; } if (!baseR->isBoundable()) return; const TypedValueRegion *TR = cast<TypedValueRegion>(baseR); QualType T = TR->getValueType(); if (isInitiallyIncludedGlobalRegion(baseR)) { // If the region is a global and we are invalidating all globals, // erasing the entry is good enough. This causes all globals to be lazily // symbolicated from the same base symbol. return; } if (T->isStructureOrClassType()) { // Invalidate the region by setting its default value to // conjured symbol. The type of the symbol is irrelevant. DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count); B = B.addBinding(baseR, BindingKey::Default, V); return; } if (const ArrayType *AT = Ctx.getAsArrayType(T)) { bool doNotInvalidateSuperRegion = ITraits.hasTrait( baseR, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); if (doNotInvalidateSuperRegion) { // We are not doing blank invalidation of the whole array region so we // have to manually invalidate each elements. Optional<uint64_t> NumElements; // Compute lower and upper offsets for region within array. if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) NumElements = CAT->getSize().getZExtValue(); if (!NumElements) // We are not dealing with a constant size array goto conjure_default; QualType ElementTy = AT->getElementType(); uint64_t ElemSize = Ctx.getTypeSize(ElementTy); const RegionOffset &RO = baseR->getAsOffset(); const MemRegion *SuperR = baseR->getBaseRegion(); if (RO.hasSymbolicOffset()) { // If base region has a symbolic offset, // we revert to invalidating the super region. if (SuperR) AddToWorkList(SuperR); goto conjure_default; } uint64_t LowerOffset = RO.getOffset(); uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize; bool UpperOverflow = UpperOffset < LowerOffset; // Invalidate regions which are within array boundaries, // or have a symbolic offset. if (!SuperR) goto conjure_default; const ClusterBindings *C = B.lookup(SuperR); if (!C) goto conjure_default; for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) { const BindingKey &BK = I.getKey(); Optional<uint64_t> ROffset = BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset(); // Check offset is not symbolic and within array's boundaries. // Handles arrays of 0 elements and of 0-sized elements as well. if (!ROffset || ((*ROffset >= LowerOffset && *ROffset < UpperOffset) || (UpperOverflow && (*ROffset >= LowerOffset || *ROffset < UpperOffset)) || (LowerOffset == UpperOffset && *ROffset == LowerOffset))) { B = B.removeBinding(I.getKey()); // Bound symbolic regions need to be invalidated for dead symbol // detection. SVal V = I.getData(); const MemRegion *R = V.getAsRegion(); if (R && isa<SymbolicRegion>(R)) VisitBinding(V); } } } conjure_default: // Set the default value of the array to conjured symbol. DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, AT->getElementType(), Count); B = B.addBinding(baseR, BindingKey::Default, V); return; } DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, T,Count); assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); B = B.addBinding(baseR, BindingKey::Direct, V); } bool invalidateRegionsWorker::isInitiallyIncludedGlobalRegion( const MemRegion *R) { switch (GlobalsFilter) { case GFK_None: return false; case GFK_SystemOnly: return isa<GlobalSystemSpaceRegion>(R->getMemorySpace()); case GFK_All: return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()); } llvm_unreachable("unknown globals filter"); } bool invalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) { if (isInitiallyIncludedGlobalRegion(Base)) return true; const MemSpaceRegion *MemSpace = Base->getMemorySpace(); return ITraits.hasTrait(MemSpace, RegionAndSymbolInvalidationTraits::TK_EntireMemSpace); } RegionBindingsRef RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K, const Expr *Ex, unsigned Count, const LocationContext *LCtx, RegionBindingsRef B, InvalidatedRegions *Invalidated) { // Bind the globals memory space to a new symbol that we will use to derive // the bindings for all globals. const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K); SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx, /* type does not matter */ Ctx.IntTy, Count); B = B.removeBinding(GS) .addBinding(BindingKey::Make(GS, BindingKey::Default), V); // Even if there are no bindings in the global scope, we still need to // record that we touched it. if (Invalidated) Invalidated->push_back(GS); return B; } void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W, ArrayRef<SVal> Values, InvalidatedRegions *TopLevelRegions) { for (ArrayRef<SVal>::iterator I = Values.begin(), E = Values.end(); I != E; ++I) { SVal V = *I; if (Optional<nonloc::LazyCompoundVal> LCS = V.getAs<nonloc::LazyCompoundVal>()) { const SValListTy &Vals = getInterestingValues(*LCS); for (SValListTy::const_iterator I = Vals.begin(), E = Vals.end(); I != E; ++I) { // Note: the last argument is false here because these are // non-top-level regions. if (const MemRegion *R = (*I).getAsRegion()) W.AddToWorkList(R); } continue; } if (const MemRegion *R = V.getAsRegion()) { if (TopLevelRegions) TopLevelRegions->push_back(R); W.AddToWorkList(R); continue; } } } StoreRef RegionStoreManager::invalidateRegions(Store store, ArrayRef<SVal> Values, const Expr *Ex, unsigned Count, const LocationContext *LCtx, const CallEvent *Call, InvalidatedSymbols &IS, RegionAndSymbolInvalidationTraits &ITraits, InvalidatedRegions *TopLevelRegions, InvalidatedRegions *Invalidated) { GlobalsFilterKind GlobalsFilter; if (Call) { if (Call->isInSystemHeader()) GlobalsFilter = GFK_SystemOnly; else GlobalsFilter = GFK_All; } else { GlobalsFilter = GFK_None; } RegionBindingsRef B = getRegionBindings(store); invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits, Invalidated, GlobalsFilter); // Scan the bindings and generate the clusters. W.GenerateClusters(); // Add the regions to the worklist. populateWorkList(W, Values, TopLevelRegions); W.RunWorkList(); // Return the new bindings. B = W.getRegionBindings(); // For calls, determine which global regions should be invalidated and // invalidate them. (Note that function-static and immutable globals are never // invalidated by this.) // TODO: This could possibly be more precise with modules. switch (GlobalsFilter) { case GFK_All: B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind, Ex, Count, LCtx, B, Invalidated); // FALLTHROUGH case GFK_SystemOnly: B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind, Ex, Count, LCtx, B, Invalidated); // FALLTHROUGH case GFK_None: break; } return StoreRef(B.asStore(), *this); } //===----------------------------------------------------------------------===// // Extents for regions. //===----------------------------------------------------------------------===// DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(ProgramStateRef state, const MemRegion *R, QualType EleTy) { SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder); const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size); if (!SizeInt) return UnknownVal(); CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue()); if (Ctx.getAsVariableArrayType(EleTy)) { // FIXME: We need to track extra state to properly record the size // of VLAs. Returning UnknownVal here, however, is a stop-gap so that // we don't have a divide-by-zero below. return UnknownVal(); } CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy); // If a variable is reinterpreted as a type that doesn't fit into a larger // type evenly, round it down. // This is a signed value, since it's used in arithmetic with signed indices. return svalBuilder.makeIntVal(RegionSize / EleSize, false); } //===----------------------------------------------------------------------===// // Location and region casting. //===----------------------------------------------------------------------===// /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by ExprEngine when evaluating casts /// from arrays to pointers. SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) { if (!Array.getAs<loc::MemRegionVal>()) return UnknownVal(); const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion(); NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx)); } //===----------------------------------------------------------------------===// // Loading values from regions. //===----------------------------------------------------------------------===// SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) { assert(!L.getAs<UnknownVal>() && "location unknown"); assert(!L.getAs<UndefinedVal>() && "location undefined"); // For access to concrete addresses, return UnknownVal. Checks // for null dereferences (and similar errors) are done by checkers, not // the Store. // FIXME: We can consider lazily symbolicating such memory, but we really // should defer this when we can reason easily about symbolicating arrays // of bytes. if (L.getAs<loc::ConcreteInt>()) { return UnknownVal(); } if (!L.getAs<loc::MemRegionVal>()) { return UnknownVal(); } const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion(); if (isa<BlockDataRegion>(MR)) { return UnknownVal(); } if (isa<AllocaRegion>(MR) || isa<SymbolicRegion>(MR) || isa<CodeTextRegion>(MR)) { if (T.isNull()) { if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR)) T = TR->getLocationType(); else { const SymbolicRegion *SR = cast<SymbolicRegion>(MR); T = SR->getSymbol()->getType(); } } MR = GetElementZeroRegion(MR, T); } // FIXME: Perhaps this method should just take a 'const MemRegion*' argument // instead of 'Loc', and have the other Loc cases handled at a higher level. const TypedValueRegion *R = cast<TypedValueRegion>(MR); QualType RTy = R->getValueType(); // FIXME: we do not yet model the parts of a complex type, so treat the // whole thing as "unknown". if (RTy->isAnyComplexType()) return UnknownVal(); // FIXME: We should eventually handle funny addressing. e.g.: // // int x = ...; // int *p = &x; // char *q = (char*) p; // char c = *q; // returns the first byte of 'x'. // // Such funny addressing will occur due to layering of regions. if (RTy->isStructureOrClassType()) return getBindingForStruct(B, R); // FIXME: Handle unions. if (RTy->isUnionType()) return createLazyBinding(B, R); if (RTy->isArrayType()) { if (RTy->isConstantArrayType()) return getBindingForArray(B, R); else return UnknownVal(); } // FIXME: handle Vector types. if (RTy->isVectorType()) return UnknownVal(); if (const FieldRegion* FR = dyn_cast<FieldRegion>(R)) return CastRetrievedVal(getBindingForField(B, FR), FR, T, false); if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the element type. Eventually we want to compose these values // more intelligently. For example, an 'element' can encompass multiple // bound regions (e.g., several bound bytes), or could be a subset of // a larger value. return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false); } if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the ivar type. What we should model is stores to ivars // that blow past the extent of the ivar. If the address of the ivar is // reinterpretted, it is possible we stored a different value that could // fit within the ivar. Either we need to cast these when storing them // or reinterpret them lazily (as we do here). return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false); } if (const VarRegion *VR = dyn_cast<VarRegion>(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the variable type. What we should model is stores to variables // that blow past the extent of the variable. If the address of the // variable is reinterpretted, it is possible we stored a different value // that could fit within the variable. Either we need to cast these when // storing them or reinterpret them lazily (as we do here). return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false); } const SVal *V = B.lookup(R, BindingKey::Direct); // Check if the region has a binding. if (V) return *V; // The location does not have a bound value. This means that it has // the value it had upon its creation and/or entry to the analyzed // function/method. These are either symbolic values or 'undefined'. if (R->hasStackNonParametersStorage()) { // All stack variables are considered to have undefined values // upon creation. All heap allocated blocks are considered to // have undefined values as well unless they are explicitly bound // to specific values. return UndefinedVal(); } // All other values are symbolic. return svalBuilder.getRegionValueSymbolVal(R); } static QualType getUnderlyingType(const SubRegion *R) { QualType RegionTy; if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R)) RegionTy = TVR->getValueType(); if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) RegionTy = SR->getSymbol()->getType(); return RegionTy; } /// Checks to see if store \p B has a lazy binding for region \p R. /// /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected /// if there are additional bindings within \p R. /// /// Note that unlike RegionStoreManager::findLazyBinding, this will not search /// for lazy bindings for super-regions of \p R. static Optional<nonloc::LazyCompoundVal> getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B, const SubRegion *R, bool AllowSubregionBindings) { Optional<SVal> V = B.getDefaultBinding(R); if (!V) return None; Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>(); if (!LCV) return None; // If the LCV is for a subregion, the types might not match, and we shouldn't // reuse the binding. QualType RegionTy = getUnderlyingType(R); if (!RegionTy.isNull() && !RegionTy->isVoidPointerType()) { QualType SourceRegionTy = LCV->getRegion()->getValueType(); if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy)) return None; } if (!AllowSubregionBindings) { // If there are any other bindings within this region, we shouldn't reuse // the top-level binding. SmallVector<BindingPair, 16> Bindings; collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R, /*IncludeAllDefaultBindings=*/true); if (Bindings.size() > 1) return None; } return *LCV; } std::pair<Store, const SubRegion *> RegionStoreManager::findLazyBinding(RegionBindingsConstRef B, const SubRegion *R, const SubRegion *originalRegion) { if (originalRegion != R) { if (Optional<nonloc::LazyCompoundVal> V = getExistingLazyBinding(svalBuilder, B, R, true)) return std::make_pair(V->getStore(), V->getRegion()); } typedef std::pair<Store, const SubRegion *> StoreRegionPair; StoreRegionPair Result = StoreRegionPair(); if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()), originalRegion); if (Result.second) Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second); } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) { Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()), originalRegion); if (Result.second) Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second); } else if (const CXXBaseObjectRegion *BaseReg = dyn_cast<CXXBaseObjectRegion>(R)) { // C++ base object region is another kind of region that we should blast // through to look for lazy compound value. It is like a field region. Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()), originalRegion); if (Result.second) Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg, Result.second); } return Result; } SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B, const ElementRegion* R) { // We do not currently model bindings of the CompoundLiteralregion. if (isa<CompoundLiteralRegion>(R->getBaseRegion())) return UnknownVal(); // Check if the region has a binding. if (const Optional<SVal> &V = B.getDirectBinding(R)) return *V; const MemRegion* superR = R->getSuperRegion(); // Check if the region is an element region of a string literal. if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) { // FIXME: Handle loads from strings where the literal is treated as // an integer, e.g., *((unsigned int*)"hello") QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType(); if (!Ctx.hasSameUnqualifiedType(T, R->getElementType())) return UnknownVal(); const StringLiteral *Str = StrR->getStringLiteral(); SVal Idx = R->getIndex(); if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) { int64_t i = CI->getValue().getSExtValue(); // Abort on string underrun. This can be possible by arbitrary // clients of getBindingForElement(). if (i < 0) return UndefinedVal(); int64_t length = Str->getLength(); // Technically, only i == length is guaranteed to be null. // However, such overflows should be caught before reaching this point; // the only time such an access would be made is if a string literal was // used to initialize a larger array. char c = (i >= length) ? '\0' : Str->getCodeUnit(i); return svalBuilder.makeIntVal(c, T); } } // Check for loads from a code text region. For such loads, just give up. if (isa<CodeTextRegion>(superR)) return UnknownVal(); // Handle the case where we are indexing into a larger scalar object. // For example, this handles: // int x = ... // char *y = &x; // return *y; // FIXME: This is a hack, and doesn't do anything really intelligent yet. const RegionRawOffset &O = R->getAsArrayOffset(); // If we cannot reason about the offset, return an unknown value. if (!O.getRegion()) return UnknownVal(); if (const TypedValueRegion *baseR = dyn_cast_or_null<TypedValueRegion>(O.getRegion())) { QualType baseT = baseR->getValueType(); if (baseT->isScalarType()) { QualType elemT = R->getElementType(); if (elemT->isScalarType()) { if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) { if (const Optional<SVal> &V = B.getDirectBinding(superR)) { if (SymbolRef parentSym = V->getAsSymbol()) return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); if (V->isUnknownOrUndef()) return *V; // Other cases: give up. We are indexing into a larger object // that has some value, but we don't know how to handle that yet. return UnknownVal(); } } } } } return getBindingForFieldOrElementCommon(B, R, R->getElementType()); } SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B, const FieldRegion* R) { // Check if the region has a binding. if (const Optional<SVal> &V = B.getDirectBinding(R)) return *V; QualType Ty = R->getValueType(); return getBindingForFieldOrElementCommon(B, R, Ty); } Optional<SVal> RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B, const MemRegion *superR, const TypedValueRegion *R, QualType Ty) { if (const Optional<SVal> &D = B.getDefaultBinding(superR)) { const SVal &val = D.getValue(); if (SymbolRef parentSym = val.getAsSymbol()) return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); if (val.isZeroConstant()) return svalBuilder.makeZeroVal(Ty); if (val.isUnknownOrUndef()) return val; // Lazy bindings are usually handled through getExistingLazyBinding(). // We should unify these two code paths at some point. if (val.getAs<nonloc::LazyCompoundVal>()) return val; llvm_unreachable("Unknown default value"); } return None; } SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion, RegionBindingsRef LazyBinding) { SVal Result; if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion)) Result = getBindingForElement(LazyBinding, ER); else Result = getBindingForField(LazyBinding, cast<FieldRegion>(LazyBindingRegion)); // FIXME: This is a hack to deal with RegionStore's inability to distinguish a // default value for /part/ of an aggregate from a default value for the // /entire/ aggregate. The most common case of this is when struct Outer // has as its first member a struct Inner, which is copied in from a stack // variable. In this case, even if the Outer's default value is symbolic, 0, // or unknown, it gets overridden by the Inner's default value of undefined. // // This is a general problem -- if the Inner is zero-initialized, the Outer // will now look zero-initialized. The proper way to solve this is with a // new version of RegionStore that tracks the extent of a binding as well // as the offset. // // This hack only takes care of the undefined case because that can very // quickly result in a warning. if (Result.isUndef()) Result = UnknownVal(); return Result; } SVal RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B, const TypedValueRegion *R, QualType Ty) { // At this point we have already checked in either getBindingForElement or // getBindingForField if 'R' has a direct binding. // Lazy binding? Store lazyBindingStore = nullptr; const SubRegion *lazyBindingRegion = nullptr; std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R); if (lazyBindingRegion) return getLazyBinding(lazyBindingRegion, getRegionBindings(lazyBindingStore)); // Record whether or not we see a symbolic index. That can completely // be out of scope of our lookup. bool hasSymbolicIndex = false; // FIXME: This is a hack to deal with RegionStore's inability to distinguish a // default value for /part/ of an aggregate from a default value for the // /entire/ aggregate. The most common case of this is when struct Outer // has as its first member a struct Inner, which is copied in from a stack // variable. In this case, even if the Outer's default value is symbolic, 0, // or unknown, it gets overridden by the Inner's default value of undefined. // // This is a general problem -- if the Inner is zero-initialized, the Outer // will now look zero-initialized. The proper way to solve this is with a // new version of RegionStore that tracks the extent of a binding as well // as the offset. // // This hack only takes care of the undefined case because that can very // quickly result in a warning. bool hasPartialLazyBinding = false; const SubRegion *SR = dyn_cast<SubRegion>(R); while (SR) { const MemRegion *Base = SR->getSuperRegion(); if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) { if (D->getAs<nonloc::LazyCompoundVal>()) { hasPartialLazyBinding = true; break; } return *D; } if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) { NonLoc index = ER->getIndex(); if (!index.isConstant()) hasSymbolicIndex = true; } // If our super region is a field or element itself, walk up the region // hierarchy to see if there is a default value installed in an ancestor. SR = dyn_cast<SubRegion>(Base); } if (R->hasStackNonParametersStorage()) { if (isa<ElementRegion>(R)) { // Currently we don't reason specially about Clang-style vectors. Check // if superR is a vector and if so return Unknown. if (const TypedValueRegion *typedSuperR = dyn_cast<TypedValueRegion>(R->getSuperRegion())) { if (typedSuperR->getValueType()->isVectorType()) return UnknownVal(); } } // FIXME: We also need to take ElementRegions with symbolic indexes into // account. This case handles both directly accessing an ElementRegion // with a symbolic offset, but also fields within an element with // a symbolic offset. if (hasSymbolicIndex) return UnknownVal(); if (!hasPartialLazyBinding) return UndefinedVal(); } // All other values are symbolic. return svalBuilder.getRegionValueSymbolVal(R); } SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion* R) { // Check if the region has a binding. if (const Optional<SVal> &V = B.getDirectBinding(R)) return *V; const MemRegion *superR = R->getSuperRegion(); // Check if the super region has a default binding. if (const Optional<SVal> &V = B.getDefaultBinding(superR)) { if (SymbolRef parentSym = V->getAsSymbol()) return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); // Other cases: give up. return UnknownVal(); } return getBindingForLazySymbol(R); } SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B, const VarRegion *R) { // Check if the region has a binding. if (const Optional<SVal> &V = B.getDirectBinding(R)) return *V; // Lazily derive a value for the VarRegion. const VarDecl *VD = R->getDecl(); const MemSpaceRegion *MS = R->getMemorySpace(); // Arguments are always symbolic. if (isa<StackArgumentsSpaceRegion>(MS)) return svalBuilder.getRegionValueSymbolVal(R); // Is 'VD' declared constant? If so, retrieve the constant value. if (VD->getType().isConstQualified()) if (const Expr *Init = VD->getInit()) if (Optional<SVal> V = svalBuilder.getConstantVal(Init)) return *V; // This must come after the check for constants because closure-captured // constant variables may appear in UnknownSpaceRegion. if (isa<UnknownSpaceRegion>(MS)) return svalBuilder.getRegionValueSymbolVal(R); if (isa<GlobalsSpaceRegion>(MS)) { QualType T = VD->getType(); // Function-scoped static variables are default-initialized to 0; if they // have an initializer, it would have been processed by now. if (isa<StaticGlobalSpaceRegion>(MS)) return svalBuilder.makeZeroVal(T); if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) { assert(!V->getAs<nonloc::LazyCompoundVal>()); return V.getValue(); } return svalBuilder.getRegionValueSymbolVal(R); } return UndefinedVal(); } SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) { // All other values are symbolic. return svalBuilder.getRegionValueSymbolVal(R); } const RegionStoreManager::SValListTy & RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) { // First, check the cache. LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData()); if (I != LazyBindingsMap.end()) return I->second; // If we don't have a list of values cached, start constructing it. SValListTy List; const SubRegion *LazyR = LCV.getRegion(); RegionBindingsRef B = getRegionBindings(LCV.getStore()); // If this region had /no/ bindings at the time, there are no interesting // values to return. const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion()); if (!Cluster) return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); SmallVector<BindingPair, 32> Bindings; collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR, /*IncludeAllDefaultBindings=*/true); for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(), E = Bindings.end(); I != E; ++I) { SVal V = I->second; if (V.isUnknownOrUndef() || V.isConstant()) continue; if (Optional<nonloc::LazyCompoundVal> InnerLCV = V.getAs<nonloc::LazyCompoundVal>()) { const SValListTy &InnerList = getInterestingValues(*InnerLCV); List.insert(List.end(), InnerList.begin(), InnerList.end()); continue; } List.push_back(V); } return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); } NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R) { if (Optional<nonloc::LazyCompoundVal> V = getExistingLazyBinding(svalBuilder, B, R, false)) return *V; return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R); } static bool isRecordEmpty(const RecordDecl *RD) { if (!RD->field_empty()) return false; if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) return CRD->getNumBases() == 0; return true; } SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R) { const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl(); if (!RD->getDefinition() || isRecordEmpty(RD)) return UnknownVal(); return createLazyBinding(B, R); } SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R) { assert(Ctx.getAsConstantArrayType(R->getValueType()) && "Only constant array types can have compound bindings."); return createLazyBinding(B, R); } bool RegionStoreManager::includedInBindings(Store store, const MemRegion *region) const { RegionBindingsRef B = getRegionBindings(store); region = region->getBaseRegion(); // Quick path: if the base is the head of a cluster, the region is live. if (B.lookup(region)) return true; // Slow path: if the region is the VALUE of any binding, it is live. for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) { const ClusterBindings &Cluster = RI.getData(); for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); CI != CE; ++CI) { const SVal &D = CI.getData(); if (const MemRegion *R = D.getAsRegion()) if (R->getBaseRegion() == region) return true; } } return false; } //===----------------------------------------------------------------------===// // Binding values to regions. //===----------------------------------------------------------------------===// StoreRef RegionStoreManager::killBinding(Store ST, Loc L) { if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>()) if (const MemRegion* R = LV->getRegion()) return StoreRef(getRegionBindings(ST).removeBinding(R) .asImmutableMap() .getRootWithoutRetain(), *this); return StoreRef(ST, *this); } RegionBindingsRef RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) { if (L.getAs<loc::ConcreteInt>()) return B; // If we get here, the location should be a region. const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion(); // Check if the region is a struct region. if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) { QualType Ty = TR->getValueType(); if (Ty->isArrayType()) return bindArray(B, TR, V); if (Ty->isStructureOrClassType()) return bindStruct(B, TR, V); if (Ty->isVectorType()) return bindVector(B, TR, V); if (Ty->isUnionType()) return bindAggregate(B, TR, V); } if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) { // Binding directly to a symbolic region should be treated as binding // to element 0. QualType T = SR->getSymbol()->getType(); if (T->isAnyPointerType() || T->isReferenceType()) T = T->getPointeeType(); R = GetElementZeroRegion(SR, T); } // Clear out bindings that may overlap with this binding. RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R)); return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V); } RegionBindingsRef RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B, const MemRegion *R, QualType T) { SVal V; if (Loc::isLocType(T)) V = svalBuilder.makeNull(); else if (T->isIntegralOrEnumerationType()) V = svalBuilder.makeZeroVal(T); else if (T->isStructureOrClassType() || T->isArrayType()) { // Set the default value to a zero constant when it is a structure // or array. The type doesn't really matter. V = svalBuilder.makeZeroVal(Ctx.IntTy); } else { // We can't represent values of this type, but we still need to set a value // to record that the region has been initialized. // If this assertion ever fires, a new case should be added above -- we // should know how to default-initialize any value we can symbolicate. assert(!SymbolManager::canSymbolicate(T) && "This type is representable"); V = UnknownVal(); } return B.addBinding(R, BindingKey::Default, V); } RegionBindingsRef RegionStoreManager::bindArray(RegionBindingsConstRef B, const TypedValueRegion* R, SVal Init) { const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType())); QualType ElementTy = AT->getElementType(); Optional<uint64_t> Size; if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT)) Size = CAT->getSize().getZExtValue(); // Check if the init expr is a string literal. if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) { const StringRegion *S = cast<StringRegion>(MRV->getRegion()); // Treat the string as a lazy compound value. StoreRef store(B.asStore(), *this); nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S) .castAs<nonloc::LazyCompoundVal>(); return bindAggregate(B, R, LCV); } // Handle lazy compound values. if (Init.getAs<nonloc::LazyCompoundVal>()) return bindAggregate(B, R, Init); // Remaining case: explicit compound values. if (Init.isUnknown()) return setImplicitDefaultValue(B, R, ElementTy); const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>(); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); uint64_t i = 0; RegionBindingsRef NewB(B); for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) { // The init list might be shorter than the array length. if (VI == VE) break; const NonLoc &Idx = svalBuilder.makeArrayIndex(i); const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx); if (ElementTy->isStructureOrClassType()) NewB = bindStruct(NewB, ER, *VI); else if (ElementTy->isArrayType()) NewB = bindArray(NewB, ER, *VI); else NewB = bind(NewB, loc::MemRegionVal(ER), *VI); } // If the init list is shorter than the array length, set the // array default value. if (Size.hasValue() && i < Size.getValue()) NewB = setImplicitDefaultValue(NewB, R, ElementTy); return NewB; } RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B, const TypedValueRegion* R, SVal V) { QualType T = R->getValueType(); assert(T->isVectorType()); const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs. // Handle lazy compound values and symbolic values. if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>()) return bindAggregate(B, R, V); // We may get non-CompoundVal accidentally due to imprecise cast logic or // that we are binding symbolic struct value. Kill the field values, and if // the value is symbolic go and bind it as a "default" binding. if (!V.getAs<nonloc::CompoundVal>()) { return bindAggregate(B, R, UnknownVal()); } QualType ElemType = VT->getElementType(); nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>(); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); unsigned index = 0, numElements = VT->getNumElements(); RegionBindingsRef NewB(B); for ( ; index != numElements ; ++index) { if (VI == VE) break; NonLoc Idx = svalBuilder.makeArrayIndex(index); const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx); if (ElemType->isArrayType()) NewB = bindArray(NewB, ER, *VI); else if (ElemType->isStructureOrClassType()) NewB = bindStruct(NewB, ER, *VI); else NewB = bind(NewB, loc::MemRegionVal(ER), *VI); } return NewB; } Optional<RegionBindingsRef> RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B, const TypedValueRegion *R, const RecordDecl *RD, nonloc::LazyCompoundVal LCV) { FieldVector Fields; if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD)) if (Class->getNumBases() != 0 || Class->getNumVBases() != 0) return None; for (const auto *FD : RD->fields()) { if (FD->isUnnamedBitfield()) continue; // If there are too many fields, or if any of the fields are aggregates, // just use the LCV as a default binding. if (Fields.size() == SmallStructLimit) return None; QualType Ty = FD->getType(); if (!(Ty->isScalarType() || Ty->isReferenceType())) return None; Fields.push_back(FD); } RegionBindingsRef NewB = B; for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){ const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion()); SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR); const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R); NewB = bind(NewB, loc::MemRegionVal(DestFR), V); } return NewB; } RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B, const TypedValueRegion* R, SVal V) { if (!Features.supportsFields()) return B; QualType T = R->getValueType(); assert(T->isStructureOrClassType()); const RecordType* RT = T->getAs<RecordType>(); const RecordDecl *RD = RT->getDecl(); if (!RD->isCompleteDefinition()) return B; // Handle lazy compound values and symbolic values. if (Optional<nonloc::LazyCompoundVal> LCV = V.getAs<nonloc::LazyCompoundVal>()) { if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV)) return *NewB; return bindAggregate(B, R, V); } if (V.getAs<nonloc::SymbolVal>()) return bindAggregate(B, R, V); // We may get non-CompoundVal accidentally due to imprecise cast logic or // that we are binding symbolic struct value. Kill the field values, and if // the value is symbolic go and bind it as a "default" binding. if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>()) return bindAggregate(B, R, UnknownVal()); const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>(); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); RecordDecl::field_iterator FI, FE; RegionBindingsRef NewB(B); for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) { if (VI == VE) break; // Skip any unnamed bitfields to stay in sync with the initializers. if (FI->isUnnamedBitfield()) continue; QualType FTy = FI->getType(); const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); if (FTy->isArrayType()) NewB = bindArray(NewB, FR, *VI); else if (FTy->isStructureOrClassType()) NewB = bindStruct(NewB, FR, *VI); else NewB = bind(NewB, loc::MemRegionVal(FR), *VI); ++VI; } // There may be fewer values in the initialize list than the fields of struct. if (FI != FE) { NewB = NewB.addBinding(R, BindingKey::Default, svalBuilder.makeIntVal(0, false)); } return NewB; } RegionBindingsRef RegionStoreManager::bindAggregate(RegionBindingsConstRef B, const TypedRegion *R, SVal Val) { // Remove the old bindings, using 'R' as the root of all regions // we will invalidate. Then add the new binding. return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val); } //===----------------------------------------------------------------------===// // State pruning. //===----------------------------------------------------------------------===// namespace { class removeDeadBindingsWorker : public ClusterAnalysis<removeDeadBindingsWorker> { SmallVector<const SymbolicRegion*, 12> Postponed; SymbolReaper &SymReaper; const StackFrameContext *CurrentLCtx; public: removeDeadBindingsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr, RegionBindingsRef b, SymbolReaper &symReaper, const StackFrameContext *LCtx) : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b), SymReaper(symReaper), CurrentLCtx(LCtx) {} // Called by ClusterAnalysis. void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C); void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster; using ClusterAnalysis::AddToWorkList; bool AddToWorkList(const MemRegion *R); bool UpdatePostponed(); void VisitBinding(SVal V); }; } bool removeDeadBindingsWorker::AddToWorkList(const MemRegion *R) { const MemRegion *BaseR = R->getBaseRegion(); return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); } void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) { if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) { if (SymReaper.isLive(VR)) AddToWorkList(baseR, &C); return; } if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) { if (SymReaper.isLive(SR->getSymbol())) AddToWorkList(SR, &C); else Postponed.push_back(SR); return; } if (isa<NonStaticGlobalSpaceRegion>(baseR)) { AddToWorkList(baseR, &C); return; } // CXXThisRegion in the current or parent location context is live. if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) { const StackArgumentsSpaceRegion *StackReg = cast<StackArgumentsSpaceRegion>(TR->getSuperRegion()); const StackFrameContext *RegCtx = StackReg->getStackFrame(); if (CurrentLCtx && (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))) AddToWorkList(TR, &C); } } void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR, const ClusterBindings *C) { if (!C) return; // Mark the symbol for any SymbolicRegion with live bindings as live itself. // This means we should continue to track that symbol. if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR)) SymReaper.markLive(SymR->getSymbol()); for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) { // Element index of a binding key is live. SymReaper.markElementIndicesLive(I.getKey().getRegion()); VisitBinding(I.getData()); } } void removeDeadBindingsWorker::VisitBinding(SVal V) { // Is it a LazyCompoundVal? All referenced regions are live as well. if (Optional<nonloc::LazyCompoundVal> LCS = V.getAs<nonloc::LazyCompoundVal>()) { const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS); for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(), E = Vals.end(); I != E; ++I) VisitBinding(*I); return; } // If V is a region, then add it to the worklist. if (const MemRegion *R = V.getAsRegion()) { AddToWorkList(R); SymReaper.markLive(R); // All regions captured by a block are also live. if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) { BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(), E = BR->referenced_vars_end(); for ( ; I != E; ++I) AddToWorkList(I.getCapturedRegion()); } } // Update the set of live symbols. for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI) SymReaper.markLive(*SI); } bool removeDeadBindingsWorker::UpdatePostponed() { // See if any postponed SymbolicRegions are actually live now, after // having done a scan. bool changed = false; for (SmallVectorImpl<const SymbolicRegion*>::iterator I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) { if (const SymbolicRegion *SR = *I) { if (SymReaper.isLive(SR->getSymbol())) { changed |= AddToWorkList(SR); *I = nullptr; } } } return changed; } StoreRef RegionStoreManager::removeDeadBindings(Store store, const StackFrameContext *LCtx, SymbolReaper& SymReaper) { RegionBindingsRef B = getRegionBindings(store); removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx); W.GenerateClusters(); // Enqueue the region roots onto the worklist. for (SymbolReaper::region_iterator I = SymReaper.region_begin(), E = SymReaper.region_end(); I != E; ++I) { W.AddToWorkList(*I); } do W.RunWorkList(); while (W.UpdatePostponed()); // We have now scanned the store, marking reachable regions and symbols // as live. We now remove all the regions that are dead from the store // as well as update DSymbols with the set symbols that are now dead. for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) { const MemRegion *Base = I.getKey(); // If the cluster has been visited, we know the region has been marked. if (W.isVisited(Base)) continue; // Remove the dead entry. B = B.remove(Base); if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base)) SymReaper.maybeDead(SymR->getSymbol()); // Mark all non-live symbols that this binding references as dead. const ClusterBindings &Cluster = I.getData(); for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); CI != CE; ++CI) { SVal X = CI.getData(); SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); for (; SI != SE; ++SI) SymReaper.maybeDead(*SI); } } return StoreRef(B.asStore(), *this); } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// void RegionStoreManager::print(Store store, raw_ostream &OS, const char* nl, const char *sep) { RegionBindingsRef B = getRegionBindings(store); OS << "Store (direct and default bindings), " << B.asStore() << " :" << nl; B.dump(OS, nl); }