//===-- sanitizer_bvgraph_test.cc -----------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of Sanitizer runtime. // Tests for sanitizer_bvgraph.h. // //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_bvgraph.h" #include "sanitizer_test_utils.h" #include "gtest/gtest.h" #include <algorithm> #include <vector> #include <set> using namespace __sanitizer; using namespace std; typedef BasicBitVector<u8> BV1; typedef BasicBitVector<> BV2; typedef TwoLevelBitVector<> BV3; typedef TwoLevelBitVector<3, BasicBitVector<u8> > BV4; template<class G> void PrintGraph(const G &g) { for (uptr i = 0; i < g.size(); i++) { for (uptr j = 0; j < g.size(); j++) { fprintf(stderr, "%d", g.hasEdge(i, j)); } fprintf(stderr, "\n"); } } class SimpleGraph { public: void clear() { s_.clear(); } bool addEdge(uptr from, uptr to) { return s_.insert(idx(from, to)).second; } bool removeEdge(uptr from, uptr to) { return s_.erase(idx(from, to)); } template <class G> void checkSameAs(G *g) { for (set<uptr>::iterator it = s_.begin(); it != s_.end(); ++it) { uptr from = *it >> 16; uptr to = *it & ((1 << 16) - 1); EXPECT_TRUE(g->removeEdge(from, to)); } EXPECT_TRUE(g->empty()); } private: uptr idx(uptr from, uptr to) { CHECK_LE(from|to, 1 << 16); return (from << 16) + to; } set<uptr> s_; }; template <class BV> void BasicTest() { BVGraph<BV> g; g.clear(); BV target; SimpleGraph s_g; set<uptr> s; set<uptr> s_target; int num_reachable = 0; for (int it = 0; it < 1000; it++) { target.clear(); s_target.clear(); for (int t = 0; t < 4; t++) { uptr idx = (uptr)my_rand() % g.size(); EXPECT_EQ(target.setBit(idx), s_target.insert(idx).second); } uptr from = my_rand() % g.size(); uptr to = my_rand() % g.size(); EXPECT_EQ(g.addEdge(from, to), s_g.addEdge(from, to)); EXPECT_TRUE(g.hasEdge(from, to)); for (int i = 0; i < 10; i++) { from = my_rand() % g.size(); bool is_reachable = g.isReachable(from, target); if (is_reachable) { uptr path[BV::kSize]; uptr len; for (len = 1; len < BV::kSize; len++) { if (g.findPath(from, target, path, len) == len) break; } EXPECT_LT(len, BV::kSize); EXPECT_TRUE(target.getBit(path[len - 1])); // fprintf(stderr, "reachable: %zd; path %zd {%zd %zd %zd}\n", // from, len, path[0], path[1], path[2]); num_reachable++; } } } EXPECT_GT(num_reachable, 0); } TEST(BVGraph, BasicTest) { BasicTest<BV1>(); BasicTest<BV2>(); BasicTest<BV3>(); BasicTest<BV4>(); } template <class BV> void RemoveEdges() { SimpleGraph s_g; BVGraph<BV> g; g.clear(); BV bv; set<uptr> s; for (int it = 0; it < 100; it++) { s.clear(); bv.clear(); s_g.clear(); g.clear(); for (uptr j = 0; j < g.size() * 2; j++) { uptr from = my_rand() % g.size(); uptr to = my_rand() % g.size(); EXPECT_EQ(g.addEdge(from, to), s_g.addEdge(from, to)); } for (uptr j = 0; j < 5; j++) { uptr idx = my_rand() % g.size(); s.insert(idx); bv.setBit(idx); } if (it % 2) { g.removeEdgesFrom(bv); for (set<uptr>::iterator from = s.begin(); from != s.end(); ++from) { for (uptr to = 0; to < g.size(); to++) s_g.removeEdge(*from, to); } } else { g.removeEdgesTo(bv); for (set<uptr>::iterator to = s.begin(); to != s.end(); ++to) { for (uptr from = 0; from < g.size(); from++) s_g.removeEdge(from, *to); } } s_g.checkSameAs(&g); } } TEST(BVGraph, RemoveEdges) { RemoveEdges<BV1>(); RemoveEdges<BV2>(); RemoveEdges<BV3>(); RemoveEdges<BV4>(); } template <class BV> void Test_isReachable() { uptr path[5]; BVGraph<BV> g; g.clear(); BV target; target.clear(); uptr t0 = 0; uptr t1 = g.size() - 1; target.setBit(t0); target.setBit(t1); uptr f0 = 1; uptr f1 = 2; uptr f2 = g.size() / 2; uptr f3 = g.size() - 2; EXPECT_FALSE(g.isReachable(f0, target)); EXPECT_FALSE(g.isReachable(f1, target)); EXPECT_FALSE(g.isReachable(f2, target)); EXPECT_FALSE(g.isReachable(f3, target)); g.addEdge(f0, f1); g.addEdge(f1, f2); g.addEdge(f2, f3); EXPECT_FALSE(g.isReachable(f0, target)); EXPECT_FALSE(g.isReachable(f1, target)); EXPECT_FALSE(g.isReachable(f2, target)); EXPECT_FALSE(g.isReachable(f3, target)); g.addEdge(f1, t0); EXPECT_TRUE(g.isReachable(f0, target)); EXPECT_TRUE(g.isReachable(f1, target)); EXPECT_FALSE(g.isReachable(f2, target)); EXPECT_FALSE(g.isReachable(f3, target)); EXPECT_EQ(g.findPath(f0, target, path, ARRAY_SIZE(path)), 3U); EXPECT_EQ(path[0], f0); EXPECT_EQ(path[1], f1); EXPECT_EQ(path[2], t0); EXPECT_EQ(g.findPath(f1, target, path, ARRAY_SIZE(path)), 2U); EXPECT_EQ(path[0], f1); EXPECT_EQ(path[1], t0); g.addEdge(f3, t1); EXPECT_TRUE(g.isReachable(f0, target)); EXPECT_TRUE(g.isReachable(f1, target)); EXPECT_TRUE(g.isReachable(f2, target)); EXPECT_TRUE(g.isReachable(f3, target)); } TEST(BVGraph, isReachable) { Test_isReachable<BV1>(); Test_isReachable<BV2>(); Test_isReachable<BV3>(); Test_isReachable<BV4>(); } template <class BV> void LongCycle() { BVGraph<BV> g; g.clear(); vector<uptr> path_vec(g.size()); uptr *path = path_vec.data(); uptr start = 5; for (uptr i = start; i < g.size() - 1; i++) { g.addEdge(i, i + 1); for (uptr j = 0; j < start; j++) g.addEdge(i, j); } // Bad graph that looks like this: // 00000000000000 // 00000000000000 // 00000000000000 // 00000000000000 // 00000000000000 // 11111010000000 // 11111001000000 // 11111000100000 // 11111000010000 // 11111000001000 // 11111000000100 // 11111000000010 // 11111000000001 // if (g.size() <= 64) PrintGraph(g); BV target; for (uptr i = start + 1; i < g.size(); i += 11) { // if ((i & (i - 1)) == 0) fprintf(stderr, "Path: : %zd\n", i); target.clear(); target.setBit(i); EXPECT_TRUE(g.isReachable(start, target)); EXPECT_EQ(g.findPath(start, target, path, g.size()), i - start + 1); } } TEST(BVGraph, LongCycle) { LongCycle<BV1>(); LongCycle<BV2>(); LongCycle<BV3>(); LongCycle<BV4>(); } template <class BV> void ShortestPath() { uptr path[8]; BVGraph<BV> g; g.clear(); BV t7; t7.clear(); t7.setBit(7); // 1=>2=>3=>4=>5=>6=>7 // 1=>7 g.addEdge(1, 2); g.addEdge(2, 3); g.addEdge(3, 4); g.addEdge(4, 5); g.addEdge(5, 6); g.addEdge(6, 7); g.addEdge(1, 7); EXPECT_TRUE(g.isReachable(1, t7)); // No path of length 1. EXPECT_EQ(0U, g.findPath(1, t7, path, 1)); // Trying to find a path of len 2..6 gives path of len 2. EXPECT_EQ(2U, g.findPath(1, t7, path, 2)); EXPECT_EQ(2U, g.findPath(1, t7, path, 3)); EXPECT_EQ(2U, g.findPath(1, t7, path, 4)); EXPECT_EQ(2U, g.findPath(1, t7, path, 5)); EXPECT_EQ(2U, g.findPath(1, t7, path, 6)); // Trying to find a path of len 7 gives path of len 7, because this is DFS. EXPECT_EQ(7U, g.findPath(1, t7, path, 7)); // But findShortestPath will find the shortest path. EXPECT_EQ(2U, g.findShortestPath(1, t7, path, 2)); EXPECT_EQ(2U, g.findShortestPath(1, t7, path, 7)); } TEST(BVGraph, ShortestPath) { ShortestPath<BV1>(); ShortestPath<BV2>(); ShortestPath<BV3>(); ShortestPath<BV4>(); } template <class BV> void RunAddEdgesTest() { BVGraph<BV> g; BV from; const int kMaxEdges = 10; uptr added_edges[kMaxEdges]; g.clear(); from.clear(); EXPECT_EQ(0U, g.addEdges(from, 0, added_edges, kMaxEdges)); EXPECT_EQ(0U, g.addEdges(from, 1, added_edges, kMaxEdges)); from.setBit(0); EXPECT_EQ(1U, g.addEdges(from, 1, added_edges, kMaxEdges)); EXPECT_EQ(0U, added_edges[0]); EXPECT_EQ(0U, g.addEdges(from, 1, added_edges, kMaxEdges)); from.clear(); from.setBit(1); EXPECT_EQ(1U, g.addEdges(from, 4, added_edges, kMaxEdges)); EXPECT_TRUE(g.hasEdge(1, 4)); EXPECT_FALSE(g.hasEdge(1, 5)); EXPECT_EQ(1U, added_edges[0]); from.setBit(2); from.setBit(3); EXPECT_EQ(2U, g.addEdges(from, 4, added_edges, kMaxEdges)); EXPECT_TRUE(g.hasEdge(2, 4)); EXPECT_FALSE(g.hasEdge(2, 5)); EXPECT_TRUE(g.hasEdge(3, 4)); EXPECT_FALSE(g.hasEdge(3, 5)); EXPECT_EQ(2U, added_edges[0]); EXPECT_EQ(3U, added_edges[1]); } TEST(BVGraph, AddEdgesTest) { RunAddEdgesTest<BV2>(); }