//===-- tsan_mman.cc ------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_allocator_interface.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "tsan_mman.h" #include "tsan_rtl.h" #include "tsan_report.h" #include "tsan_flags.h" // May be overriden by front-end. SANITIZER_WEAK_DEFAULT_IMPL void __sanitizer_malloc_hook(void *ptr, uptr size) { (void)ptr; (void)size; } SANITIZER_WEAK_DEFAULT_IMPL void __sanitizer_free_hook(void *ptr) { (void)ptr; } namespace __tsan { struct MapUnmapCallback { void OnMap(uptr p, uptr size) const { } void OnUnmap(uptr p, uptr size) const { // We are about to unmap a chunk of user memory. // Mark the corresponding shadow memory as not needed. DontNeedShadowFor(p, size); // Mark the corresponding meta shadow memory as not needed. // Note the block does not contain any meta info at this point // (this happens after free). const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize; const uptr kPageSize = GetPageSizeCached() * kMetaRatio; // Block came from LargeMmapAllocator, so must be large. // We rely on this in the calculations below. CHECK_GE(size, 2 * kPageSize); uptr diff = RoundUp(p, kPageSize) - p; if (diff != 0) { p += diff; size -= diff; } diff = p + size - RoundDown(p + size, kPageSize); if (diff != 0) size -= diff; FlushUnneededShadowMemory((uptr)MemToMeta(p), size / kMetaRatio); } }; static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64); Allocator *allocator() { return reinterpret_cast<Allocator*>(&allocator_placeholder); } struct GlobalProc { Mutex mtx; Processor *proc; GlobalProc() : mtx(MutexTypeGlobalProc, StatMtxGlobalProc) , proc(ProcCreate()) { } }; static char global_proc_placeholder[sizeof(GlobalProc)] ALIGNED(64); GlobalProc *global_proc() { return reinterpret_cast<GlobalProc*>(&global_proc_placeholder); } ScopedGlobalProcessor::ScopedGlobalProcessor() { GlobalProc *gp = global_proc(); ThreadState *thr = cur_thread(); if (thr->proc()) return; // If we don't have a proc, use the global one. // There are currently only two known case where this path is triggered: // __interceptor_free // __nptl_deallocate_tsd // start_thread // clone // and: // ResetRange // __interceptor_munmap // __deallocate_stack // start_thread // clone // Ideally, we destroy thread state (and unwire proc) when a thread actually // exits (i.e. when we join/wait it). Then we would not need the global proc gp->mtx.Lock(); ProcWire(gp->proc, thr); } ScopedGlobalProcessor::~ScopedGlobalProcessor() { GlobalProc *gp = global_proc(); ThreadState *thr = cur_thread(); if (thr->proc() != gp->proc) return; ProcUnwire(gp->proc, thr); gp->mtx.Unlock(); } void InitializeAllocator() { allocator()->Init(common_flags()->allocator_may_return_null); } void InitializeAllocatorLate() { new(global_proc()) GlobalProc(); } void AllocatorProcStart(Processor *proc) { allocator()->InitCache(&proc->alloc_cache); internal_allocator()->InitCache(&proc->internal_alloc_cache); } void AllocatorProcFinish(Processor *proc) { allocator()->DestroyCache(&proc->alloc_cache); internal_allocator()->DestroyCache(&proc->internal_alloc_cache); } void AllocatorPrintStats() { allocator()->PrintStats(); } static void SignalUnsafeCall(ThreadState *thr, uptr pc) { if (atomic_load_relaxed(&thr->in_signal_handler) == 0 || !flags()->report_signal_unsafe) return; VarSizeStackTrace stack; ObtainCurrentStack(thr, pc, &stack); if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack)) return; ThreadRegistryLock l(ctx->thread_registry); ScopedReport rep(ReportTypeSignalUnsafe); rep.AddStack(stack, true); OutputReport(thr, rep); } void *user_alloc(ThreadState *thr, uptr pc, uptr sz, uptr align, bool signal) { if ((sz >= (1ull << 40)) || (align >= (1ull << 40))) return allocator()->ReturnNullOrDie(); void *p = allocator()->Allocate(&thr->proc()->alloc_cache, sz, align); if (p == 0) return 0; if (ctx && ctx->initialized) OnUserAlloc(thr, pc, (uptr)p, sz, true); if (signal) SignalUnsafeCall(thr, pc); return p; } void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) { if (CallocShouldReturnNullDueToOverflow(size, n)) return allocator()->ReturnNullOrDie(); void *p = user_alloc(thr, pc, n * size); if (p) internal_memset(p, 0, n * size); return p; } void user_free(ThreadState *thr, uptr pc, void *p, bool signal) { ScopedGlobalProcessor sgp; if (ctx && ctx->initialized) OnUserFree(thr, pc, (uptr)p, true); allocator()->Deallocate(&thr->proc()->alloc_cache, p); if (signal) SignalUnsafeCall(thr, pc); } void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) { DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p); ctx->metamap.AllocBlock(thr, pc, p, sz); if (write && thr->ignore_reads_and_writes == 0) MemoryRangeImitateWrite(thr, pc, (uptr)p, sz); else MemoryResetRange(thr, pc, (uptr)p, sz); } void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) { CHECK_NE(p, (void*)0); uptr sz = ctx->metamap.FreeBlock(thr->proc(), p); DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz); if (write && thr->ignore_reads_and_writes == 0) MemoryRangeFreed(thr, pc, (uptr)p, sz); } void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) { void *p2 = 0; // FIXME: Handle "shrinking" more efficiently, // it seems that some software actually does this. if (sz) { p2 = user_alloc(thr, pc, sz); if (p2 == 0) return 0; if (p) { uptr oldsz = user_alloc_usable_size(p); internal_memcpy(p2, p, min(oldsz, sz)); } } if (p) user_free(thr, pc, p); return p2; } uptr user_alloc_usable_size(const void *p) { if (p == 0) return 0; MBlock *b = ctx->metamap.GetBlock((uptr)p); if (!b) return 0; // Not a valid pointer. if (b->siz == 0) return 1; // Zero-sized allocations are actually 1 byte. return b->siz; } void invoke_malloc_hook(void *ptr, uptr size) { ThreadState *thr = cur_thread(); if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors) return; __sanitizer_malloc_hook(ptr, size); RunMallocHooks(ptr, size); } void invoke_free_hook(void *ptr) { ThreadState *thr = cur_thread(); if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors) return; __sanitizer_free_hook(ptr); RunFreeHooks(ptr); } void *internal_alloc(MBlockType typ, uptr sz) { ThreadState *thr = cur_thread(); if (thr->nomalloc) { thr->nomalloc = 0; // CHECK calls internal_malloc(). CHECK(0); } return InternalAlloc(sz, &thr->proc()->internal_alloc_cache); } void internal_free(void *p) { ThreadState *thr = cur_thread(); if (thr->nomalloc) { thr->nomalloc = 0; // CHECK calls internal_malloc(). CHECK(0); } InternalFree(p, &thr->proc()->internal_alloc_cache); } } // namespace __tsan using namespace __tsan; extern "C" { uptr __sanitizer_get_current_allocated_bytes() { uptr stats[AllocatorStatCount]; allocator()->GetStats(stats); return stats[AllocatorStatAllocated]; } uptr __sanitizer_get_heap_size() { uptr stats[AllocatorStatCount]; allocator()->GetStats(stats); return stats[AllocatorStatMapped]; } uptr __sanitizer_get_free_bytes() { return 1; } uptr __sanitizer_get_unmapped_bytes() { return 1; } uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } int __sanitizer_get_ownership(const void *p) { return allocator()->GetBlockBegin(p) != 0; } uptr __sanitizer_get_allocated_size(const void *p) { return user_alloc_usable_size(p); } void __tsan_on_thread_idle() { ThreadState *thr = cur_thread(); allocator()->SwallowCache(&thr->proc()->alloc_cache); internal_allocator()->SwallowCache(&thr->proc()->internal_alloc_cache); ctx->metamap.OnProcIdle(thr->proc()); } } // extern "C"