//===-- sanitizer_allocator.cc --------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries. // This allocator is used inside run-times. //===----------------------------------------------------------------------===// #include "sanitizer_allocator.h" #include "sanitizer_allocator_internal.h" #include "sanitizer_common.h" namespace __sanitizer { // ThreadSanitizer for Go uses libc malloc/free. #if defined(SANITIZER_GO) || defined(SANITIZER_USE_MALLOC) # if SANITIZER_LINUX && !SANITIZER_ANDROID extern "C" void *__libc_malloc(uptr size); extern "C" void *__libc_memalign(uptr alignment, uptr size); extern "C" void *__libc_realloc(void *ptr, uptr size); extern "C" void __libc_free(void *ptr); # else # include <stdlib.h> # define __libc_malloc malloc static void *__libc_memalign(uptr alignment, uptr size) { void *p; uptr error = posix_memalign(&p, alignment, size); if (error) return nullptr; return p; } # define __libc_realloc realloc # define __libc_free free # endif static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache, uptr alignment) { (void)cache; if (alignment == 0) return __libc_malloc(size); else return __libc_memalign(alignment, size); } static void *RawInternalRealloc(void *ptr, uptr size, InternalAllocatorCache *cache) { (void)cache; return __libc_realloc(ptr, size); } static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) { (void)cache; __libc_free(ptr); } InternalAllocator *internal_allocator() { return 0; } #else // defined(SANITIZER_GO) || defined(SANITIZER_USE_MALLOC) static ALIGNED(64) char internal_alloc_placeholder[sizeof(InternalAllocator)]; static atomic_uint8_t internal_allocator_initialized; static StaticSpinMutex internal_alloc_init_mu; static InternalAllocatorCache internal_allocator_cache; static StaticSpinMutex internal_allocator_cache_mu; InternalAllocator *internal_allocator() { InternalAllocator *internal_allocator_instance = reinterpret_cast<InternalAllocator *>(&internal_alloc_placeholder); if (atomic_load(&internal_allocator_initialized, memory_order_acquire) == 0) { SpinMutexLock l(&internal_alloc_init_mu); if (atomic_load(&internal_allocator_initialized, memory_order_relaxed) == 0) { internal_allocator_instance->Init(/* may_return_null*/ false); atomic_store(&internal_allocator_initialized, 1, memory_order_release); } } return internal_allocator_instance; } static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache, uptr alignment) { if (alignment == 0) alignment = 8; if (cache == 0) { SpinMutexLock l(&internal_allocator_cache_mu); return internal_allocator()->Allocate(&internal_allocator_cache, size, alignment, false); } return internal_allocator()->Allocate(cache, size, alignment, false); } static void *RawInternalRealloc(void *ptr, uptr size, InternalAllocatorCache *cache) { uptr alignment = 8; if (cache == 0) { SpinMutexLock l(&internal_allocator_cache_mu); return internal_allocator()->Reallocate(&internal_allocator_cache, ptr, size, alignment); } return internal_allocator()->Reallocate(cache, ptr, size, alignment); } static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) { if (!cache) { SpinMutexLock l(&internal_allocator_cache_mu); return internal_allocator()->Deallocate(&internal_allocator_cache, ptr); } internal_allocator()->Deallocate(cache, ptr); } #endif // defined(SANITIZER_GO) || defined(SANITIZER_USE_MALLOC) const u64 kBlockMagic = 0x6A6CB03ABCEBC041ull; void *InternalAlloc(uptr size, InternalAllocatorCache *cache, uptr alignment) { if (size + sizeof(u64) < size) return nullptr; void *p = RawInternalAlloc(size + sizeof(u64), cache, alignment); if (!p) return nullptr; ((u64*)p)[0] = kBlockMagic; return (char*)p + sizeof(u64); } void *InternalRealloc(void *addr, uptr size, InternalAllocatorCache *cache) { if (!addr) return InternalAlloc(size, cache); if (size + sizeof(u64) < size) return nullptr; addr = (char*)addr - sizeof(u64); size = size + sizeof(u64); CHECK_EQ(kBlockMagic, ((u64*)addr)[0]); void *p = RawInternalRealloc(addr, size, cache); if (!p) return nullptr; return (char*)p + sizeof(u64); } void *InternalCalloc(uptr count, uptr size, InternalAllocatorCache *cache) { if (CallocShouldReturnNullDueToOverflow(count, size)) return internal_allocator()->ReturnNullOrDie(); void *p = InternalAlloc(count * size, cache); if (p) internal_memset(p, 0, count * size); return p; } void InternalFree(void *addr, InternalAllocatorCache *cache) { if (!addr) return; addr = (char*)addr - sizeof(u64); CHECK_EQ(kBlockMagic, ((u64*)addr)[0]); ((u64*)addr)[0] = 0; RawInternalFree(addr, cache); } // LowLevelAllocator static LowLevelAllocateCallback low_level_alloc_callback; void *LowLevelAllocator::Allocate(uptr size) { // Align allocation size. size = RoundUpTo(size, 8); if (allocated_end_ - allocated_current_ < (sptr)size) { uptr size_to_allocate = Max(size, GetPageSizeCached()); allocated_current_ = (char*)MmapOrDie(size_to_allocate, __func__); allocated_end_ = allocated_current_ + size_to_allocate; if (low_level_alloc_callback) { low_level_alloc_callback((uptr)allocated_current_, size_to_allocate); } } CHECK(allocated_end_ - allocated_current_ >= (sptr)size); void *res = allocated_current_; allocated_current_ += size; return res; } void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback) { low_level_alloc_callback = callback; } bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n) { if (!size) return false; uptr max = (uptr)-1L; return (max / size) < n; } void NORETURN ReportAllocatorCannotReturnNull() { Report("%s's allocator is terminating the process instead of returning 0\n", SanitizerToolName); Report("If you don't like this behavior set allocator_may_return_null=1\n"); CHECK(0); Die(); } } // namespace __sanitizer