// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2013 Christoph Hertzberg <chtz@informatik.uni-bremen.de> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <unsupported/Eigen/AutoDiff> /* * In this file scalar derivations are tested for correctness. * TODO add more tests! */ template<typename Scalar> void check_atan2() { typedef Matrix<Scalar, 1, 1> Deriv1; typedef AutoDiffScalar<Deriv1> AD; AD x(internal::random<Scalar>(-3.0, 3.0), Deriv1::UnitX()); using std::exp; Scalar r = exp(internal::random<Scalar>(-10, 10)); AD s = sin(x), c = cos(x); AD res = atan2(r*s, r*c); VERIFY_IS_APPROX(res.value(), x.value()); VERIFY_IS_APPROX(res.derivatives(), x.derivatives()); res = atan2(r*s+0, r*c+0); VERIFY_IS_APPROX(res.value(), x.value()); VERIFY_IS_APPROX(res.derivatives(), x.derivatives()); } template<typename Scalar> void check_hyperbolic_functions() { using std::sinh; using std::cosh; using std::tanh; typedef Matrix<Scalar, 1, 1> Deriv1; typedef AutoDiffScalar<Deriv1> AD; Deriv1 p = Deriv1::Random(); AD val(p.x(),Deriv1::UnitX()); Scalar cosh_px = std::cosh(p.x()); AD res1 = tanh(val); VERIFY_IS_APPROX(res1.value(), std::tanh(p.x())); VERIFY_IS_APPROX(res1.derivatives().x(), Scalar(1.0) / (cosh_px * cosh_px)); AD res2 = sinh(val); VERIFY_IS_APPROX(res2.value(), std::sinh(p.x())); VERIFY_IS_APPROX(res2.derivatives().x(), cosh_px); AD res3 = cosh(val); VERIFY_IS_APPROX(res3.value(), cosh_px); VERIFY_IS_APPROX(res3.derivatives().x(), std::sinh(p.x())); // Check constant values. const Scalar sample_point = Scalar(1) / Scalar(3); val = AD(sample_point,Deriv1::UnitX()); res1 = tanh(val); VERIFY_IS_APPROX(res1.derivatives().x(), Scalar(0.896629559604914)); res2 = sinh(val); VERIFY_IS_APPROX(res2.derivatives().x(), Scalar(1.056071867829939)); res3 = cosh(val); VERIFY_IS_APPROX(res3.derivatives().x(), Scalar(0.339540557256150)); } template <typename Scalar> void check_limits_specialization() { typedef Eigen::Matrix<Scalar, 1, 1> Deriv; typedef Eigen::AutoDiffScalar<Deriv> AD; typedef std::numeric_limits<AD> A; typedef std::numeric_limits<Scalar> B; #if EIGEN_HAS_CXX11 VERIFY(bool(std::is_base_of<B, A>::value)); #endif } void test_autodiff_scalar() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( check_atan2<float>() ); CALL_SUBTEST_2( check_atan2<double>() ); CALL_SUBTEST_3( check_hyperbolic_functions<float>() ); CALL_SUBTEST_4( check_hyperbolic_functions<double>() ); CALL_SUBTEST_5( check_limits_specialization<double>()); } }