//=-- lsan_common_linux.cc ------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of LeakSanitizer. // Implementation of common leak checking functionality. Linux-specific code. // //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_platform.h" #include "lsan_common.h" #if CAN_SANITIZE_LEAKS && SANITIZER_LINUX #include <link.h> #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_flags.h" #include "sanitizer_common/sanitizer_linux.h" #include "sanitizer_common/sanitizer_stackdepot.h" namespace __lsan { static const char kLinkerName[] = "ld"; static char linker_placeholder[sizeof(LoadedModule)] ALIGNED(64); static LoadedModule *linker = nullptr; static bool IsLinker(const char* full_name) { return LibraryNameIs(full_name, kLinkerName); } void InitializePlatformSpecificModules() { ListOfModules modules; modules.init(); for (LoadedModule &module : modules) { if (!IsLinker(module.full_name())) continue; if (linker == nullptr) { linker = reinterpret_cast<LoadedModule *>(linker_placeholder); *linker = module; module = LoadedModule(); } else { VReport(1, "LeakSanitizer: Multiple modules match \"%s\". " "TLS will not be handled correctly.\n", kLinkerName); linker->clear(); linker = nullptr; return; } } VReport(1, "LeakSanitizer: Dynamic linker not found. " "TLS will not be handled correctly.\n"); } static int ProcessGlobalRegionsCallback(struct dl_phdr_info *info, size_t size, void *data) { Frontier *frontier = reinterpret_cast<Frontier *>(data); for (uptr j = 0; j < info->dlpi_phnum; j++) { const ElfW(Phdr) *phdr = &(info->dlpi_phdr[j]); // We're looking for .data and .bss sections, which reside in writeable, // loadable segments. if (!(phdr->p_flags & PF_W) || (phdr->p_type != PT_LOAD) || (phdr->p_memsz == 0)) continue; uptr begin = info->dlpi_addr + phdr->p_vaddr; uptr end = begin + phdr->p_memsz; uptr allocator_begin = 0, allocator_end = 0; GetAllocatorGlobalRange(&allocator_begin, &allocator_end); if (begin <= allocator_begin && allocator_begin < end) { CHECK_LE(allocator_begin, allocator_end); CHECK_LT(allocator_end, end); if (begin < allocator_begin) ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL", kReachable); if (allocator_end < end) ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable); } else { ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable); } } return 0; } // Scans global variables for heap pointers. void ProcessGlobalRegions(Frontier *frontier) { if (!flags()->use_globals) return; dl_iterate_phdr(ProcessGlobalRegionsCallback, frontier); } static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) { CHECK(stack_id); StackTrace stack = map->Get(stack_id); // The top frame is our malloc/calloc/etc. The next frame is the caller. if (stack.size >= 2) return stack.trace[1]; return 0; } struct ProcessPlatformAllocParam { Frontier *frontier; StackDepotReverseMap *stack_depot_reverse_map; bool skip_linker_allocations; }; // ForEachChunk callback. Identifies unreachable chunks which must be treated as // reachable. Marks them as reachable and adds them to the frontier. static void ProcessPlatformSpecificAllocationsCb(uptr chunk, void *arg) { CHECK(arg); ProcessPlatformAllocParam *param = reinterpret_cast<ProcessPlatformAllocParam *>(arg); chunk = GetUserBegin(chunk); LsanMetadata m(chunk); if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) { u32 stack_id = m.stack_trace_id(); uptr caller_pc = 0; if (stack_id > 0) caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map); // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark // it as reachable, as we can't properly report its allocation stack anyway. if (caller_pc == 0 || (param->skip_linker_allocations && linker->containsAddress(caller_pc))) { m.set_tag(kReachable); param->frontier->push_back(chunk); } } } // Handles dynamically allocated TLS blocks by treating all chunks allocated // from ld-linux.so as reachable. // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules. // They are allocated with a __libc_memalign() call in allocate_and_init() // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those // blocks, but we can make sure they come from our own allocator by intercepting // __libc_memalign(). On top of that, there is no easy way to reach them. Their // addresses are stored in a dynamically allocated array (the DTV) which is // referenced from the static TLS. Unfortunately, we can't just rely on the DTV // being reachable from the static TLS, and the dynamic TLS being reachable from // the DTV. This is because the initial DTV is allocated before our interception // mechanism kicks in, and thus we don't recognize it as allocated memory. We // can't special-case it either, since we don't know its size. // Our solution is to include in the root set all allocations made from // ld-linux.so (which is where allocate_and_init() is implemented). This is // guaranteed to include all dynamic TLS blocks (and possibly other allocations // which we don't care about). void ProcessPlatformSpecificAllocations(Frontier *frontier) { StackDepotReverseMap stack_depot_reverse_map; ProcessPlatformAllocParam arg; arg.frontier = frontier; arg.stack_depot_reverse_map = &stack_depot_reverse_map; arg.skip_linker_allocations = flags()->use_tls && flags()->use_ld_allocations && linker != nullptr; ForEachChunk(ProcessPlatformSpecificAllocationsCb, &arg); } struct DoStopTheWorldParam { StopTheWorldCallback callback; void *argument; }; static int DoStopTheWorldCallback(struct dl_phdr_info *info, size_t size, void *data) { DoStopTheWorldParam *param = reinterpret_cast<DoStopTheWorldParam *>(data); StopTheWorld(param->callback, param->argument); return 1; } // LSan calls dl_iterate_phdr() from the tracer task. This may deadlock: if one // of the threads is frozen while holding the libdl lock, the tracer will hang // in dl_iterate_phdr() forever. // Luckily, (a) the lock is reentrant and (b) libc can't distinguish between the // tracer task and the thread that spawned it. Thus, if we run the tracer task // while holding the libdl lock in the parent thread, we can safely reenter it // in the tracer. The solution is to run stoptheworld from a dl_iterate_phdr() // callback in the parent thread. void DoStopTheWorld(StopTheWorldCallback callback, void *argument) { DoStopTheWorldParam param = {callback, argument}; dl_iterate_phdr(DoStopTheWorldCallback, ¶m); } } // namespace __lsan #endif // CAN_SANITIZE_LEAKS && SANITIZER_LINUX