//===-- working_set.cpp ---------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of EfficiencySanitizer, a family of performance tuners. // // This file contains working-set-specific code. //===----------------------------------------------------------------------===// #include "working_set.h" #include "esan.h" #include "esan_circular_buffer.h" #include "esan_flags.h" #include "esan_shadow.h" #include "esan_sideline.h" #include "sanitizer_common/sanitizer_procmaps.h" // We shadow every cache line of app memory with one shadow byte. // - The highest bit of each shadow byte indicates whether the corresponding // cache line has ever been accessed. // - The lowest bit of each shadow byte indicates whether the corresponding // cache line was accessed since the last sample. // - The other bits are used for working set snapshots at successively // lower frequencies, each bit to the left from the lowest bit stepping // down the frequency by 2 to the power of getFlags()->snapshot_step. // Thus we have something like this: // Bit 0: Since last sample // Bit 1: Since last 2^2 samples // Bit 2: Since last 2^4 samples // Bit 3: ... // Bit 7: Ever accessed. // We live with races in accessing each shadow byte. typedef unsigned char byte; namespace __esan { // Our shadow memory assumes that the line size is 64. static const u32 CacheLineSize = 64; // See the shadow byte layout description above. static const u32 TotalWorkingSetBitIdx = 7; // We accumulate to the left until we hit this bit. // We don't need to accumulate to the final bit as it's set on each ref // by the compiler instrumentation. static const u32 MaxAccumBitIdx = 6; static const u32 CurWorkingSetBitIdx = 0; static const byte ShadowAccessedVal = (1 << TotalWorkingSetBitIdx) | (1 << CurWorkingSetBitIdx); static SidelineThread Thread; // If we use real-time-based timer samples this won't overflow in any realistic // scenario, but if we switch to some other unit (such as memory accesses) we // may want to consider a 64-bit int. static u32 SnapshotNum; // We store the wset size for each of 8 different sampling frequencies. static const u32 NumFreq = 8; // One for each bit of our shadow bytes. // We cannot use static objects as the global destructor is called // prior to our finalize routine. // These are each circular buffers, sized up front. CircularBuffer<u32> SizePerFreq[NumFreq]; // We cannot rely on static initializers (they may run too late) but // we record the size here for clarity: u32 CircularBufferSizes[NumFreq] = { // These are each mmap-ed so our minimum is one page. 32*1024, 16*1024, 8*1024, 4*1024, 4*1024, 4*1024, 4*1024, 4*1024, }; void processRangeAccessWorkingSet(uptr PC, uptr Addr, SIZE_T Size, bool IsWrite) { if (Size == 0) return; SIZE_T I = 0; uptr LineSize = getFlags()->cache_line_size; // As Addr+Size could overflow at the top of a 32-bit address space, // we avoid the simpler formula that rounds the start and end. SIZE_T NumLines = Size / LineSize + // Add any extra at the start or end adding on an extra line: (LineSize - 1 + Addr % LineSize + Size % LineSize) / LineSize; byte *Shadow = (byte *)appToShadow(Addr); // Write shadow bytes until we're word-aligned. while (I < NumLines && (uptr)Shadow % 4 != 0) { if ((*Shadow & ShadowAccessedVal) != ShadowAccessedVal) *Shadow |= ShadowAccessedVal; ++Shadow; ++I; } // Write whole shadow words at a time. // Using a word-stride loop improves the runtime of a microbenchmark of // memset calls by 10%. u32 WordValue = ShadowAccessedVal | ShadowAccessedVal << 8 | ShadowAccessedVal << 16 | ShadowAccessedVal << 24; while (I + 4 <= NumLines) { if ((*(u32*)Shadow & WordValue) != WordValue) *(u32*)Shadow |= WordValue; Shadow += 4; I += 4; } // Write any trailing shadow bytes. while (I < NumLines) { if ((*Shadow & ShadowAccessedVal) != ShadowAccessedVal) *Shadow |= ShadowAccessedVal; ++Shadow; ++I; } } // This routine will word-align ShadowStart and ShadowEnd prior to scanning. // It does *not* clear for BitIdx==TotalWorkingSetBitIdx, as that top bit // measures the access during the entire execution and should never be cleared. static u32 countAndClearShadowValues(u32 BitIdx, uptr ShadowStart, uptr ShadowEnd) { u32 WorkingSetSize = 0; u32 ByteValue = 0x1 << BitIdx; u32 WordValue = ByteValue | ByteValue << 8 | ByteValue << 16 | ByteValue << 24; // Get word aligned start. ShadowStart = RoundDownTo(ShadowStart, sizeof(u32)); bool Accum = getFlags()->record_snapshots && BitIdx < MaxAccumBitIdx; // Do not clear the bit that measures access during the entire execution. bool Clear = BitIdx < TotalWorkingSetBitIdx; for (u32 *Ptr = (u32 *)ShadowStart; Ptr < (u32 *)ShadowEnd; ++Ptr) { if ((*Ptr & WordValue) != 0) { byte *BytePtr = (byte *)Ptr; for (u32 j = 0; j < sizeof(u32); ++j) { if (BytePtr[j] & ByteValue) { ++WorkingSetSize; if (Accum) { // Accumulate to the lower-frequency bit to the left. BytePtr[j] |= (ByteValue << 1); } } } if (Clear) { // Clear this bit from every shadow byte. *Ptr &= ~WordValue; } } } return WorkingSetSize; } // Scan shadow memory to calculate the number of cache lines being accessed, // i.e., the number of non-zero bits indexed by BitIdx in each shadow byte. // We also clear the lowest bits (most recent working set snapshot). // We do *not* clear for BitIdx==TotalWorkingSetBitIdx, as that top bit // measures the access during the entire execution and should never be cleared. static u32 computeWorkingSizeAndReset(u32 BitIdx) { u32 WorkingSetSize = 0; MemoryMappingLayout MemIter(true/*cache*/); uptr Start, End, Prot; while (MemIter.Next(&Start, &End, nullptr/*offs*/, nullptr/*file*/, 0/*file size*/, &Prot)) { VPrintf(4, "%s: considering %p-%p app=%d shadow=%d prot=%u\n", __FUNCTION__, Start, End, Prot, isAppMem(Start), isShadowMem(Start)); if (isShadowMem(Start) && (Prot & MemoryMappingLayout::kProtectionWrite)) { VPrintf(3, "%s: walking %p-%p\n", __FUNCTION__, Start, End); WorkingSetSize += countAndClearShadowValues(BitIdx, Start, End); } } return WorkingSetSize; } // This is invoked from a signal handler but in a sideline thread doing nothing // else so it is a little less fragile than a typical signal handler. static void takeSample(void *Arg) { u32 BitIdx = CurWorkingSetBitIdx; u32 Freq = 1; ++SnapshotNum; // Simpler to skip 0 whose mod matches everything. while (BitIdx <= MaxAccumBitIdx && (SnapshotNum % Freq) == 0) { u32 NumLines = computeWorkingSizeAndReset(BitIdx); VReport(1, "%s: snapshot #%5d bit %d freq %4d: %8u\n", SanitizerToolName, SnapshotNum, BitIdx, Freq, NumLines); SizePerFreq[BitIdx].push_back(NumLines); Freq = Freq << getFlags()->snapshot_step; BitIdx++; } } // Initialization that must be done before any instrumented code is executed. void initializeShadowWorkingSet() { CHECK(getFlags()->cache_line_size == CacheLineSize); registerMemoryFaultHandler(); } void initializeWorkingSet() { if (getFlags()->record_snapshots) { for (u32 i = 0; i < NumFreq; ++i) SizePerFreq[i].initialize(CircularBufferSizes[i]); Thread.launchThread(takeSample, nullptr, getFlags()->sample_freq); } } static u32 getPeriodForPrinting(u32 MilliSec, const char *&Unit) { if (MilliSec > 600000) { Unit = "min"; return MilliSec / 60000; } else if (MilliSec > 10000) { Unit = "sec"; return MilliSec / 1000; } else { Unit = "ms"; return MilliSec; } } static u32 getSizeForPrinting(u32 NumOfCachelines, const char *&Unit) { // We need a constant to avoid software divide support: static const u32 KilobyteCachelines = (0x1 << 10) / CacheLineSize; static const u32 MegabyteCachelines = KilobyteCachelines << 10; if (NumOfCachelines > 10 * MegabyteCachelines) { Unit = "MB"; return NumOfCachelines / MegabyteCachelines; } else if (NumOfCachelines > 10 * KilobyteCachelines) { Unit = "KB"; return NumOfCachelines / KilobyteCachelines; } else { Unit = "Bytes"; return NumOfCachelines * CacheLineSize; } } void reportWorkingSet() { const char *Unit; if (getFlags()->record_snapshots) { u32 Freq = 1; Report(" Total number of samples: %u\n", SnapshotNum); for (u32 i = 0; i < NumFreq; ++i) { u32 Time = getPeriodForPrinting(getFlags()->sample_freq*Freq, Unit); Report(" Samples array #%d at period %u %s\n", i, Time, Unit); // FIXME: report whether we wrapped around and thus whether we // have data on the whole run or just the last N samples. for (u32 j = 0; j < SizePerFreq[i].size(); ++j) { u32 Size = getSizeForPrinting(SizePerFreq[i][j], Unit); Report("#%4d: %8u %s (%9u cache lines)\n", j, Size, Unit, SizePerFreq[i][j]); } Freq = Freq << getFlags()->snapshot_step; } } // Get the working set size for the entire execution. u32 NumOfCachelines = computeWorkingSizeAndReset(TotalWorkingSetBitIdx); u32 Size = getSizeForPrinting(NumOfCachelines, Unit); Report(" %s: the total working set size: %u %s (%u cache lines)\n", SanitizerToolName, Size, Unit, NumOfCachelines); } int finalizeWorkingSet() { if (getFlags()->record_snapshots) Thread.joinThread(); reportWorkingSet(); if (getFlags()->record_snapshots) { for (u32 i = 0; i < NumFreq; ++i) SizePerFreq[i].free(); } return 0; } } // namespace __esan