//===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These tablegen backends emit Clang attribute processing code // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/StringMatcher.h" #include "llvm/TableGen/TableGenBackend.h" #include <algorithm> #include <cassert> #include <cctype> #include <cstddef> #include <cstdint> #include <map> #include <memory> #include <set> #include <sstream> #include <string> #include <utility> #include <vector> using namespace llvm; namespace { class FlattenedSpelling { std::string V, N, NS; bool K; public: FlattenedSpelling(const std::string &Variety, const std::string &Name, const std::string &Namespace, bool KnownToGCC) : V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {} explicit FlattenedSpelling(const Record &Spelling) : V(Spelling.getValueAsString("Variety")), N(Spelling.getValueAsString("Name")) { assert(V != "GCC" && "Given a GCC spelling, which means this hasn't been" "flattened!"); if (V == "CXX11" || V == "Pragma") NS = Spelling.getValueAsString("Namespace"); bool Unset; K = Spelling.getValueAsBitOrUnset("KnownToGCC", Unset); } const std::string &variety() const { return V; } const std::string &name() const { return N; } const std::string &nameSpace() const { return NS; } bool knownToGCC() const { return K; } }; } // end anonymous namespace static std::vector<FlattenedSpelling> GetFlattenedSpellings(const Record &Attr) { std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings"); std::vector<FlattenedSpelling> Ret; for (const auto &Spelling : Spellings) { if (Spelling->getValueAsString("Variety") == "GCC") { // Gin up two new spelling objects to add into the list. Ret.emplace_back("GNU", Spelling->getValueAsString("Name"), "", true); Ret.emplace_back("CXX11", Spelling->getValueAsString("Name"), "gnu", true); } else Ret.push_back(FlattenedSpelling(*Spelling)); } return Ret; } static std::string ReadPCHRecord(StringRef type) { return StringSwitch<std::string>(type) .EndsWith("Decl *", "GetLocalDeclAs<" + std::string(type, 0, type.size()-1) + ">(F, Record[Idx++])") .Case("TypeSourceInfo *", "GetTypeSourceInfo(F, Record, Idx)") .Case("Expr *", "ReadExpr(F)") .Case("IdentifierInfo *", "GetIdentifierInfo(F, Record, Idx)") .Case("StringRef", "ReadString(Record, Idx)") .Default("Record[Idx++]"); } // Get a type that is suitable for storing an object of the specified type. static StringRef getStorageType(StringRef type) { return StringSwitch<StringRef>(type) .Case("StringRef", "std::string") .Default(type); } // Assumes that the way to get the value is SA->getname() static std::string WritePCHRecord(StringRef type, StringRef name) { return "Record." + StringSwitch<std::string>(type) .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n") .Case("TypeSourceInfo *", "AddTypeSourceInfo(" + std::string(name) + ");\n") .Case("Expr *", "AddStmt(" + std::string(name) + ");\n") .Case("IdentifierInfo *", "AddIdentifierRef(" + std::string(name) + ");\n") .Case("StringRef", "AddString(" + std::string(name) + ");\n") .Default("push_back(" + std::string(name) + ");\n"); } // Normalize attribute name by removing leading and trailing // underscores. For example, __foo, foo__, __foo__ would // become foo. static StringRef NormalizeAttrName(StringRef AttrName) { if (AttrName.startswith("__")) AttrName = AttrName.substr(2, AttrName.size()); if (AttrName.endswith("__")) AttrName = AttrName.substr(0, AttrName.size() - 2); return AttrName; } // Normalize the name by removing any and all leading and trailing underscores. // This is different from NormalizeAttrName in that it also handles names like // _pascal and __pascal. static StringRef NormalizeNameForSpellingComparison(StringRef Name) { return Name.trim("_"); } // Normalize attribute spelling only if the spelling has both leading // and trailing underscores. For example, __ms_struct__ will be // normalized to "ms_struct"; __cdecl will remain intact. static StringRef NormalizeAttrSpelling(StringRef AttrSpelling) { if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) { AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4); } return AttrSpelling; } typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap; static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records, ParsedAttrMap *Dupes = nullptr) { std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); std::set<std::string> Seen; ParsedAttrMap R; for (const auto *Attr : Attrs) { if (Attr->getValueAsBit("SemaHandler")) { std::string AN; if (Attr->isSubClassOf("TargetSpecificAttr") && !Attr->isValueUnset("ParseKind")) { AN = Attr->getValueAsString("ParseKind"); // If this attribute has already been handled, it does not need to be // handled again. if (Seen.find(AN) != Seen.end()) { if (Dupes) Dupes->push_back(std::make_pair(AN, Attr)); continue; } Seen.insert(AN); } else AN = NormalizeAttrName(Attr->getName()).str(); R.push_back(std::make_pair(AN, Attr)); } } return R; } namespace { class Argument { std::string lowerName, upperName; StringRef attrName; bool isOpt; bool Fake; public: Argument(const Record &Arg, StringRef Attr) : lowerName(Arg.getValueAsString("Name")), upperName(lowerName), attrName(Attr), isOpt(false), Fake(false) { if (!lowerName.empty()) { lowerName[0] = std::tolower(lowerName[0]); upperName[0] = std::toupper(upperName[0]); } // Work around MinGW's macro definition of 'interface' to 'struct'. We // have an attribute argument called 'Interface', so only the lower case // name conflicts with the macro definition. if (lowerName == "interface") lowerName = "interface_"; } virtual ~Argument() = default; StringRef getLowerName() const { return lowerName; } StringRef getUpperName() const { return upperName; } StringRef getAttrName() const { return attrName; } bool isOptional() const { return isOpt; } void setOptional(bool set) { isOpt = set; } bool isFake() const { return Fake; } void setFake(bool fake) { Fake = fake; } // These functions print the argument contents formatted in different ways. virtual void writeAccessors(raw_ostream &OS) const = 0; virtual void writeAccessorDefinitions(raw_ostream &OS) const {} virtual void writeASTVisitorTraversal(raw_ostream &OS) const {} virtual void writeCloneArgs(raw_ostream &OS) const = 0; virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0; virtual void writeTemplateInstantiation(raw_ostream &OS) const {} virtual void writeCtorBody(raw_ostream &OS) const {} virtual void writeCtorInitializers(raw_ostream &OS) const = 0; virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0; virtual void writeCtorParameters(raw_ostream &OS) const = 0; virtual void writeDeclarations(raw_ostream &OS) const = 0; virtual void writePCHReadArgs(raw_ostream &OS) const = 0; virtual void writePCHReadDecls(raw_ostream &OS) const = 0; virtual void writePCHWrite(raw_ostream &OS) const = 0; virtual void writeValue(raw_ostream &OS) const = 0; virtual void writeDump(raw_ostream &OS) const = 0; virtual void writeDumpChildren(raw_ostream &OS) const {} virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; } virtual bool isEnumArg() const { return false; } virtual bool isVariadicEnumArg() const { return false; } virtual bool isVariadic() const { return false; } virtual void writeImplicitCtorArgs(raw_ostream &OS) const { OS << getUpperName(); } }; class SimpleArgument : public Argument { std::string type; public: SimpleArgument(const Record &Arg, StringRef Attr, std::string T) : Argument(Arg, Attr), type(std::move(T)) {} std::string getType() const { return type; } void writeAccessors(raw_ostream &OS) const override { OS << " " << type << " get" << getUpperName() << "() const {\n"; OS << " return " << getLowerName() << ";\n"; OS << " }"; } void writeCloneArgs(raw_ostream &OS) const override { OS << getLowerName(); } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "A->get" << getUpperName() << "()"; } void writeCtorInitializers(raw_ostream &OS) const override { OS << getLowerName() << "(" << getUpperName() << ")"; } void writeCtorDefaultInitializers(raw_ostream &OS) const override { OS << getLowerName() << "()"; } void writeCtorParameters(raw_ostream &OS) const override { OS << type << " " << getUpperName(); } void writeDeclarations(raw_ostream &OS) const override { OS << type << " " << getLowerName() << ";"; } void writePCHReadDecls(raw_ostream &OS) const override { std::string read = ReadPCHRecord(type); OS << " " << type << " " << getLowerName() << " = " << read << ";\n"; } void writePCHReadArgs(raw_ostream &OS) const override { OS << getLowerName(); } void writePCHWrite(raw_ostream &OS) const override { OS << " " << WritePCHRecord(type, "SA->get" + std::string(getUpperName()) + "()"); } void writeValue(raw_ostream &OS) const override { if (type == "FunctionDecl *") { OS << "\" << get" << getUpperName() << "()->getNameInfo().getAsString() << \""; } else if (type == "IdentifierInfo *") { OS << "\" << get" << getUpperName() << "()->getName() << \""; } else if (type == "TypeSourceInfo *") { OS << "\" << get" << getUpperName() << "().getAsString() << \""; } else { OS << "\" << get" << getUpperName() << "() << \""; } } void writeDump(raw_ostream &OS) const override { if (type == "FunctionDecl *") { OS << " OS << \" \";\n"; OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n"; } else if (type == "IdentifierInfo *") { if (isOptional()) OS << " if (SA->get" << getUpperName() << "())\n "; OS << " OS << \" \" << SA->get" << getUpperName() << "()->getName();\n"; } else if (type == "TypeSourceInfo *") { OS << " OS << \" \" << SA->get" << getUpperName() << "().getAsString();\n"; } else if (type == "bool") { OS << " if (SA->get" << getUpperName() << "()) OS << \" " << getUpperName() << "\";\n"; } else if (type == "int" || type == "unsigned") { OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; } else { llvm_unreachable("Unknown SimpleArgument type!"); } } }; class DefaultSimpleArgument : public SimpleArgument { int64_t Default; public: DefaultSimpleArgument(const Record &Arg, StringRef Attr, std::string T, int64_t Default) : SimpleArgument(Arg, Attr, T), Default(Default) {} void writeAccessors(raw_ostream &OS) const override { SimpleArgument::writeAccessors(OS); OS << "\n\n static const " << getType() << " Default" << getUpperName() << " = "; if (getType() == "bool") OS << (Default != 0 ? "true" : "false"); else OS << Default; OS << ";"; } }; class StringArgument : public Argument { public: StringArgument(const Record &Arg, StringRef Attr) : Argument(Arg, Attr) {} void writeAccessors(raw_ostream &OS) const override { OS << " llvm::StringRef get" << getUpperName() << "() const {\n"; OS << " return llvm::StringRef(" << getLowerName() << ", " << getLowerName() << "Length);\n"; OS << " }\n"; OS << " unsigned get" << getUpperName() << "Length() const {\n"; OS << " return " << getLowerName() << "Length;\n"; OS << " }\n"; OS << " void set" << getUpperName() << "(ASTContext &C, llvm::StringRef S) {\n"; OS << " " << getLowerName() << "Length = S.size();\n"; OS << " this->" << getLowerName() << " = new (C, 1) char [" << getLowerName() << "Length];\n"; OS << " if (!S.empty())\n"; OS << " std::memcpy(this->" << getLowerName() << ", S.data(), " << getLowerName() << "Length);\n"; OS << " }"; } void writeCloneArgs(raw_ostream &OS) const override { OS << "get" << getUpperName() << "()"; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "A->get" << getUpperName() << "()"; } void writeCtorBody(raw_ostream &OS) const override { OS << " if (!" << getUpperName() << ".empty())\n"; OS << " std::memcpy(" << getLowerName() << ", " << getUpperName() << ".data(), " << getLowerName() << "Length);\n"; } void writeCtorInitializers(raw_ostream &OS) const override { OS << getLowerName() << "Length(" << getUpperName() << ".size())," << getLowerName() << "(new (Ctx, 1) char[" << getLowerName() << "Length])"; } void writeCtorDefaultInitializers(raw_ostream &OS) const override { OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)"; } void writeCtorParameters(raw_ostream &OS) const override { OS << "llvm::StringRef " << getUpperName(); } void writeDeclarations(raw_ostream &OS) const override { OS << "unsigned " << getLowerName() << "Length;\n"; OS << "char *" << getLowerName() << ";"; } void writePCHReadDecls(raw_ostream &OS) const override { OS << " std::string " << getLowerName() << "= ReadString(Record, Idx);\n"; } void writePCHReadArgs(raw_ostream &OS) const override { OS << getLowerName(); } void writePCHWrite(raw_ostream &OS) const override { OS << " Record.AddString(SA->get" << getUpperName() << "());\n"; } void writeValue(raw_ostream &OS) const override { OS << "\\\"\" << get" << getUpperName() << "() << \"\\\""; } void writeDump(raw_ostream &OS) const override { OS << " OS << \" \\\"\" << SA->get" << getUpperName() << "() << \"\\\"\";\n"; } }; class AlignedArgument : public Argument { public: AlignedArgument(const Record &Arg, StringRef Attr) : Argument(Arg, Attr) {} void writeAccessors(raw_ostream &OS) const override { OS << " bool is" << getUpperName() << "Dependent() const;\n"; OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n"; OS << " bool is" << getUpperName() << "Expr() const {\n"; OS << " return is" << getLowerName() << "Expr;\n"; OS << " }\n"; OS << " Expr *get" << getUpperName() << "Expr() const {\n"; OS << " assert(is" << getLowerName() << "Expr);\n"; OS << " return " << getLowerName() << "Expr;\n"; OS << " }\n"; OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n"; OS << " assert(!is" << getLowerName() << "Expr);\n"; OS << " return " << getLowerName() << "Type;\n"; OS << " }"; } void writeAccessorDefinitions(raw_ostream &OS) const override { OS << "bool " << getAttrName() << "Attr::is" << getUpperName() << "Dependent() const {\n"; OS << " if (is" << getLowerName() << "Expr)\n"; OS << " return " << getLowerName() << "Expr && (" << getLowerName() << "Expr->isValueDependent() || " << getLowerName() << "Expr->isTypeDependent());\n"; OS << " else\n"; OS << " return " << getLowerName() << "Type->getType()->isDependentType();\n"; OS << "}\n"; // FIXME: Do not do the calculation here // FIXME: Handle types correctly // A null pointer means maximum alignment OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName() << "(ASTContext &Ctx) const {\n"; OS << " assert(!is" << getUpperName() << "Dependent());\n"; OS << " if (is" << getLowerName() << "Expr)\n"; OS << " return " << getLowerName() << "Expr ? " << getLowerName() << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()" << " * Ctx.getCharWidth() : " << "Ctx.getTargetDefaultAlignForAttributeAligned();\n"; OS << " else\n"; OS << " return 0; // FIXME\n"; OS << "}\n"; } void writeCloneArgs(raw_ostream &OS) const override { OS << "is" << getLowerName() << "Expr, is" << getLowerName() << "Expr ? static_cast<void*>(" << getLowerName() << "Expr) : " << getLowerName() << "Type"; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { // FIXME: move the definition in Sema::InstantiateAttrs to here. // In the meantime, aligned attributes are cloned. } void writeCtorBody(raw_ostream &OS) const override { OS << " if (is" << getLowerName() << "Expr)\n"; OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>(" << getUpperName() << ");\n"; OS << " else\n"; OS << " " << getLowerName() << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName() << ");\n"; } void writeCtorInitializers(raw_ostream &OS) const override { OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)"; } void writeCtorDefaultInitializers(raw_ostream &OS) const override { OS << "is" << getLowerName() << "Expr(false)"; } void writeCtorParameters(raw_ostream &OS) const override { OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName(); } void writeImplicitCtorArgs(raw_ostream &OS) const override { OS << "Is" << getUpperName() << "Expr, " << getUpperName(); } void writeDeclarations(raw_ostream &OS) const override { OS << "bool is" << getLowerName() << "Expr;\n"; OS << "union {\n"; OS << "Expr *" << getLowerName() << "Expr;\n"; OS << "TypeSourceInfo *" << getLowerName() << "Type;\n"; OS << "};"; } void writePCHReadArgs(raw_ostream &OS) const override { OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr"; } void writePCHReadDecls(raw_ostream &OS) const override { OS << " bool is" << getLowerName() << "Expr = Record[Idx++];\n"; OS << " void *" << getLowerName() << "Ptr;\n"; OS << " if (is" << getLowerName() << "Expr)\n"; OS << " " << getLowerName() << "Ptr = ReadExpr(F);\n"; OS << " else\n"; OS << " " << getLowerName() << "Ptr = GetTypeSourceInfo(F, Record, Idx);\n"; } void writePCHWrite(raw_ostream &OS) const override { OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n"; OS << " if (SA->is" << getUpperName() << "Expr())\n"; OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n"; OS << " else\n"; OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName() << "Type());\n"; } void writeValue(raw_ostream &OS) const override { OS << "\";\n"; // The aligned attribute argument expression is optional. OS << " if (is" << getLowerName() << "Expr && " << getLowerName() << "Expr)\n"; OS << " " << getLowerName() << "Expr->printPretty(OS, nullptr, Policy);\n"; OS << " OS << \""; } void writeDump(raw_ostream &OS) const override {} void writeDumpChildren(raw_ostream &OS) const override { OS << " if (SA->is" << getUpperName() << "Expr())\n"; OS << " dumpStmt(SA->get" << getUpperName() << "Expr());\n"; OS << " else\n"; OS << " dumpType(SA->get" << getUpperName() << "Type()->getType());\n"; } void writeHasChildren(raw_ostream &OS) const override { OS << "SA->is" << getUpperName() << "Expr()"; } }; class VariadicArgument : public Argument { std::string Type, ArgName, ArgSizeName, RangeName; protected: // Assumed to receive a parameter: raw_ostream OS. virtual void writeValueImpl(raw_ostream &OS) const { OS << " OS << Val;\n"; } public: VariadicArgument(const Record &Arg, StringRef Attr, std::string T) : Argument(Arg, Attr), Type(std::move(T)), ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"), RangeName(getLowerName()) {} const std::string &getType() const { return Type; } const std::string &getArgName() const { return ArgName; } const std::string &getArgSizeName() const { return ArgSizeName; } bool isVariadic() const override { return true; } void writeAccessors(raw_ostream &OS) const override { std::string IteratorType = getLowerName().str() + "_iterator"; std::string BeginFn = getLowerName().str() + "_begin()"; std::string EndFn = getLowerName().str() + "_end()"; OS << " typedef " << Type << "* " << IteratorType << ";\n"; OS << " " << IteratorType << " " << BeginFn << " const {" << " return " << ArgName << "; }\n"; OS << " " << IteratorType << " " << EndFn << " const {" << " return " << ArgName << " + " << ArgSizeName << "; }\n"; OS << " unsigned " << getLowerName() << "_size() const {" << " return " << ArgSizeName << "; }\n"; OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn << "); }\n"; } void writeCloneArgs(raw_ostream &OS) const override { OS << ArgName << ", " << ArgSizeName; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { // This isn't elegant, but we have to go through public methods... OS << "A->" << getLowerName() << "_begin(), " << "A->" << getLowerName() << "_size()"; } void writeCtorBody(raw_ostream &OS) const override { OS << " std::copy(" << getUpperName() << ", " << getUpperName() << " + " << ArgSizeName << ", " << ArgName << ");\n"; } void writeCtorInitializers(raw_ostream &OS) const override { OS << ArgSizeName << "(" << getUpperName() << "Size), " << ArgName << "(new (Ctx, 16) " << getType() << "[" << ArgSizeName << "])"; } void writeCtorDefaultInitializers(raw_ostream &OS) const override { OS << ArgSizeName << "(0), " << ArgName << "(nullptr)"; } void writeCtorParameters(raw_ostream &OS) const override { OS << getType() << " *" << getUpperName() << ", unsigned " << getUpperName() << "Size"; } void writeImplicitCtorArgs(raw_ostream &OS) const override { OS << getUpperName() << ", " << getUpperName() << "Size"; } void writeDeclarations(raw_ostream &OS) const override { OS << " unsigned " << ArgSizeName << ";\n"; OS << " " << getType() << " *" << ArgName << ";"; } void writePCHReadDecls(raw_ostream &OS) const override { OS << " unsigned " << getLowerName() << "Size = Record[Idx++];\n"; OS << " SmallVector<" << getType() << ", 4> " << getLowerName() << ";\n"; OS << " " << getLowerName() << ".reserve(" << getLowerName() << "Size);\n"; // If we can't store the values in the current type (if it's something // like StringRef), store them in a different type and convert the // container afterwards. std::string StorageType = getStorageType(getType()); std::string StorageName = getLowerName(); if (StorageType != getType()) { StorageName += "Storage"; OS << " SmallVector<" << StorageType << ", 4> " << StorageName << ";\n"; OS << " " << StorageName << ".reserve(" << getLowerName() << "Size);\n"; } OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n"; std::string read = ReadPCHRecord(Type); OS << " " << StorageName << ".push_back(" << read << ");\n"; if (StorageType != getType()) { OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n"; OS << " " << getLowerName() << ".push_back(" << StorageName << "[i]);\n"; } } void writePCHReadArgs(raw_ostream &OS) const override { OS << getLowerName() << ".data(), " << getLowerName() << "Size"; } void writePCHWrite(raw_ostream &OS) const override { OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; OS << " for (auto &Val : SA->" << RangeName << "())\n"; OS << " " << WritePCHRecord(Type, "Val"); } void writeValue(raw_ostream &OS) const override { OS << "\";\n"; OS << " bool isFirst = true;\n" << " for (const auto &Val : " << RangeName << "()) {\n" << " if (isFirst) isFirst = false;\n" << " else OS << \", \";\n"; writeValueImpl(OS); OS << " }\n"; OS << " OS << \""; } void writeDump(raw_ostream &OS) const override { OS << " for (const auto &Val : SA->" << RangeName << "())\n"; OS << " OS << \" \" << Val;\n"; } }; // Unique the enums, but maintain the original declaration ordering. std::vector<std::string> uniqueEnumsInOrder(const std::vector<std::string> &enums) { std::vector<std::string> uniques; std::set<std::string> unique_set(enums.begin(), enums.end()); for (const auto &i : enums) { auto set_i = unique_set.find(i); if (set_i != unique_set.end()) { uniques.push_back(i); unique_set.erase(set_i); } } return uniques; } class EnumArgument : public Argument { std::string type; std::vector<std::string> values, enums, uniques; public: EnumArgument(const Record &Arg, StringRef Attr) : Argument(Arg, Attr), type(Arg.getValueAsString("Type")), values(Arg.getValueAsListOfStrings("Values")), enums(Arg.getValueAsListOfStrings("Enums")), uniques(uniqueEnumsInOrder(enums)) { // FIXME: Emit a proper error assert(!uniques.empty()); } bool isEnumArg() const override { return true; } void writeAccessors(raw_ostream &OS) const override { OS << " " << type << " get" << getUpperName() << "() const {\n"; OS << " return " << getLowerName() << ";\n"; OS << " }"; } void writeCloneArgs(raw_ostream &OS) const override { OS << getLowerName(); } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "A->get" << getUpperName() << "()"; } void writeCtorInitializers(raw_ostream &OS) const override { OS << getLowerName() << "(" << getUpperName() << ")"; } void writeCtorDefaultInitializers(raw_ostream &OS) const override { OS << getLowerName() << "(" << type << "(0))"; } void writeCtorParameters(raw_ostream &OS) const override { OS << type << " " << getUpperName(); } void writeDeclarations(raw_ostream &OS) const override { auto i = uniques.cbegin(), e = uniques.cend(); // The last one needs to not have a comma. --e; OS << "public:\n"; OS << " enum " << type << " {\n"; for (; i != e; ++i) OS << " " << *i << ",\n"; OS << " " << *e << "\n"; OS << " };\n"; OS << "private:\n"; OS << " " << type << " " << getLowerName() << ";"; } void writePCHReadDecls(raw_ostream &OS) const override { OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName() << "(static_cast<" << getAttrName() << "Attr::" << type << ">(Record[Idx++]));\n"; } void writePCHReadArgs(raw_ostream &OS) const override { OS << getLowerName(); } void writePCHWrite(raw_ostream &OS) const override { OS << "Record.push_back(SA->get" << getUpperName() << "());\n"; } void writeValue(raw_ostream &OS) const override { // FIXME: this isn't 100% correct -- some enum arguments require printing // as a string literal, while others require printing as an identifier. // Tablegen currently does not distinguish between the two forms. OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get" << getUpperName() << "()) << \"\\\""; } void writeDump(raw_ostream &OS) const override { OS << " switch(SA->get" << getUpperName() << "()) {\n"; for (const auto &I : uniques) { OS << " case " << getAttrName() << "Attr::" << I << ":\n"; OS << " OS << \" " << I << "\";\n"; OS << " break;\n"; } OS << " }\n"; } void writeConversion(raw_ostream &OS) const { OS << " static bool ConvertStrTo" << type << "(StringRef Val, "; OS << type << " &Out) {\n"; OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<"; OS << type << ">>(Val)\n"; for (size_t I = 0; I < enums.size(); ++I) { OS << " .Case(\"" << values[I] << "\", "; OS << getAttrName() << "Attr::" << enums[I] << ")\n"; } OS << " .Default(Optional<" << type << ">());\n"; OS << " if (R) {\n"; OS << " Out = *R;\n return true;\n }\n"; OS << " return false;\n"; OS << " }\n\n"; // Mapping from enumeration values back to enumeration strings isn't // trivial because some enumeration values have multiple named // enumerators, such as type_visibility(internal) and // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden. OS << " static const char *Convert" << type << "ToStr(" << type << " Val) {\n" << " switch(Val) {\n"; std::set<std::string> Uniques; for (size_t I = 0; I < enums.size(); ++I) { if (Uniques.insert(enums[I]).second) OS << " case " << getAttrName() << "Attr::" << enums[I] << ": return \"" << values[I] << "\";\n"; } OS << " }\n" << " llvm_unreachable(\"No enumerator with that value\");\n" << " }\n"; } }; class VariadicEnumArgument: public VariadicArgument { std::string type, QualifiedTypeName; std::vector<std::string> values, enums, uniques; protected: void writeValueImpl(raw_ostream &OS) const override { // FIXME: this isn't 100% correct -- some enum arguments require printing // as a string literal, while others require printing as an identifier. // Tablegen currently does not distinguish between the two forms. OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(Val)" << "<< \"\\\"\";\n"; } public: VariadicEnumArgument(const Record &Arg, StringRef Attr) : VariadicArgument(Arg, Attr, Arg.getValueAsString("Type")), type(Arg.getValueAsString("Type")), values(Arg.getValueAsListOfStrings("Values")), enums(Arg.getValueAsListOfStrings("Enums")), uniques(uniqueEnumsInOrder(enums)) { QualifiedTypeName = getAttrName().str() + "Attr::" + type; // FIXME: Emit a proper error assert(!uniques.empty()); } bool isVariadicEnumArg() const override { return true; } void writeDeclarations(raw_ostream &OS) const override { auto i = uniques.cbegin(), e = uniques.cend(); // The last one needs to not have a comma. --e; OS << "public:\n"; OS << " enum " << type << " {\n"; for (; i != e; ++i) OS << " " << *i << ",\n"; OS << " " << *e << "\n"; OS << " };\n"; OS << "private:\n"; VariadicArgument::writeDeclarations(OS); } void writeDump(raw_ostream &OS) const override { OS << " for (" << getAttrName() << "Attr::" << getLowerName() << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" << getLowerName() << "_end(); I != E; ++I) {\n"; OS << " switch(*I) {\n"; for (const auto &UI : uniques) { OS << " case " << getAttrName() << "Attr::" << UI << ":\n"; OS << " OS << \" " << UI << "\";\n"; OS << " break;\n"; } OS << " }\n"; OS << " }\n"; } void writePCHReadDecls(raw_ostream &OS) const override { OS << " unsigned " << getLowerName() << "Size = Record[Idx++];\n"; OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName() << ";\n"; OS << " " << getLowerName() << ".reserve(" << getLowerName() << "Size);\n"; OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n"; OS << " " << getLowerName() << ".push_back(" << "static_cast<" << QualifiedTypeName << ">(Record[Idx++]));\n"; } void writePCHWrite(raw_ostream &OS) const override { OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; OS << " for (" << getAttrName() << "Attr::" << getLowerName() << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->" << getLowerName() << "_end(); i != e; ++i)\n"; OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)"); } void writeConversion(raw_ostream &OS) const { OS << " static bool ConvertStrTo" << type << "(StringRef Val, "; OS << type << " &Out) {\n"; OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<"; OS << type << ">>(Val)\n"; for (size_t I = 0; I < enums.size(); ++I) { OS << " .Case(\"" << values[I] << "\", "; OS << getAttrName() << "Attr::" << enums[I] << ")\n"; } OS << " .Default(Optional<" << type << ">());\n"; OS << " if (R) {\n"; OS << " Out = *R;\n return true;\n }\n"; OS << " return false;\n"; OS << " }\n\n"; OS << " static const char *Convert" << type << "ToStr(" << type << " Val) {\n" << " switch(Val) {\n"; std::set<std::string> Uniques; for (size_t I = 0; I < enums.size(); ++I) { if (Uniques.insert(enums[I]).second) OS << " case " << getAttrName() << "Attr::" << enums[I] << ": return \"" << values[I] << "\";\n"; } OS << " }\n" << " llvm_unreachable(\"No enumerator with that value\");\n" << " }\n"; } }; class VersionArgument : public Argument { public: VersionArgument(const Record &Arg, StringRef Attr) : Argument(Arg, Attr) {} void writeAccessors(raw_ostream &OS) const override { OS << " VersionTuple get" << getUpperName() << "() const {\n"; OS << " return " << getLowerName() << ";\n"; OS << " }\n"; OS << " void set" << getUpperName() << "(ASTContext &C, VersionTuple V) {\n"; OS << " " << getLowerName() << " = V;\n"; OS << " }"; } void writeCloneArgs(raw_ostream &OS) const override { OS << "get" << getUpperName() << "()"; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "A->get" << getUpperName() << "()"; } void writeCtorInitializers(raw_ostream &OS) const override { OS << getLowerName() << "(" << getUpperName() << ")"; } void writeCtorDefaultInitializers(raw_ostream &OS) const override { OS << getLowerName() << "()"; } void writeCtorParameters(raw_ostream &OS) const override { OS << "VersionTuple " << getUpperName(); } void writeDeclarations(raw_ostream &OS) const override { OS << "VersionTuple " << getLowerName() << ";\n"; } void writePCHReadDecls(raw_ostream &OS) const override { OS << " VersionTuple " << getLowerName() << "= ReadVersionTuple(Record, Idx);\n"; } void writePCHReadArgs(raw_ostream &OS) const override { OS << getLowerName(); } void writePCHWrite(raw_ostream &OS) const override { OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n"; } void writeValue(raw_ostream &OS) const override { OS << getLowerName() << "=\" << get" << getUpperName() << "() << \""; } void writeDump(raw_ostream &OS) const override { OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; } }; class ExprArgument : public SimpleArgument { public: ExprArgument(const Record &Arg, StringRef Attr) : SimpleArgument(Arg, Attr, "Expr *") {} void writeASTVisitorTraversal(raw_ostream &OS) const override { OS << " if (!" << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n"; OS << " return false;\n"; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "tempInst" << getUpperName(); } void writeTemplateInstantiation(raw_ostream &OS) const override { OS << " " << getType() << " tempInst" << getUpperName() << ";\n"; OS << " {\n"; OS << " EnterExpressionEvaluationContext " << "Unevaluated(S, Sema::Unevaluated);\n"; OS << " ExprResult " << "Result = S.SubstExpr(" << "A->get" << getUpperName() << "(), TemplateArgs);\n"; OS << " tempInst" << getUpperName() << " = " << "Result.getAs<Expr>();\n"; OS << " }\n"; } void writeDump(raw_ostream &OS) const override {} void writeDumpChildren(raw_ostream &OS) const override { OS << " dumpStmt(SA->get" << getUpperName() << "());\n"; } void writeHasChildren(raw_ostream &OS) const override { OS << "true"; } }; class VariadicExprArgument : public VariadicArgument { public: VariadicExprArgument(const Record &Arg, StringRef Attr) : VariadicArgument(Arg, Attr, "Expr *") {} void writeASTVisitorTraversal(raw_ostream &OS) const override { OS << " {\n"; OS << " " << getType() << " *I = A->" << getLowerName() << "_begin();\n"; OS << " " << getType() << " *E = A->" << getLowerName() << "_end();\n"; OS << " for (; I != E; ++I) {\n"; OS << " if (!getDerived().TraverseStmt(*I))\n"; OS << " return false;\n"; OS << " }\n"; OS << " }\n"; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "tempInst" << getUpperName() << ", " << "A->" << getLowerName() << "_size()"; } void writeTemplateInstantiation(raw_ostream &OS) const override { OS << " auto *tempInst" << getUpperName() << " = new (C, 16) " << getType() << "[A->" << getLowerName() << "_size()];\n"; OS << " {\n"; OS << " EnterExpressionEvaluationContext " << "Unevaluated(S, Sema::Unevaluated);\n"; OS << " " << getType() << " *TI = tempInst" << getUpperName() << ";\n"; OS << " " << getType() << " *I = A->" << getLowerName() << "_begin();\n"; OS << " " << getType() << " *E = A->" << getLowerName() << "_end();\n"; OS << " for (; I != E; ++I, ++TI) {\n"; OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n"; OS << " *TI = Result.getAs<Expr>();\n"; OS << " }\n"; OS << " }\n"; } void writeDump(raw_ostream &OS) const override {} void writeDumpChildren(raw_ostream &OS) const override { OS << " for (" << getAttrName() << "Attr::" << getLowerName() << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" << getLowerName() << "_end(); I != E; ++I)\n"; OS << " dumpStmt(*I);\n"; } void writeHasChildren(raw_ostream &OS) const override { OS << "SA->" << getLowerName() << "_begin() != " << "SA->" << getLowerName() << "_end()"; } }; class VariadicStringArgument : public VariadicArgument { public: VariadicStringArgument(const Record &Arg, StringRef Attr) : VariadicArgument(Arg, Attr, "StringRef") {} void writeCtorBody(raw_ostream &OS) const override { OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n" " ++I) {\n" " StringRef Ref = " << getUpperName() << "[I];\n" " if (!Ref.empty()) {\n" " char *Mem = new (Ctx, 1) char[Ref.size()];\n" " std::memcpy(Mem, Ref.data(), Ref.size());\n" " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n" " }\n" " }\n"; } void writeValueImpl(raw_ostream &OS) const override { OS << " OS << \"\\\"\" << Val << \"\\\"\";\n"; } }; class TypeArgument : public SimpleArgument { public: TypeArgument(const Record &Arg, StringRef Attr) : SimpleArgument(Arg, Attr, "TypeSourceInfo *") {} void writeAccessors(raw_ostream &OS) const override { OS << " QualType get" << getUpperName() << "() const {\n"; OS << " return " << getLowerName() << "->getType();\n"; OS << " }"; OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n"; OS << " return " << getLowerName() << ";\n"; OS << " }"; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "A->get" << getUpperName() << "Loc()"; } void writePCHWrite(raw_ostream &OS) const override { OS << " " << WritePCHRecord( getType(), "SA->get" + std::string(getUpperName()) + "Loc()"); } }; } // end anonymous namespace static std::unique_ptr<Argument> createArgument(const Record &Arg, StringRef Attr, const Record *Search = nullptr) { if (!Search) Search = &Arg; std::unique_ptr<Argument> Ptr; llvm::StringRef ArgName = Search->getName(); if (ArgName == "AlignedArgument") Ptr = llvm::make_unique<AlignedArgument>(Arg, Attr); else if (ArgName == "EnumArgument") Ptr = llvm::make_unique<EnumArgument>(Arg, Attr); else if (ArgName == "ExprArgument") Ptr = llvm::make_unique<ExprArgument>(Arg, Attr); else if (ArgName == "FunctionArgument") Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "FunctionDecl *"); else if (ArgName == "IdentifierArgument") Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *"); else if (ArgName == "DefaultBoolArgument") Ptr = llvm::make_unique<DefaultSimpleArgument>( Arg, Attr, "bool", Arg.getValueAsBit("Default")); else if (ArgName == "BoolArgument") Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "bool"); else if (ArgName == "DefaultIntArgument") Ptr = llvm::make_unique<DefaultSimpleArgument>( Arg, Attr, "int", Arg.getValueAsInt("Default")); else if (ArgName == "IntArgument") Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "int"); else if (ArgName == "StringArgument") Ptr = llvm::make_unique<StringArgument>(Arg, Attr); else if (ArgName == "TypeArgument") Ptr = llvm::make_unique<TypeArgument>(Arg, Attr); else if (ArgName == "UnsignedArgument") Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "unsigned"); else if (ArgName == "VariadicUnsignedArgument") Ptr = llvm::make_unique<VariadicArgument>(Arg, Attr, "unsigned"); else if (ArgName == "VariadicStringArgument") Ptr = llvm::make_unique<VariadicStringArgument>(Arg, Attr); else if (ArgName == "VariadicEnumArgument") Ptr = llvm::make_unique<VariadicEnumArgument>(Arg, Attr); else if (ArgName == "VariadicExprArgument") Ptr = llvm::make_unique<VariadicExprArgument>(Arg, Attr); else if (ArgName == "VersionArgument") Ptr = llvm::make_unique<VersionArgument>(Arg, Attr); if (!Ptr) { // Search in reverse order so that the most-derived type is handled first. ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses(); for (const auto &Base : llvm::reverse(Bases)) { if ((Ptr = createArgument(Arg, Attr, Base.first))) break; } } if (Ptr && Arg.getValueAsBit("Optional")) Ptr->setOptional(true); if (Ptr && Arg.getValueAsBit("Fake")) Ptr->setFake(true); return Ptr; } static void writeAvailabilityValue(raw_ostream &OS) { OS << "\" << getPlatform()->getName();\n" << " if (getStrict()) OS << \", strict\";\n" << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n" << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n" << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n" << " if (getUnavailable()) OS << \", unavailable\";\n" << " OS << \""; } static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) { OS << "\\\"\" << getMessage() << \"\\\"\";\n"; // Only GNU deprecated has an optional fixit argument at the second position. if (Variety == "GNU") OS << " if (!getReplacement().empty()) OS << \", \\\"\"" " << getReplacement() << \"\\\"\";\n"; OS << " OS << \""; } static void writeGetSpellingFunction(Record &R, raw_ostream &OS) { std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n"; if (Spellings.empty()) { OS << " return \"(No spelling)\";\n}\n\n"; return; } OS << " switch (SpellingListIndex) {\n" " default:\n" " llvm_unreachable(\"Unknown attribute spelling!\");\n" " return \"(No spelling)\";\n"; for (unsigned I = 0; I < Spellings.size(); ++I) OS << " case " << I << ":\n" " return \"" << Spellings[I].name() << "\";\n"; // End of the switch statement. OS << " }\n"; // End of the getSpelling function. OS << "}\n\n"; } static void writePrettyPrintFunction(Record &R, const std::vector<std::unique_ptr<Argument>> &Args, raw_ostream &OS) { std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); OS << "void " << R.getName() << "Attr::printPretty(" << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n"; if (Spellings.empty()) { OS << "}\n\n"; return; } OS << " switch (SpellingListIndex) {\n" " default:\n" " llvm_unreachable(\"Unknown attribute spelling!\");\n" " break;\n"; for (unsigned I = 0; I < Spellings.size(); ++ I) { llvm::SmallString<16> Prefix; llvm::SmallString<8> Suffix; // The actual spelling of the name and namespace (if applicable) // of an attribute without considering prefix and suffix. llvm::SmallString<64> Spelling; std::string Name = Spellings[I].name(); std::string Variety = Spellings[I].variety(); if (Variety == "GNU") { Prefix = " __attribute__(("; Suffix = "))"; } else if (Variety == "CXX11") { Prefix = " [["; Suffix = "]]"; std::string Namespace = Spellings[I].nameSpace(); if (!Namespace.empty()) { Spelling += Namespace; Spelling += "::"; } } else if (Variety == "Declspec") { Prefix = " __declspec("; Suffix = ")"; } else if (Variety == "Keyword") { Prefix = " "; Suffix = ""; } else if (Variety == "Pragma") { Prefix = "#pragma "; Suffix = "\n"; std::string Namespace = Spellings[I].nameSpace(); if (!Namespace.empty()) { Spelling += Namespace; Spelling += " "; } } else { llvm_unreachable("Unknown attribute syntax variety!"); } Spelling += Name; OS << " case " << I << " : {\n" " OS << \"" << Prefix << Spelling; if (Variety == "Pragma") { OS << " \";\n"; OS << " printPrettyPragma(OS, Policy);\n"; OS << " OS << \"\\n\";"; OS << " break;\n"; OS << " }\n"; continue; } // Fake arguments aren't part of the parsed form and should not be // pretty-printed. bool hasNonFakeArgs = false; for (const auto &arg : Args) { if (arg->isFake()) continue; hasNonFakeArgs = true; } // FIXME: always printing the parenthesis isn't the correct behavior for // attributes which have optional arguments that were not provided. For // instance: __attribute__((aligned)) will be pretty printed as // __attribute__((aligned())). The logic should check whether there is only // a single argument, and if it is optional, whether it has been provided. if (hasNonFakeArgs) OS << "("; if (Spelling == "availability") { writeAvailabilityValue(OS); } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") { writeDeprecatedAttrValue(OS, Variety); } else { unsigned index = 0; for (const auto &arg : Args) { if (arg->isFake()) continue; if (index++) OS << ", "; arg->writeValue(OS); } } if (hasNonFakeArgs) OS << ")"; OS << Suffix + "\";\n"; OS << " break;\n" " }\n"; } // End of the switch statement. OS << "}\n"; // End of the print function. OS << "}\n\n"; } /// \brief Return the index of a spelling in a spelling list. static unsigned getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList, const FlattenedSpelling &Spelling) { assert(!SpellingList.empty() && "Spelling list is empty!"); for (unsigned Index = 0; Index < SpellingList.size(); ++Index) { const FlattenedSpelling &S = SpellingList[Index]; if (S.variety() != Spelling.variety()) continue; if (S.nameSpace() != Spelling.nameSpace()) continue; if (S.name() != Spelling.name()) continue; return Index; } llvm_unreachable("Unknown spelling!"); } static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) { std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors"); for (const auto *Accessor : Accessors) { std::string Name = Accessor->getValueAsString("Name"); std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor); std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R); assert(!SpellingList.empty() && "Attribute with empty spelling list can't have accessors!"); OS << " bool " << Name << "() const { return SpellingListIndex == "; for (unsigned Index = 0; Index < Spellings.size(); ++Index) { OS << getSpellingListIndex(SpellingList, Spellings[Index]); if (Index != Spellings.size() -1) OS << " ||\n SpellingListIndex == "; else OS << "; }\n"; } } } static bool SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) { assert(!Spellings.empty() && "An empty list of spellings was provided"); std::string FirstName = NormalizeNameForSpellingComparison( Spellings.front().name()); for (const auto &Spelling : llvm::make_range(std::next(Spellings.begin()), Spellings.end())) { std::string Name = NormalizeNameForSpellingComparison(Spelling.name()); if (Name != FirstName) return false; } return true; } typedef std::map<unsigned, std::string> SemanticSpellingMap; static std::string CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings, SemanticSpellingMap &Map) { // The enumerants are automatically generated based on the variety, // namespace (if present) and name for each attribute spelling. However, // care is taken to avoid trampling on the reserved namespace due to // underscores. std::string Ret(" enum Spelling {\n"); std::set<std::string> Uniques; unsigned Idx = 0; for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) { const FlattenedSpelling &S = *I; const std::string &Variety = S.variety(); const std::string &Spelling = S.name(); const std::string &Namespace = S.nameSpace(); std::string EnumName; EnumName += (Variety + "_"); if (!Namespace.empty()) EnumName += (NormalizeNameForSpellingComparison(Namespace).str() + "_"); EnumName += NormalizeNameForSpellingComparison(Spelling); // Even if the name is not unique, this spelling index corresponds to a // particular enumerant name that we've calculated. Map[Idx] = EnumName; // Since we have been stripping underscores to avoid trampling on the // reserved namespace, we may have inadvertently created duplicate // enumerant names. These duplicates are not considered part of the // semantic spelling, and can be elided. if (Uniques.find(EnumName) != Uniques.end()) continue; Uniques.insert(EnumName); if (I != Spellings.begin()) Ret += ",\n"; // Duplicate spellings are not considered part of the semantic spelling // enumeration, but the spelling index and semantic spelling values are // meant to be equivalent, so we must specify a concrete value for each // enumerator. Ret += " " + EnumName + " = " + llvm::utostr(Idx); } Ret += "\n };\n\n"; return Ret; } void WriteSemanticSpellingSwitch(const std::string &VarName, const SemanticSpellingMap &Map, raw_ostream &OS) { OS << " switch (" << VarName << ") {\n default: " << "llvm_unreachable(\"Unknown spelling list index\");\n"; for (const auto &I : Map) OS << " case " << I.first << ": return " << I.second << ";\n"; OS << " }\n"; } // Emits the LateParsed property for attributes. static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) { OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n"; std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); for (const auto *Attr : Attrs) { bool LateParsed = Attr->getValueAsBit("LateParsed"); if (LateParsed) { std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); // FIXME: Handle non-GNU attributes for (const auto &I : Spellings) { if (I.variety() != "GNU") continue; OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n"; } } } OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n"; } /// \brief Emits the first-argument-is-type property for attributes. static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) { OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n"; std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); for (const auto *Attr : Attrs) { // Determine whether the first argument is a type. std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args"); if (Args.empty()) continue; if (Args[0]->getSuperClasses().back().first->getName() != "TypeArgument") continue; // All these spellings take a single type argument. std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); std::set<std::string> Emitted; for (const auto &S : Spellings) { if (Emitted.insert(S.name()).second) OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; } } OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n"; } /// \brief Emits the parse-arguments-in-unevaluated-context property for /// attributes. static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) { OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n"; ParsedAttrMap Attrs = getParsedAttrList(Records); for (const auto &I : Attrs) { const Record &Attr = *I.second; if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated")) continue; // All these spellings take are parsed unevaluated. std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); std::set<std::string> Emitted; for (const auto &S : Spellings) { if (Emitted.insert(S.name()).second) OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; } } OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n"; } static bool isIdentifierArgument(Record *Arg) { return !Arg->getSuperClasses().empty() && llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName()) .Case("IdentifierArgument", true) .Case("EnumArgument", true) .Case("VariadicEnumArgument", true) .Default(false); } // Emits the first-argument-is-identifier property for attributes. static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) { OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n"; std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); for (const auto *Attr : Attrs) { // Determine whether the first argument is an identifier. std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args"); if (Args.empty() || !isIdentifierArgument(Args[0])) continue; // All these spellings take an identifier argument. std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); std::set<std::string> Emitted; for (const auto &S : Spellings) { if (Emitted.insert(S.name()).second) OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; } } OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n"; } namespace clang { // Emits the class definitions for attributes. void EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute classes' definitions", OS); OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n"; OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n"; std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); for (const auto *Attr : Attrs) { const Record &R = *Attr; // FIXME: Currently, documentation is generated as-needed due to the fact // that there is no way to allow a generated project "reach into" the docs // directory (for instance, it may be an out-of-tree build). However, we want // to ensure that every attribute has a Documentation field, and produce an // error if it has been neglected. Otherwise, the on-demand generation which // happens server-side will fail. This code is ensuring that functionality, // even though this Emitter doesn't technically need the documentation. // When attribute documentation can be generated as part of the build // itself, this code can be removed. (void)R.getValueAsListOfDefs("Documentation"); if (!R.getValueAsBit("ASTNode")) continue; ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses(); assert(!Supers.empty() && "Forgot to specify a superclass for the attr"); std::string SuperName; for (const auto &Super : llvm::reverse(Supers)) { const Record *R = Super.first; if (R->getName() != "TargetSpecificAttr" && SuperName.empty()) SuperName = R->getName(); } OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n"; std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); std::vector<std::unique_ptr<Argument>> Args; Args.reserve(ArgRecords.size()); bool HasOptArg = false; bool HasFakeArg = false; for (const auto *ArgRecord : ArgRecords) { Args.emplace_back(createArgument(*ArgRecord, R.getName())); Args.back()->writeDeclarations(OS); OS << "\n\n"; // For these purposes, fake takes priority over optional. if (Args.back()->isFake()) { HasFakeArg = true; } else if (Args.back()->isOptional()) { HasOptArg = true; } } OS << "public:\n"; std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); // If there are zero or one spellings, all spelling-related functionality // can be elided. If all of the spellings share the same name, the spelling // functionality can also be elided. bool ElideSpelling = (Spellings.size() <= 1) || SpellingNamesAreCommon(Spellings); // This maps spelling index values to semantic Spelling enumerants. SemanticSpellingMap SemanticToSyntacticMap; if (!ElideSpelling) OS << CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); // Emit CreateImplicit factory methods. auto emitCreateImplicit = [&](bool emitFake) { OS << " static " << R.getName() << "Attr *CreateImplicit("; OS << "ASTContext &Ctx"; if (!ElideSpelling) OS << ", Spelling S"; for (auto const &ai : Args) { if (ai->isFake() && !emitFake) continue; OS << ", "; ai->writeCtorParameters(OS); } OS << ", SourceRange Loc = SourceRange()"; OS << ") {\n"; OS << " auto *A = new (Ctx) " << R.getName(); OS << "Attr(Loc, Ctx, "; for (auto const &ai : Args) { if (ai->isFake() && !emitFake) continue; ai->writeImplicitCtorArgs(OS); OS << ", "; } OS << (ElideSpelling ? "0" : "S") << ");\n"; OS << " A->setImplicit(true);\n"; OS << " return A;\n }\n\n"; }; // Emit a CreateImplicit that takes all the arguments. emitCreateImplicit(true); // Emit a CreateImplicit that takes all the non-fake arguments. if (HasFakeArg) { emitCreateImplicit(false); } // Emit constructors. auto emitCtor = [&](bool emitOpt, bool emitFake) { auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) { if (arg->isFake()) return emitFake; if (arg->isOptional()) return emitOpt; return true; }; OS << " " << R.getName() << "Attr(SourceRange R, ASTContext &Ctx\n"; for (auto const &ai : Args) { if (!shouldEmitArg(ai)) continue; OS << " , "; ai->writeCtorParameters(OS); OS << "\n"; } OS << " , "; OS << "unsigned SI\n"; OS << " )\n"; OS << " : " << SuperName << "(attr::" << R.getName() << ", R, SI, " << ( R.getValueAsBit("LateParsed") ? "true" : "false" ) << ", " << ( R.getValueAsBit("DuplicatesAllowedWhileMerging") ? "true" : "false" ) << ")\n"; for (auto const &ai : Args) { OS << " , "; if (!shouldEmitArg(ai)) { ai->writeCtorDefaultInitializers(OS); } else { ai->writeCtorInitializers(OS); } OS << "\n"; } OS << " {\n"; for (auto const &ai : Args) { if (!shouldEmitArg(ai)) continue; ai->writeCtorBody(OS); } OS << " }\n\n"; }; // Emit a constructor that includes all the arguments. // This is necessary for cloning. emitCtor(true, true); // Emit a constructor that takes all the non-fake arguments. if (HasFakeArg) { emitCtor(true, false); } // Emit a constructor that takes all the non-fake, non-optional arguments. if (HasOptArg) { emitCtor(false, false); } OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n"; OS << " void printPretty(raw_ostream &OS,\n" << " const PrintingPolicy &Policy) const;\n"; OS << " const char *getSpelling() const;\n"; if (!ElideSpelling) { assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list"); OS << " Spelling getSemanticSpelling() const {\n"; WriteSemanticSpellingSwitch("SpellingListIndex", SemanticToSyntacticMap, OS); OS << " }\n"; } writeAttrAccessorDefinition(R, OS); for (auto const &ai : Args) { ai->writeAccessors(OS); OS << "\n\n"; // Don't write conversion routines for fake arguments. if (ai->isFake()) continue; if (ai->isEnumArg()) static_cast<const EnumArgument *>(ai.get())->writeConversion(OS); else if (ai->isVariadicEnumArg()) static_cast<const VariadicEnumArgument *>(ai.get()) ->writeConversion(OS); } OS << R.getValueAsString("AdditionalMembers"); OS << "\n\n"; OS << " static bool classof(const Attr *A) { return A->getKind() == " << "attr::" << R.getName() << "; }\n"; OS << "};\n\n"; } OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n"; } // Emits the class method definitions for attributes. void EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute classes' member function definitions", OS); std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); for (auto *Attr : Attrs) { Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); std::vector<std::unique_ptr<Argument>> Args; for (const auto *Arg : ArgRecords) Args.emplace_back(createArgument(*Arg, R.getName())); for (auto const &ai : Args) ai->writeAccessorDefinitions(OS); OS << R.getName() << "Attr *" << R.getName() << "Attr::clone(ASTContext &C) const {\n"; OS << " auto *A = new (C) " << R.getName() << "Attr(getLocation(), C"; for (auto const &ai : Args) { OS << ", "; ai->writeCloneArgs(OS); } OS << ", getSpellingListIndex());\n"; OS << " A->Inherited = Inherited;\n"; OS << " A->IsPackExpansion = IsPackExpansion;\n"; OS << " A->Implicit = Implicit;\n"; OS << " return A;\n}\n\n"; writePrettyPrintFunction(R, Args, OS); writeGetSpellingFunction(R, OS); } // Instead of relying on virtual dispatch we just create a huge dispatch // switch. This is both smaller and faster than virtual functions. auto EmitFunc = [&](const char *Method) { OS << " switch (getKind()) {\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " case attr::" << R.getName() << ":\n"; OS << " return cast<" << R.getName() << "Attr>(this)->" << Method << ";\n"; } OS << " }\n"; OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n"; OS << "}\n\n"; }; OS << "const char *Attr::getSpelling() const {\n"; EmitFunc("getSpelling()"); OS << "Attr *Attr::clone(ASTContext &C) const {\n"; EmitFunc("clone(C)"); OS << "void Attr::printPretty(raw_ostream &OS, " "const PrintingPolicy &Policy) const {\n"; EmitFunc("printPretty(OS, Policy)"); } } // end namespace clang static void emitAttrList(raw_ostream &OS, StringRef Class, const std::vector<Record*> &AttrList) { for (auto Cur : AttrList) { OS << Class << "(" << Cur->getName() << ")\n"; } } // Determines if an attribute has a Pragma spelling. static bool AttrHasPragmaSpelling(const Record *R) { std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R); return std::find_if(Spellings.begin(), Spellings.end(), [](const FlattenedSpelling &S) { return S.variety() == "Pragma"; }) != Spellings.end(); } namespace { struct AttrClassDescriptor { const char * const MacroName; const char * const TableGenName; }; } // end anonymous namespace static const AttrClassDescriptor AttrClassDescriptors[] = { { "ATTR", "Attr" }, { "STMT_ATTR", "StmtAttr" }, { "INHERITABLE_ATTR", "InheritableAttr" }, { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" }, { "PARAMETER_ABI_ATTR", "ParameterABIAttr" } }; static void emitDefaultDefine(raw_ostream &OS, StringRef name, const char *superName) { OS << "#ifndef " << name << "\n"; OS << "#define " << name << "(NAME) "; if (superName) OS << superName << "(NAME)"; OS << "\n#endif\n\n"; } namespace { /// A class of attributes. struct AttrClass { const AttrClassDescriptor &Descriptor; Record *TheRecord; AttrClass *SuperClass = nullptr; std::vector<AttrClass*> SubClasses; std::vector<Record*> Attrs; AttrClass(const AttrClassDescriptor &Descriptor, Record *R) : Descriptor(Descriptor), TheRecord(R) {} void emitDefaultDefines(raw_ostream &OS) const { // Default the macro unless this is a root class (i.e. Attr). if (SuperClass) { emitDefaultDefine(OS, Descriptor.MacroName, SuperClass->Descriptor.MacroName); } } void emitUndefs(raw_ostream &OS) const { OS << "#undef " << Descriptor.MacroName << "\n"; } void emitAttrList(raw_ostream &OS) const { for (auto SubClass : SubClasses) { SubClass->emitAttrList(OS); } ::emitAttrList(OS, Descriptor.MacroName, Attrs); } void classifyAttrOnRoot(Record *Attr) { bool result = classifyAttr(Attr); assert(result && "failed to classify on root"); (void) result; } void emitAttrRange(raw_ostream &OS) const { OS << "ATTR_RANGE(" << Descriptor.TableGenName << ", " << getFirstAttr()->getName() << ", " << getLastAttr()->getName() << ")\n"; } private: bool classifyAttr(Record *Attr) { // Check all the subclasses. for (auto SubClass : SubClasses) { if (SubClass->classifyAttr(Attr)) return true; } // It's not more specific than this class, but it might still belong here. if (Attr->isSubClassOf(TheRecord)) { Attrs.push_back(Attr); return true; } return false; } Record *getFirstAttr() const { if (!SubClasses.empty()) return SubClasses.front()->getFirstAttr(); return Attrs.front(); } Record *getLastAttr() const { if (!Attrs.empty()) return Attrs.back(); return SubClasses.back()->getLastAttr(); } }; /// The entire hierarchy of attribute classes. class AttrClassHierarchy { std::vector<std::unique_ptr<AttrClass>> Classes; public: AttrClassHierarchy(RecordKeeper &Records) { // Find records for all the classes. for (auto &Descriptor : AttrClassDescriptors) { Record *ClassRecord = Records.getClass(Descriptor.TableGenName); AttrClass *Class = new AttrClass(Descriptor, ClassRecord); Classes.emplace_back(Class); } // Link up the hierarchy. for (auto &Class : Classes) { if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) { Class->SuperClass = SuperClass; SuperClass->SubClasses.push_back(Class.get()); } } #ifndef NDEBUG for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) { assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) && "only the first class should be a root class!"); } #endif } void emitDefaultDefines(raw_ostream &OS) const { for (auto &Class : Classes) { Class->emitDefaultDefines(OS); } } void emitUndefs(raw_ostream &OS) const { for (auto &Class : Classes) { Class->emitUndefs(OS); } } void emitAttrLists(raw_ostream &OS) const { // Just start from the root class. Classes[0]->emitAttrList(OS); } void emitAttrRanges(raw_ostream &OS) const { for (auto &Class : Classes) Class->emitAttrRange(OS); } void classifyAttr(Record *Attr) { // Add the attribute to the root class. Classes[0]->classifyAttrOnRoot(Attr); } private: AttrClass *findClassByRecord(Record *R) const { for (auto &Class : Classes) { if (Class->TheRecord == R) return Class.get(); } return nullptr; } AttrClass *findSuperClass(Record *R) const { // TableGen flattens the superclass list, so we just need to walk it // in reverse. auto SuperClasses = R->getSuperClasses(); for (signed i = 0, e = SuperClasses.size(); i != e; ++i) { auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first); if (SuperClass) return SuperClass; } return nullptr; } }; } // end anonymous namespace namespace clang { // Emits the enumeration list for attributes. void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("List of all attributes that Clang recognizes", OS); AttrClassHierarchy Hierarchy(Records); // Add defaulting macro definitions. Hierarchy.emitDefaultDefines(OS); emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr); std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); std::vector<Record *> PragmaAttrs; for (auto *Attr : Attrs) { if (!Attr->getValueAsBit("ASTNode")) continue; // Add the attribute to the ad-hoc groups. if (AttrHasPragmaSpelling(Attr)) PragmaAttrs.push_back(Attr); // Place it in the hierarchy. Hierarchy.classifyAttr(Attr); } // Emit the main attribute list. Hierarchy.emitAttrLists(OS); // Emit the ad hoc groups. emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs); // Emit the attribute ranges. OS << "#ifdef ATTR_RANGE\n"; Hierarchy.emitAttrRanges(OS); OS << "#undef ATTR_RANGE\n"; OS << "#endif\n"; Hierarchy.emitUndefs(OS); OS << "#undef PRAGMA_SPELLING_ATTR\n"; } // Emits the code to read an attribute from a precompiled header. void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute deserialization code", OS); Record *InhClass = Records.getClass("InheritableAttr"); std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), ArgRecords; std::vector<std::unique_ptr<Argument>> Args; OS << " switch (Kind) {\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " case attr::" << R.getName() << ": {\n"; if (R.isSubClassOf(InhClass)) OS << " bool isInherited = Record[Idx++];\n"; OS << " bool isImplicit = Record[Idx++];\n"; OS << " unsigned Spelling = Record[Idx++];\n"; ArgRecords = R.getValueAsListOfDefs("Args"); Args.clear(); for (const auto *Arg : ArgRecords) { Args.emplace_back(createArgument(*Arg, R.getName())); Args.back()->writePCHReadDecls(OS); } OS << " New = new (Context) " << R.getName() << "Attr(Range, Context"; for (auto const &ri : Args) { OS << ", "; ri->writePCHReadArgs(OS); } OS << ", Spelling);\n"; if (R.isSubClassOf(InhClass)) OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n"; OS << " New->setImplicit(isImplicit);\n"; OS << " break;\n"; OS << " }\n"; } OS << " }\n"; } // Emits the code to write an attribute to a precompiled header. void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute serialization code", OS); Record *InhClass = Records.getClass("InheritableAttr"); std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; OS << " switch (A->getKind()) {\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " case attr::" << R.getName() << ": {\n"; Args = R.getValueAsListOfDefs("Args"); if (R.isSubClassOf(InhClass) || !Args.empty()) OS << " const auto *SA = cast<" << R.getName() << "Attr>(A);\n"; if (R.isSubClassOf(InhClass)) OS << " Record.push_back(SA->isInherited());\n"; OS << " Record.push_back(A->isImplicit());\n"; OS << " Record.push_back(A->getSpellingListIndex());\n"; for (const auto *Arg : Args) createArgument(*Arg, R.getName())->writePCHWrite(OS); OS << " break;\n"; OS << " }\n"; } OS << " }\n"; } // Generate a conditional expression to check if the current target satisfies // the conditions for a TargetSpecificAttr record, and append the code for // those checks to the Test string. If the FnName string pointer is non-null, // append a unique suffix to distinguish this set of target checks from other // TargetSpecificAttr records. static void GenerateTargetSpecificAttrChecks(const Record *R, std::vector<std::string> &Arches, std::string &Test, std::string *FnName) { // It is assumed that there will be an llvm::Triple object // named "T" and a TargetInfo object named "Target" within // scope that can be used to determine whether the attribute exists in // a given target. Test += "("; for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) { std::string Part = *I; Test += "T.getArch() == llvm::Triple::" + Part; if (I + 1 != E) Test += " || "; if (FnName) *FnName += Part; } Test += ")"; // If the attribute is specific to particular OSes, check those. if (!R->isValueUnset("OSes")) { // We know that there was at least one arch test, so we need to and in the // OS tests. Test += " && ("; std::vector<std::string> OSes = R->getValueAsListOfStrings("OSes"); for (auto I = OSes.begin(), E = OSes.end(); I != E; ++I) { std::string Part = *I; Test += "T.getOS() == llvm::Triple::" + Part; if (I + 1 != E) Test += " || "; if (FnName) *FnName += Part; } Test += ")"; } // If one or more CXX ABIs are specified, check those as well. if (!R->isValueUnset("CXXABIs")) { Test += " && ("; std::vector<std::string> CXXABIs = R->getValueAsListOfStrings("CXXABIs"); for (auto I = CXXABIs.begin(), E = CXXABIs.end(); I != E; ++I) { std::string Part = *I; Test += "Target.getCXXABI().getKind() == TargetCXXABI::" + Part; if (I + 1 != E) Test += " || "; if (FnName) *FnName += Part; } Test += ")"; } } static void GenerateHasAttrSpellingStringSwitch( const std::vector<Record *> &Attrs, raw_ostream &OS, const std::string &Variety = "", const std::string &Scope = "") { for (const auto *Attr : Attrs) { // C++11-style attributes have specific version information associated with // them. If the attribute has no scope, the version information must not // have the default value (1), as that's incorrect. Instead, the unscoped // attribute version information should be taken from the SD-6 standing // document, which can be found at: // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations int Version = 1; if (Variety == "CXX11") { std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings"); for (const auto &Spelling : Spellings) { if (Spelling->getValueAsString("Variety") == "CXX11") { Version = static_cast<int>(Spelling->getValueAsInt("Version")); if (Scope.empty() && Version == 1) PrintError(Spelling->getLoc(), "C++ standard attributes must " "have valid version information."); break; } } } std::string Test; if (Attr->isSubClassOf("TargetSpecificAttr")) { const Record *R = Attr->getValueAsDef("Target"); std::vector<std::string> Arches = R->getValueAsListOfStrings("Arches"); GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr); // If this is the C++11 variety, also add in the LangOpts test. if (Variety == "CXX11") Test += " && LangOpts.CPlusPlus11"; } else if (Variety == "CXX11") // C++11 mode should be checked against LangOpts, which is presumed to be // present in the caller. Test = "LangOpts.CPlusPlus11"; std::string TestStr = !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1"; std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); for (const auto &S : Spellings) if (Variety.empty() || (Variety == S.variety() && (Scope.empty() || Scope == S.nameSpace()))) OS << " .Case(\"" << S.name() << "\", " << TestStr << ")\n"; } OS << " .Default(0);\n"; } // Emits the list of spellings for attributes. void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Code to implement the __has_attribute logic", OS); // Separate all of the attributes out into four group: generic, C++11, GNU, // and declspecs. Then generate a big switch statement for each of them. std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); std::vector<Record *> Declspec, GNU, Pragma; std::map<std::string, std::vector<Record *>> CXX; // Walk over the list of all attributes, and split them out based on the // spelling variety. for (auto *R : Attrs) { std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R); for (const auto &SI : Spellings) { const std::string &Variety = SI.variety(); if (Variety == "GNU") GNU.push_back(R); else if (Variety == "Declspec") Declspec.push_back(R); else if (Variety == "CXX11") CXX[SI.nameSpace()].push_back(R); else if (Variety == "Pragma") Pragma.push_back(R); } } OS << "const llvm::Triple &T = Target.getTriple();\n"; OS << "switch (Syntax) {\n"; OS << "case AttrSyntax::GNU:\n"; OS << " return llvm::StringSwitch<int>(Name)\n"; GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU"); OS << "case AttrSyntax::Declspec:\n"; OS << " return llvm::StringSwitch<int>(Name)\n"; GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec"); OS << "case AttrSyntax::Pragma:\n"; OS << " return llvm::StringSwitch<int>(Name)\n"; GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma"); OS << "case AttrSyntax::CXX: {\n"; // C++11-style attributes are further split out based on the Scope. for (auto I = CXX.cbegin(), E = CXX.cend(); I != E; ++I) { if (I != CXX.begin()) OS << " else "; if (I->first.empty()) OS << "if (!Scope || Scope->getName() == \"\") {\n"; else OS << "if (Scope->getName() == \"" << I->first << "\") {\n"; OS << " return llvm::StringSwitch<int>(Name)\n"; GenerateHasAttrSpellingStringSwitch(I->second, OS, "CXX11", I->first); OS << "}"; } OS << "\n}\n"; OS << "}\n"; } void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Code to translate different attribute spellings " "into internal identifiers", OS); OS << " switch (AttrKind) {\n"; ParsedAttrMap Attrs = getParsedAttrList(Records); for (const auto &I : Attrs) { const Record &R = *I.second; std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); OS << " case AT_" << I.first << ": {\n"; for (unsigned I = 0; I < Spellings.size(); ++ I) { OS << " if (Name == \"" << Spellings[I].name() << "\" && " << "SyntaxUsed == " << StringSwitch<unsigned>(Spellings[I].variety()) .Case("GNU", 0) .Case("CXX11", 1) .Case("Declspec", 2) .Case("Keyword", 3) .Case("Pragma", 4) .Default(0) << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n" << " return " << I << ";\n"; } OS << " break;\n"; OS << " }\n"; } OS << " }\n"; OS << " return 0;\n"; } // Emits code used by RecursiveASTVisitor to visit attributes void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS); std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); // Write method declarations for Traverse* methods. // We emit this here because we only generate methods for attributes that // are declared as ASTNodes. OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " bool Traverse" << R.getName() << "Attr(" << R.getName() << "Attr *A);\n"; OS << " bool Visit" << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" << " return true; \n" << " }\n"; } OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n"; // Write individual Traverse* methods for each attribute class. for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << "template <typename Derived>\n" << "bool VISITORCLASS<Derived>::Traverse" << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" << " if (!getDerived().VisitAttr(A))\n" << " return false;\n" << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n" << " return false;\n"; std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); for (const auto *Arg : ArgRecords) createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS); OS << " return true;\n"; OS << "}\n\n"; } // Write generic Traverse routine OS << "template <typename Derived>\n" << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n" << " if (!A)\n" << " return true;\n" << "\n" << " switch (A->getKind()) {\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " case attr::" << R.getName() << ":\n" << " return getDerived().Traverse" << R.getName() << "Attr(" << "cast<" << R.getName() << "Attr>(A));\n"; } OS << " }\n"; // end switch OS << " llvm_unreachable(\"bad attribute kind\");\n"; OS << "}\n"; // end function OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n"; } // Emits code to instantiate dependent attributes on templates. void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Template instantiation code for attributes", OS); std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); OS << "namespace clang {\n" << "namespace sema {\n\n" << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, " << "Sema &S,\n" << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n" << " switch (At->getKind()) {\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " case attr::" << R.getName() << ": {\n"; bool ShouldClone = R.getValueAsBit("Clone"); if (!ShouldClone) { OS << " return nullptr;\n"; OS << " }\n"; continue; } OS << " const auto *A = cast<" << R.getName() << "Attr>(At);\n"; bool TDependent = R.getValueAsBit("TemplateDependent"); if (!TDependent) { OS << " return A->clone(C);\n"; OS << " }\n"; continue; } std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); std::vector<std::unique_ptr<Argument>> Args; Args.reserve(ArgRecords.size()); for (const auto *ArgRecord : ArgRecords) Args.emplace_back(createArgument(*ArgRecord, R.getName())); for (auto const &ai : Args) ai->writeTemplateInstantiation(OS); OS << " return new (C) " << R.getName() << "Attr(A->getLocation(), C"; for (auto const &ai : Args) { OS << ", "; ai->writeTemplateInstantiationArgs(OS); } OS << ", A->getSpellingListIndex());\n }\n"; } OS << " } // end switch\n" << " llvm_unreachable(\"Unknown attribute!\");\n" << " return nullptr;\n" << "}\n\n" << "} // end namespace sema\n" << "} // end namespace clang\n"; } // Emits the list of parsed attributes. void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("List of all attributes that Clang recognizes", OS); OS << "#ifndef PARSED_ATTR\n"; OS << "#define PARSED_ATTR(NAME) NAME\n"; OS << "#endif\n\n"; ParsedAttrMap Names = getParsedAttrList(Records); for (const auto &I : Names) { OS << "PARSED_ATTR(" << I.first << ")\n"; } } static bool isArgVariadic(const Record &R, StringRef AttrName) { return createArgument(R, AttrName)->isVariadic(); } static void emitArgInfo(const Record &R, std::stringstream &OS) { // This function will count the number of arguments specified for the // attribute and emit the number of required arguments followed by the // number of optional arguments. std::vector<Record *> Args = R.getValueAsListOfDefs("Args"); unsigned ArgCount = 0, OptCount = 0; bool HasVariadic = false; for (const auto *Arg : Args) { Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount; if (!HasVariadic && isArgVariadic(*Arg, R.getName())) HasVariadic = true; } // If there is a variadic argument, we will set the optional argument count // to its largest value. Since it's currently a 4-bit number, we set it to 15. OS << ArgCount << ", " << (HasVariadic ? 15 : OptCount); } static void GenerateDefaultAppertainsTo(raw_ostream &OS) { OS << "static bool defaultAppertainsTo(Sema &, const AttributeList &,"; OS << "const Decl *) {\n"; OS << " return true;\n"; OS << "}\n\n"; } static std::string CalculateDiagnostic(const Record &S) { // If the SubjectList object has a custom diagnostic associated with it, // return that directly. std::string CustomDiag = S.getValueAsString("CustomDiag"); if (!CustomDiag.empty()) return CustomDiag; // Given the list of subjects, determine what diagnostic best fits. enum { Func = 1U << 0, Var = 1U << 1, ObjCMethod = 1U << 2, Param = 1U << 3, Class = 1U << 4, GenericRecord = 1U << 5, Type = 1U << 6, ObjCIVar = 1U << 7, ObjCProp = 1U << 8, ObjCInterface = 1U << 9, Block = 1U << 10, Namespace = 1U << 11, Field = 1U << 12, CXXMethod = 1U << 13, ObjCProtocol = 1U << 14, Enum = 1U << 15 }; uint32_t SubMask = 0; std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects"); for (const auto *Subject : Subjects) { const Record &R = *Subject; std::string Name; if (R.isSubClassOf("SubsetSubject")) { PrintError(R.getLoc(), "SubsetSubjects should use a custom diagnostic"); // As a fallback, look through the SubsetSubject to see what its base // type is, and use that. This needs to be updated if SubsetSubjects // are allowed within other SubsetSubjects. Name = R.getValueAsDef("Base")->getName(); } else Name = R.getName(); uint32_t V = StringSwitch<uint32_t>(Name) .Case("Function", Func) .Case("Var", Var) .Case("ObjCMethod", ObjCMethod) .Case("ParmVar", Param) .Case("TypedefName", Type) .Case("ObjCIvar", ObjCIVar) .Case("ObjCProperty", ObjCProp) .Case("Record", GenericRecord) .Case("ObjCInterface", ObjCInterface) .Case("ObjCProtocol", ObjCProtocol) .Case("Block", Block) .Case("CXXRecord", Class) .Case("Namespace", Namespace) .Case("Field", Field) .Case("CXXMethod", CXXMethod) .Case("Enum", Enum) .Default(0); if (!V) { // Something wasn't in our mapping, so be helpful and let the developer // know about it. PrintFatalError(R.getLoc(), "Unknown subject type: " + R.getName()); return ""; } SubMask |= V; } switch (SubMask) { // For the simple cases where there's only a single entry in the mask, we // don't have to resort to bit fiddling. case Func: return "ExpectedFunction"; case Var: return "ExpectedVariable"; case Param: return "ExpectedParameter"; case Class: return "ExpectedClass"; case Enum: return "ExpectedEnum"; case CXXMethod: // FIXME: Currently, this maps to ExpectedMethod based on existing code, // but should map to something a bit more accurate at some point. case ObjCMethod: return "ExpectedMethod"; case Type: return "ExpectedType"; case ObjCInterface: return "ExpectedObjectiveCInterface"; case ObjCProtocol: return "ExpectedObjectiveCProtocol"; // "GenericRecord" means struct, union or class; check the language options // and if not compiling for C++, strip off the class part. Note that this // relies on the fact that the context for this declares "Sema &S". case GenericRecord: return "(S.getLangOpts().CPlusPlus ? ExpectedStructOrUnionOrClass : " "ExpectedStructOrUnion)"; case Func | ObjCMethod | Block: return "ExpectedFunctionMethodOrBlock"; case Func | ObjCMethod | Class: return "ExpectedFunctionMethodOrClass"; case Func | Param: case Func | ObjCMethod | Param: return "ExpectedFunctionMethodOrParameter"; case Func | ObjCMethod: return "ExpectedFunctionOrMethod"; case Func | Var: return "ExpectedVariableOrFunction"; // If not compiling for C++, the class portion does not apply. case Func | Var | Class: return "(S.getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass : " "ExpectedVariableOrFunction)"; case ObjCMethod | ObjCProp: return "ExpectedMethodOrProperty"; case ObjCProtocol | ObjCInterface: return "ExpectedObjectiveCInterfaceOrProtocol"; case Field | Var: return "ExpectedFieldOrGlobalVar"; } PrintFatalError(S.getLoc(), "Could not deduce diagnostic argument for Attr subjects"); return ""; } static std::string GetSubjectWithSuffix(const Record *R) { std::string B = R->getName(); if (B == "DeclBase") return "Decl"; return B + "Decl"; } static std::string GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) { std::string FnName = "is" + Subject.getName(); // If this code has already been generated, simply return the previous // instance of it. static std::set<std::string> CustomSubjectSet; auto I = CustomSubjectSet.find(FnName); if (I != CustomSubjectSet.end()) return *I; Record *Base = Subject.getValueAsDef("Base"); // Not currently support custom subjects within custom subjects. if (Base->isSubClassOf("SubsetSubject")) { PrintFatalError(Subject.getLoc(), "SubsetSubjects within SubsetSubjects is not supported"); return ""; } OS << "static bool " << FnName << "(const Decl *D) {\n"; OS << " if (const auto *S = dyn_cast<"; OS << GetSubjectWithSuffix(Base); OS << ">(D))\n"; OS << " return " << Subject.getValueAsString("CheckCode") << ";\n"; OS << " return false;\n"; OS << "}\n\n"; CustomSubjectSet.insert(FnName); return FnName; } static std::string GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) { // If the attribute does not contain a Subjects definition, then use the // default appertainsTo logic. if (Attr.isValueUnset("Subjects")) return "defaultAppertainsTo"; const Record *SubjectObj = Attr.getValueAsDef("Subjects"); std::vector<Record*> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); // If the list of subjects is empty, it is assumed that the attribute // appertains to everything. if (Subjects.empty()) return "defaultAppertainsTo"; bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn"); // Otherwise, generate an appertainsTo check specific to this attribute which // checks all of the given subjects against the Decl passed in. Return the // name of that check to the caller. std::string FnName = "check" + Attr.getName() + "AppertainsTo"; std::stringstream SS; SS << "static bool " << FnName << "(Sema &S, const AttributeList &Attr, "; SS << "const Decl *D) {\n"; SS << " if ("; for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) { // If the subject has custom code associated with it, generate a function // for it. The function cannot be inlined into this check (yet) because it // requires the subject to be of a specific type, and were that information // inlined here, it would not support an attribute with multiple custom // subjects. if ((*I)->isSubClassOf("SubsetSubject")) { SS << "!" << GenerateCustomAppertainsTo(**I, OS) << "(D)"; } else { SS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)"; } if (I + 1 != E) SS << " && "; } SS << ") {\n"; SS << " S.Diag(Attr.getLoc(), diag::"; SS << (Warn ? "warn_attribute_wrong_decl_type" : "err_attribute_wrong_decl_type"); SS << ")\n"; SS << " << Attr.getName() << "; SS << CalculateDiagnostic(*SubjectObj) << ";\n"; SS << " return false;\n"; SS << " }\n"; SS << " return true;\n"; SS << "}\n\n"; OS << SS.str(); return FnName; } static void GenerateDefaultLangOptRequirements(raw_ostream &OS) { OS << "static bool defaultDiagnoseLangOpts(Sema &, "; OS << "const AttributeList &) {\n"; OS << " return true;\n"; OS << "}\n\n"; } static std::string GenerateLangOptRequirements(const Record &R, raw_ostream &OS) { // If the attribute has an empty or unset list of language requirements, // return the default handler. std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts"); if (LangOpts.empty()) return "defaultDiagnoseLangOpts"; // Generate the test condition, as well as a unique function name for the // diagnostic test. The list of options should usually be short (one or two // options), and the uniqueness isn't strictly necessary (it is just for // codegen efficiency). std::string FnName = "check", Test; for (auto I = LangOpts.begin(), E = LangOpts.end(); I != E; ++I) { std::string Part = (*I)->getValueAsString("Name"); if ((*I)->getValueAsBit("Negated")) Test += "!"; Test += "S.LangOpts." + Part; if (I + 1 != E) Test += " || "; FnName += Part; } FnName += "LangOpts"; // If this code has already been generated, simply return the previous // instance of it. static std::set<std::string> CustomLangOptsSet; auto I = CustomLangOptsSet.find(FnName); if (I != CustomLangOptsSet.end()) return *I; OS << "static bool " << FnName << "(Sema &S, const AttributeList &Attr) {\n"; OS << " if (" << Test << ")\n"; OS << " return true;\n\n"; OS << " S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) "; OS << "<< Attr.getName();\n"; OS << " return false;\n"; OS << "}\n\n"; CustomLangOptsSet.insert(FnName); return FnName; } static void GenerateDefaultTargetRequirements(raw_ostream &OS) { OS << "static bool defaultTargetRequirements(const TargetInfo &) {\n"; OS << " return true;\n"; OS << "}\n\n"; } static std::string GenerateTargetRequirements(const Record &Attr, const ParsedAttrMap &Dupes, raw_ostream &OS) { // If the attribute is not a target specific attribute, return the default // target handler. if (!Attr.isSubClassOf("TargetSpecificAttr")) return "defaultTargetRequirements"; // Get the list of architectures to be tested for. const Record *R = Attr.getValueAsDef("Target"); std::vector<std::string> Arches = R->getValueAsListOfStrings("Arches"); if (Arches.empty()) { PrintError(Attr.getLoc(), "Empty list of target architectures for a " "target-specific attr"); return "defaultTargetRequirements"; } // If there are other attributes which share the same parsed attribute kind, // such as target-specific attributes with a shared spelling, collapse the // duplicate architectures. This is required because a shared target-specific // attribute has only one AttributeList::Kind enumeration value, but it // applies to multiple target architectures. In order for the attribute to be // considered valid, all of its architectures need to be included. if (!Attr.isValueUnset("ParseKind")) { std::string APK = Attr.getValueAsString("ParseKind"); for (const auto &I : Dupes) { if (I.first == APK) { std::vector<std::string> DA = I.second->getValueAsDef("Target") ->getValueAsListOfStrings("Arches"); std::copy(DA.begin(), DA.end(), std::back_inserter(Arches)); } } } std::string FnName = "isTarget"; std::string Test; GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName); // If this code has already been generated, simply return the previous // instance of it. static std::set<std::string> CustomTargetSet; auto I = CustomTargetSet.find(FnName); if (I != CustomTargetSet.end()) return *I; OS << "static bool " << FnName << "(const TargetInfo &Target) {\n"; OS << " const llvm::Triple &T = Target.getTriple();\n"; OS << " return " << Test << ";\n"; OS << "}\n\n"; CustomTargetSet.insert(FnName); return FnName; } static void GenerateDefaultSpellingIndexToSemanticSpelling(raw_ostream &OS) { OS << "static unsigned defaultSpellingIndexToSemanticSpelling(" << "const AttributeList &Attr) {\n"; OS << " return UINT_MAX;\n"; OS << "}\n\n"; } static std::string GenerateSpellingIndexToSemanticSpelling(const Record &Attr, raw_ostream &OS) { // If the attribute does not have a semantic form, we can bail out early. if (!Attr.getValueAsBit("ASTNode")) return "defaultSpellingIndexToSemanticSpelling"; std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); // If there are zero or one spellings, or all of the spellings share the same // name, we can also bail out early. if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings)) return "defaultSpellingIndexToSemanticSpelling"; // Generate the enumeration we will use for the mapping. SemanticSpellingMap SemanticToSyntacticMap; std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); std::string Name = Attr.getName() + "AttrSpellingMap"; OS << "static unsigned " << Name << "(const AttributeList &Attr) {\n"; OS << Enum; OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n"; WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS); OS << "}\n\n"; return Name; } static bool IsKnownToGCC(const Record &Attr) { // Look at the spellings for this subject; if there are any spellings which // claim to be known to GCC, the attribute is known to GCC. std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); for (const auto &I : Spellings) { if (I.knownToGCC()) return true; } return false; } /// Emits the parsed attribute helpers void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Parsed attribute helpers", OS); // Get the list of parsed attributes, and accept the optional list of // duplicates due to the ParseKind. ParsedAttrMap Dupes; ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes); // Generate the default appertainsTo, target and language option diagnostic, // and spelling list index mapping methods. GenerateDefaultAppertainsTo(OS); GenerateDefaultLangOptRequirements(OS); GenerateDefaultTargetRequirements(OS); GenerateDefaultSpellingIndexToSemanticSpelling(OS); // Generate the appertainsTo diagnostic methods and write their names into // another mapping. At the same time, generate the AttrInfoMap object // contents. Due to the reliance on generated code, use separate streams so // that code will not be interleaved. std::stringstream SS; for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { // TODO: If the attribute's kind appears in the list of duplicates, that is // because it is a target-specific attribute that appears multiple times. // It would be beneficial to test whether the duplicates are "similar // enough" to each other to not cause problems. For instance, check that // the spellings are identical, and custom parsing rules match, etc. // We need to generate struct instances based off ParsedAttrInfo from // AttributeList.cpp. SS << " { "; emitArgInfo(*I->second, SS); SS << ", " << I->second->getValueAsBit("HasCustomParsing"); SS << ", " << I->second->isSubClassOf("TargetSpecificAttr"); SS << ", " << I->second->isSubClassOf("TypeAttr"); SS << ", " << I->second->isSubClassOf("StmtAttr"); SS << ", " << IsKnownToGCC(*I->second); SS << ", " << GenerateAppertainsTo(*I->second, OS); SS << ", " << GenerateLangOptRequirements(*I->second, OS); SS << ", " << GenerateTargetRequirements(*I->second, Dupes, OS); SS << ", " << GenerateSpellingIndexToSemanticSpelling(*I->second, OS); SS << " }"; if (I + 1 != E) SS << ","; SS << " // AT_" << I->first << "\n"; } OS << "static const ParsedAttrInfo AttrInfoMap[AttributeList::UnknownAttribute + 1] = {\n"; OS << SS.str(); OS << "};\n\n"; } // Emits the kind list of parsed attributes void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute name matcher", OS); std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); std::vector<StringMatcher::StringPair> GNU, Declspec, CXX11, Keywords, Pragma; std::set<std::string> Seen; for (const auto *A : Attrs) { const Record &Attr = *A; bool SemaHandler = Attr.getValueAsBit("SemaHandler"); bool Ignored = Attr.getValueAsBit("Ignored"); if (SemaHandler || Ignored) { // Attribute spellings can be shared between target-specific attributes, // and can be shared between syntaxes for the same attribute. For // instance, an attribute can be spelled GNU<"interrupt"> for an ARM- // specific attribute, or MSP430-specific attribute. Additionally, an // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport"> // for the same semantic attribute. Ultimately, we need to map each of // these to a single AttributeList::Kind value, but the StringMatcher // class cannot handle duplicate match strings. So we generate a list of // string to match based on the syntax, and emit multiple string matchers // depending on the syntax used. std::string AttrName; if (Attr.isSubClassOf("TargetSpecificAttr") && !Attr.isValueUnset("ParseKind")) { AttrName = Attr.getValueAsString("ParseKind"); if (Seen.find(AttrName) != Seen.end()) continue; Seen.insert(AttrName); } else AttrName = NormalizeAttrName(StringRef(Attr.getName())).str(); std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); for (const auto &S : Spellings) { const std::string &RawSpelling = S.name(); std::vector<StringMatcher::StringPair> *Matches = nullptr; std::string Spelling; const std::string &Variety = S.variety(); if (Variety == "CXX11") { Matches = &CXX11; Spelling += S.nameSpace(); Spelling += "::"; } else if (Variety == "GNU") Matches = &GNU; else if (Variety == "Declspec") Matches = &Declspec; else if (Variety == "Keyword") Matches = &Keywords; else if (Variety == "Pragma") Matches = &Pragma; assert(Matches && "Unsupported spelling variety found"); Spelling += NormalizeAttrSpelling(RawSpelling); if (SemaHandler) Matches->push_back(StringMatcher::StringPair(Spelling, "return AttributeList::AT_" + AttrName + ";")); else Matches->push_back(StringMatcher::StringPair(Spelling, "return AttributeList::IgnoredAttribute;")); } } } OS << "static AttributeList::Kind getAttrKind(StringRef Name, "; OS << "AttributeList::Syntax Syntax) {\n"; OS << " if (AttributeList::AS_GNU == Syntax) {\n"; StringMatcher("Name", GNU, OS).Emit(); OS << " } else if (AttributeList::AS_Declspec == Syntax) {\n"; StringMatcher("Name", Declspec, OS).Emit(); OS << " } else if (AttributeList::AS_CXX11 == Syntax) {\n"; StringMatcher("Name", CXX11, OS).Emit(); OS << " } else if (AttributeList::AS_Keyword == Syntax || "; OS << "AttributeList::AS_ContextSensitiveKeyword == Syntax) {\n"; StringMatcher("Name", Keywords, OS).Emit(); OS << " } else if (AttributeList::AS_Pragma == Syntax) {\n"; StringMatcher("Name", Pragma, OS).Emit(); OS << " }\n"; OS << " return AttributeList::UnknownAttribute;\n" << "}\n"; } // Emits the code to dump an attribute. void EmitClangAttrDump(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute dumper", OS); OS << " switch (A->getKind()) {\n"; std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " case attr::" << R.getName() << ": {\n"; // If the attribute has a semantically-meaningful name (which is determined // by whether there is a Spelling enumeration for it), then write out the // spelling used for the attribute. std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings)) OS << " OS << \" \" << A->getSpelling();\n"; Args = R.getValueAsListOfDefs("Args"); if (!Args.empty()) { OS << " const auto *SA = cast<" << R.getName() << "Attr>(A);\n"; for (const auto *Arg : Args) createArgument(*Arg, R.getName())->writeDump(OS); for (const auto *AI : Args) createArgument(*AI, R.getName())->writeDumpChildren(OS); } OS << " break;\n" " }\n"; } OS << " }\n"; } void EmitClangAttrParserStringSwitches(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS); emitClangAttrArgContextList(Records, OS); emitClangAttrIdentifierArgList(Records, OS); emitClangAttrTypeArgList(Records, OS); emitClangAttrLateParsedList(Records, OS); } class DocumentationData { public: const Record *Documentation; const Record *Attribute; DocumentationData(const Record &Documentation, const Record &Attribute) : Documentation(&Documentation), Attribute(&Attribute) {} }; static void WriteCategoryHeader(const Record *DocCategory, raw_ostream &OS) { const std::string &Name = DocCategory->getValueAsString("Name"); OS << Name << "\n" << std::string(Name.length(), '=') << "\n"; // If there is content, print that as well. std::string ContentStr = DocCategory->getValueAsString("Content"); // Trim leading and trailing newlines and spaces. OS << StringRef(ContentStr).trim(); OS << "\n\n"; } enum SpellingKind { GNU = 1 << 0, CXX11 = 1 << 1, Declspec = 1 << 2, Keyword = 1 << 3, Pragma = 1 << 4 }; static void WriteDocumentation(const DocumentationData &Doc, raw_ostream &OS) { // FIXME: there is no way to have a per-spelling category for the attribute // documentation. This may not be a limiting factor since the spellings // should generally be consistently applied across the category. std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Doc.Attribute); // Determine the heading to be used for this attribute. std::string Heading = Doc.Documentation->getValueAsString("Heading"); bool CustomHeading = !Heading.empty(); if (Heading.empty()) { // If there's only one spelling, we can simply use that. if (Spellings.size() == 1) Heading = Spellings.begin()->name(); else { std::set<std::string> Uniques; for (auto I = Spellings.begin(), E = Spellings.end(); I != E && Uniques.size() <= 1; ++I) { std::string Spelling = NormalizeNameForSpellingComparison(I->name()); Uniques.insert(Spelling); } // If the semantic map has only one spelling, that is sufficient for our // needs. if (Uniques.size() == 1) Heading = *Uniques.begin(); } } // If the heading is still empty, it is an error. if (Heading.empty()) PrintFatalError(Doc.Attribute->getLoc(), "This attribute requires a heading to be specified"); // Gather a list of unique spellings; this is not the same as the semantic // spelling for the attribute. Variations in underscores and other non- // semantic characters are still acceptable. std::vector<std::string> Names; unsigned SupportedSpellings = 0; for (const auto &I : Spellings) { SpellingKind Kind = StringSwitch<SpellingKind>(I.variety()) .Case("GNU", GNU) .Case("CXX11", CXX11) .Case("Declspec", Declspec) .Case("Keyword", Keyword) .Case("Pragma", Pragma); // Mask in the supported spelling. SupportedSpellings |= Kind; std::string Name; if (Kind == CXX11 && !I.nameSpace().empty()) Name = I.nameSpace() + "::"; Name += I.name(); // If this name is the same as the heading, do not add it. if (Name != Heading) Names.push_back(Name); } // Print out the heading for the attribute. If there are alternate spellings, // then display those after the heading. if (!CustomHeading && !Names.empty()) { Heading += " ("; for (auto I = Names.begin(), E = Names.end(); I != E; ++I) { if (I != Names.begin()) Heading += ", "; Heading += *I; } Heading += ")"; } OS << Heading << "\n" << std::string(Heading.length(), '-') << "\n"; if (!SupportedSpellings) PrintFatalError(Doc.Attribute->getLoc(), "Attribute has no supported spellings; cannot be " "documented"); // List what spelling syntaxes the attribute supports. OS << ".. csv-table:: Supported Syntaxes\n"; OS << " :header: \"GNU\", \"C++11\", \"__declspec\", \"Keyword\","; OS << " \"Pragma\"\n\n"; OS << " \""; if (SupportedSpellings & GNU) OS << "X"; OS << "\",\""; if (SupportedSpellings & CXX11) OS << "X"; OS << "\",\""; if (SupportedSpellings & Declspec) OS << "X"; OS << "\",\""; if (SupportedSpellings & Keyword) OS << "X"; OS << "\", \""; if (SupportedSpellings & Pragma) OS << "X"; OS << "\"\n\n"; // If the attribute is deprecated, print a message about it, and possibly // provide a replacement attribute. if (!Doc.Documentation->isValueUnset("Deprecated")) { OS << "This attribute has been deprecated, and may be removed in a future " << "version of Clang."; const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated"); std::string Replacement = Deprecated.getValueAsString("Replacement"); if (!Replacement.empty()) OS << " This attribute has been superseded by ``" << Replacement << "``."; OS << "\n\n"; } std::string ContentStr = Doc.Documentation->getValueAsString("Content"); // Trim leading and trailing newlines and spaces. OS << StringRef(ContentStr).trim(); OS << "\n\n\n"; } void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) { // Get the documentation introduction paragraph. const Record *Documentation = Records.getDef("GlobalDocumentation"); if (!Documentation) { PrintFatalError("The Documentation top-level definition is missing, " "no documentation will be generated."); return; } OS << Documentation->getValueAsString("Intro") << "\n"; // Gather the Documentation lists from each of the attributes, based on the // category provided. std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); std::map<const Record *, std::vector<DocumentationData>> SplitDocs; for (const auto *A : Attrs) { const Record &Attr = *A; std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation"); for (const auto *D : Docs) { const Record &Doc = *D; const Record *Category = Doc.getValueAsDef("Category"); // If the category is "undocumented", then there cannot be any other // documentation categories (otherwise, the attribute would become // documented). std::string Cat = Category->getValueAsString("Name"); bool Undocumented = Cat == "Undocumented"; if (Undocumented && Docs.size() > 1) PrintFatalError(Doc.getLoc(), "Attribute is \"Undocumented\", but has multiple " "documentation categories"); if (!Undocumented) SplitDocs[Category].push_back(DocumentationData(Doc, Attr)); } } // Having split the attributes out based on what documentation goes where, // we can begin to generate sections of documentation. for (const auto &I : SplitDocs) { WriteCategoryHeader(I.first, OS); // Walk over each of the attributes in the category and write out their // documentation. for (const auto &Doc : I.second) WriteDocumentation(Doc, OS); } } } // end namespace clang