// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s // This must obviously come before the definition of std::initializer_list. void missing_initializerlist() { auto l = {1, 2, 3, 4}; // expected-error {{std::initializer_list was not found}} } namespace std { typedef decltype(sizeof(int)) size_t; // libc++'s implementation template <class _E> class initializer_list { const _E* __begin_; size_t __size_; initializer_list(const _E* __b, size_t __s) : __begin_(__b), __size_(__s) {} public: typedef _E value_type; typedef const _E& reference; typedef const _E& const_reference; typedef size_t size_type; typedef const _E* iterator; typedef const _E* const_iterator; initializer_list() : __begin_(nullptr), __size_(0) {} size_t size() const {return __size_;} const _E* begin() const {return __begin_;} const _E* end() const {return __begin_ + __size_;} }; } template <typename T, typename U> struct same_type { static const bool value = false; }; template <typename T> struct same_type<T, T> { static const bool value = true; }; struct one { char c[1]; }; struct two { char c[2]; }; struct A { int a, b; }; struct B { B(); B(int, int); }; void simple_list() { std::initializer_list<int> il = { 1, 2, 3 }; std::initializer_list<double> dl = { 1.0, 2.0, 3 }; std::initializer_list<A> al = { {1, 2}, {2, 3}, {3, 4} }; std::initializer_list<B> bl = { {1, 2}, {2, 3}, {} }; } void function_call() { void f(std::initializer_list<int>); f({1, 2, 3}); void g(std::initializer_list<B>); g({ {1, 2}, {2, 3}, {} }); } struct C { C(int); }; struct D { D(); operator int(); operator C(); }; void overloaded_call() { one overloaded(std::initializer_list<int>); two overloaded(std::initializer_list<B>); static_assert(sizeof(overloaded({1, 2, 3})) == sizeof(one), "bad overload"); static_assert(sizeof(overloaded({ {1, 2}, {2, 3}, {} })) == sizeof(two), "bad overload"); void ambiguous(std::initializer_list<A>); // expected-note {{candidate}} void ambiguous(std::initializer_list<B>); // expected-note {{candidate}} ambiguous({ {1, 2}, {2, 3}, {3, 4} }); // expected-error {{ambiguous}} one ov2(std::initializer_list<int>); // expected-note {{candidate}} two ov2(std::initializer_list<C>); // expected-note {{candidate}} // Worst sequence to int is identity, whereas to C it's user-defined. static_assert(sizeof(ov2({1, 2, 3})) == sizeof(one), "bad overload"); // But here, user-defined is worst in both cases. ov2({1, 2, D()}); // expected-error {{ambiguous}} } template <typename T> T deduce(std::initializer_list<T>); // expected-note {{conflicting types for parameter 'T' ('int' vs. 'double')}} template <typename T> T deduce_ref(const std::initializer_list<T>&); // expected-note {{conflicting types for parameter 'T' ('int' vs. 'double')}} void argument_deduction() { static_assert(same_type<decltype(deduce({1, 2, 3})), int>::value, "bad deduction"); static_assert(same_type<decltype(deduce({1.0, 2.0, 3.0})), double>::value, "bad deduction"); deduce({1, 2.0}); // expected-error {{no matching function}} static_assert(same_type<decltype(deduce_ref({1, 2, 3})), int>::value, "bad deduction"); static_assert(same_type<decltype(deduce_ref({1.0, 2.0, 3.0})), double>::value, "bad deduction"); deduce_ref({1, 2.0}); // expected-error {{no matching function}} } void auto_deduction() { auto l = {1, 2, 3, 4}; auto l2 {1, 2, 3, 4}; // expected-error {{initializer for variable 'l2' with type 'auto' contains multiple expressions}} auto l3 {1}; static_assert(same_type<decltype(l), std::initializer_list<int>>::value, ""); static_assert(same_type<decltype(l3), int>::value, ""); auto bl = {1, 2.0}; // expected-error {{cannot deduce}} for (int i : {1, 2, 3, 4}) {} } void dangle() { new auto{1, 2, 3}; // expected-error {{cannot use list-initialization}} new std::initializer_list<int>{1, 2, 3}; // expected-warning {{at the end of the full-expression}} } struct haslist1 { std::initializer_list<int> il = {1, 2, 3}; // expected-warning{{at the end of the constructor}} std::initializer_list<int> jl{1, 2, 3}; // expected-warning{{at the end of the constructor}} haslist1(); }; haslist1::haslist1() : il{1, 2, 3} // expected-warning{{at the end of the constructor}} {} namespace PR12119 { // Deduction with nested initializer lists. template<typename T> void f(std::initializer_list<T>); template<typename T> void g(std::initializer_list<std::initializer_list<T>>); void foo() { f({0, {1}}); // expected-warning{{braces around scalar initializer}} g({{0, 1}, {2, 3}}); std::initializer_list<int> il = {1, 2}; g({il, {2, 3}}); } } namespace Decay { template<typename T> void f(std::initializer_list<T>) { T x = 1; // expected-error{{cannot initialize a variable of type 'const char *' with an rvalue of type 'int'}} } void g() { f({"A", "BB", "CCC"}); // expected-note{{in instantiation of function template specialization 'Decay::f<const char *>' requested here}} auto x = { "A", "BB", "CCC" }; std::initializer_list<const char *> *il = &x; for( auto s : {"A", "BB", "CCC", "DDD"}) { } } } namespace PR12436 { struct X { template<typename T> X(std::initializer_list<int>, T); }; X x({}, 17); } namespace rdar11948732 { template<typename T> struct X {}; struct XCtorInit { XCtorInit(std::initializer_list<X<int>>); }; void f(X<int> &xi) { XCtorInit xc = { xi, xi }; } } namespace PR14272 { auto x { { 0, 0 } }; // expected-error {{cannot deduce type for variable 'x' with type 'auto' from nested initializer list}} } namespace initlist_of_array { void f(std::initializer_list<int[2]>) {} void f(std::initializer_list<int[2][2]>) = delete; void h() { f({{1,2},{3,4}}); } } namespace init_list_deduction_failure { void f(); void f(int); template<typename T> void g(std::initializer_list<T>); // expected-note@-1 {{candidate template ignored: couldn't resolve reference to overloaded function 'f'}} void h() { g({f}); } // expected-error@-1 {{no matching function for call to 'g'}} } namespace deleted_copy { struct X { X(int i) {} X(const X& x) = delete; // expected-note {{here}} void operator=(const X& x) = delete; }; std::initializer_list<X> x{1}; // expected-error {{invokes deleted constructor}} } namespace RefVersusInitList { struct S {}; void f(const S &) = delete; void f(std::initializer_list<S>); void g(S s) { f({S()}); } } namespace PR18013 { int f(); std::initializer_list<long (*)()> x = {f}; // expected-error {{cannot initialize an array element of type 'long (*const)()' with an lvalue of type 'int ()': different return type ('long' vs 'int')}} } namespace DR1070 { struct S { S(std::initializer_list<int>); }; S s[3] = { {1, 2, 3}, {4, 5} }; // ok S *p = new S[3] { {1, 2, 3}, {4, 5} }; // ok } namespace ListInitInstantiate { struct A { A(std::initializer_list<A>); A(std::initializer_list<int>); }; struct B : A { B(int); }; template<typename T> struct X { X(); A a; }; template<typename T> X<T>::X() : a{B{0}, B{1}} {} X<int> x; int f(const A&); template<typename T> void g() { int k = f({0}); } template void g<int>(); } namespace TemporaryInitListSourceRange_PR22367 { struct A { constexpr A() {} A(std::initializer_list<int>); // expected-note {{here}} }; constexpr int f(A) { return 0; } constexpr int k = f( // expected-error {{must be initialized by a constant expression}} // The point of this test is to check that the caret points to // 'std::initializer_list', not to '{0}'. std::initializer_list // expected-note {{constructor}} <int> {0} ); } namespace ParameterPackNestedInitializerLists_PR23904c3 { template <typename ...T> void f(std::initializer_list<std::initializer_list<T>> ...tt); void foo() { f({{0}}, {{'\0'}}); } } namespace update_rbrace_loc_crash { // We used to crash-on-invalid on this example when updating the right brace // location. template <typename T, T> struct A {}; template <typename T, typename F, int... I> std::initializer_list<T> ExplodeImpl(F p1, A<int, I...>) { // expected-error@+1 {{reference to type 'const update_rbrace_loc_crash::Incomplete' could not bind to an rvalue of type 'void'}} return {p1(I)...}; } template <typename T, int N, typename F> void Explode(F p1) { // expected-note@+1 {{in instantiation of function template specialization}} ExplodeImpl<T>(p1, A<int, N>()); } class Incomplete; struct ContainsIncomplete { const Incomplete &obstacle; }; void f() { // expected-note@+1 {{in instantiation of function template specialization}} Explode<ContainsIncomplete, 4>([](int) {}); } }