//===-- asan_fake_stack_test.cc -------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // // Tests for FakeStack. // This test file should be compiled w/o asan instrumentation. //===----------------------------------------------------------------------===// #include "asan_fake_stack.h" #include "asan_test_utils.h" #include "sanitizer_common/sanitizer_common.h" #include <assert.h> #include <stdlib.h> #include <stdio.h> #include <map> namespace __asan { TEST(FakeStack, FlagsSize) { EXPECT_EQ(FakeStack::SizeRequiredForFlags(10), 1U << 5); EXPECT_EQ(FakeStack::SizeRequiredForFlags(11), 1U << 6); EXPECT_EQ(FakeStack::SizeRequiredForFlags(20), 1U << 15); } TEST(FakeStack, RequiredSize) { // for (int i = 15; i < 20; i++) { // uptr alloc_size = FakeStack::RequiredSize(i); // printf("%zdK ==> %zd\n", 1 << (i - 10), alloc_size); // } EXPECT_EQ(FakeStack::RequiredSize(15), 365568U); EXPECT_EQ(FakeStack::RequiredSize(16), 727040U); EXPECT_EQ(FakeStack::RequiredSize(17), 1449984U); EXPECT_EQ(FakeStack::RequiredSize(18), 2895872U); EXPECT_EQ(FakeStack::RequiredSize(19), 5787648U); } TEST(FakeStack, FlagsOffset) { for (uptr stack_size_log = 15; stack_size_log <= 20; stack_size_log++) { uptr stack_size = 1UL << stack_size_log; uptr offset = 0; for (uptr class_id = 0; class_id < FakeStack::kNumberOfSizeClasses; class_id++) { uptr frame_size = FakeStack::BytesInSizeClass(class_id); uptr num_flags = stack_size / frame_size; EXPECT_EQ(offset, FakeStack::FlagsOffset(stack_size_log, class_id)); // printf("%zd: %zd => %zd %zd\n", stack_size_log, class_id, offset, // FakeStack::FlagsOffset(stack_size_log, class_id)); offset += num_flags; } } } #if !defined(_WIN32) // FIXME: Fails due to OOM on Windows. TEST(FakeStack, CreateDestroy) { for (int i = 0; i < 1000; i++) { for (uptr stack_size_log = 20; stack_size_log <= 22; stack_size_log++) { FakeStack *fake_stack = FakeStack::Create(stack_size_log); fake_stack->Destroy(0); } } } #endif TEST(FakeStack, ModuloNumberOfFrames) { EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, 0), 0U); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<15)), 0U); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<10)), 0U); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<9)), 0U); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<8)), 1U<<8); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<15) + 1), 1U); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 1, 0), 0U); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 1, 1<<9), 0U); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 1, 1<<8), 0U); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 1, 1<<7), 1U<<7); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 0), 0U); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 1), 1U); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 15), 15U); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 16), 0U); EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 17), 1U); } TEST(FakeStack, GetFrame) { const uptr stack_size_log = 20; const uptr stack_size = 1 << stack_size_log; FakeStack *fs = FakeStack::Create(stack_size_log); u8 *base = fs->GetFrame(stack_size_log, 0, 0); EXPECT_EQ(base, reinterpret_cast<u8 *>(fs) + fs->SizeRequiredForFlags(stack_size_log) + 4096); EXPECT_EQ(base + 0*stack_size + 64 * 7, fs->GetFrame(stack_size_log, 0, 7U)); EXPECT_EQ(base + 1*stack_size + 128 * 3, fs->GetFrame(stack_size_log, 1, 3U)); EXPECT_EQ(base + 2*stack_size + 256 * 5, fs->GetFrame(stack_size_log, 2, 5U)); fs->Destroy(0); } TEST(FakeStack, Allocate) { const uptr stack_size_log = 19; FakeStack *fs = FakeStack::Create(stack_size_log); std::map<FakeFrame *, uptr> s; for (int iter = 0; iter < 2; iter++) { s.clear(); for (uptr cid = 0; cid < FakeStack::kNumberOfSizeClasses; cid++) { uptr n = FakeStack::NumberOfFrames(stack_size_log, cid); uptr bytes_in_class = FakeStack::BytesInSizeClass(cid); for (uptr j = 0; j < n; j++) { FakeFrame *ff = fs->Allocate(stack_size_log, cid, 0); uptr x = reinterpret_cast<uptr>(ff); EXPECT_TRUE(s.insert(std::make_pair(ff, cid)).second); EXPECT_EQ(x, fs->AddrIsInFakeStack(x)); EXPECT_EQ(x, fs->AddrIsInFakeStack(x + 1)); EXPECT_EQ(x, fs->AddrIsInFakeStack(x + bytes_in_class - 1)); EXPECT_NE(x, fs->AddrIsInFakeStack(x + bytes_in_class)); } // We are out of fake stack, so Allocate should return 0. EXPECT_EQ(0UL, fs->Allocate(stack_size_log, cid, 0)); } for (std::map<FakeFrame *, uptr>::iterator it = s.begin(); it != s.end(); ++it) { fs->Deallocate(reinterpret_cast<uptr>(it->first), it->second); } } fs->Destroy(0); } static void RecursiveFunction(FakeStack *fs, int depth) { uptr class_id = depth / 3; FakeFrame *ff = fs->Allocate(fs->stack_size_log(), class_id, 0); if (depth) { RecursiveFunction(fs, depth - 1); RecursiveFunction(fs, depth - 1); } fs->Deallocate(reinterpret_cast<uptr>(ff), class_id); } TEST(FakeStack, RecursiveStressTest) { const uptr stack_size_log = 16; FakeStack *fs = FakeStack::Create(stack_size_log); RecursiveFunction(fs, 22); // with 26 runs for 2-3 seconds. fs->Destroy(0); } } // namespace __asan