// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_cuda #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_GPU #if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500 #include <cuda_fp16.h> #endif #include "main.h" #include <unsupported/Eigen/CXX11/Tensor> using Eigen::Tensor; typedef Tensor<float, 1>::DimensionPair DimPair; template<int DataLayout> void test_cuda_contraction(int m_size, int k_size, int n_size) { std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl; // with these dimensions, the output has 300 * 140 elements, which is // more than 30 * 1024, which is the number of threads in blocks on // a 15 SM GK110 GPU Tensor<float, 2, DataLayout> t_left(m_size, k_size); Tensor<float, 2, DataLayout> t_right(k_size, n_size); Tensor<float, 2, DataLayout> t_result(m_size, n_size); Tensor<float, 2, DataLayout> t_result_gpu(m_size, n_size); Eigen::array<DimPair, 1> dims(DimPair(1, 0)); t_left.setRandom(); t_right.setRandom(); std::size_t t_left_bytes = t_left.size() * sizeof(float); std::size_t t_right_bytes = t_right.size() * sizeof(float); std::size_t t_result_bytes = t_result.size() * sizeof(float); float* d_t_left; float* d_t_right; float* d_t_result; cudaMalloc((void**)(&d_t_left), t_left_bytes); cudaMalloc((void**)(&d_t_right), t_right_bytes); cudaMalloc((void**)(&d_t_result), t_result_bytes); cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_t_left(d_t_left, Eigen::array<int, 2>(m_size, k_size)); Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_t_right(d_t_right, Eigen::array<int, 2>(k_size, n_size)); Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_t_result(d_t_result, Eigen::array<int, 2>(m_size, n_size)); gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims); t_result = t_left.contract(t_right, dims); cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost); for (DenseIndex i = 0; i < t_result.size(); i++) { if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) { continue; } if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) { continue; } std::cout << "mismatch detected at index " << i << ": " << t_result(i) << " vs " << t_result_gpu(i) << std::endl; assert(false); } cudaFree((void*)d_t_left); cudaFree((void*)d_t_right); cudaFree((void*)d_t_result); } template<int DataLayout> void test_scalar(int m_size, int k_size, int n_size) { std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl; // with these dimensions, the output has 300 * 140 elements, which is // more than 30 * 1024, which is the number of threads in blocks on // a 15 SM GK110 GPU Tensor<float, 2, DataLayout> t_left(m_size, k_size); Tensor<float, 2, DataLayout> t_right(k_size, n_size); Tensor<float, 0, DataLayout> t_result; Tensor<float, 0, DataLayout> t_result_gpu; Eigen::array<DimPair, 2> dims(DimPair(0, 0), DimPair(1, 1)); t_left.setRandom(); t_right.setRandom(); std::size_t t_left_bytes = t_left.size() * sizeof(float); std::size_t t_right_bytes = t_right.size() * sizeof(float); std::size_t t_result_bytes = sizeof(float); float* d_t_left; float* d_t_right; float* d_t_result; cudaMalloc((void**)(&d_t_left), t_left_bytes); cudaMalloc((void**)(&d_t_right), t_right_bytes); cudaMalloc((void**)(&d_t_result), t_result_bytes); cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_t_left(d_t_left, m_size, k_size); Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_t_right(d_t_right, k_size, n_size); Eigen::TensorMap<Eigen::Tensor<float, 0, DataLayout> > gpu_t_result(d_t_result); gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims); t_result = t_left.contract(t_right, dims); cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost); if (fabs(t_result() - t_result_gpu()) > 1e-4f && !Eigen::internal::isApprox(t_result(), t_result_gpu(), 1e-4f)) { std::cout << "mismatch detected: " << t_result() << " vs " << t_result_gpu() << std::endl; assert(false); } cudaFree((void*)d_t_left); cudaFree((void*)d_t_right); cudaFree((void*)d_t_result); } template<int DataLayout> void test_cuda_contraction_m() { for (int k = 32; k < 256; k++) { test_cuda_contraction<ColMajor>(k, 128, 128); test_cuda_contraction<RowMajor>(k, 128, 128); } } template<int DataLayout> void test_cuda_contraction_k() { for (int k = 32; k < 256; k++) { test_cuda_contraction<ColMajor>(128, k, 128); test_cuda_contraction<RowMajor>(128, k, 128); } } template<int DataLayout> void test_cuda_contraction_n() { for (int k = 32; k < 256; k++) { test_cuda_contraction<ColMajor>(128, 128, k); test_cuda_contraction<RowMajor>(128, 128, k); } } template<int DataLayout> void test_cuda_contraction_sizes() { int m_sizes[] = { 31, 39, 63, 64, 65, 127, 129, 255, 257 , 511, 512, 513, 1023, 1024, 1025}; int n_sizes[] = { 31, 39, 63, 64, 65, 127, 129, 255, 257, 511, 512, 513, 1023, 1024, 1025}; int k_sizes[] = { 31, 39, 63, 64, 65, 95, 96, 127, 129, 255, 257, 511, 512, 513, 1023, 1024, 1025}; for (int i = 0; i < 15; i++) { for (int j = 0; j < 15; j++) { for (int k = 0; k < 17; k++) { test_cuda_contraction<DataLayout>(m_sizes[i], n_sizes[j], k_sizes[k]); } } } } void test_cxx11_tensor_cuda() { CALL_SUBTEST_1(test_cuda_contraction<ColMajor>(128, 128, 128)); CALL_SUBTEST_1(test_cuda_contraction<RowMajor>(128, 128, 128)); CALL_SUBTEST_1(test_scalar<ColMajor>(128, 128, 128)); CALL_SUBTEST_1(test_scalar<RowMajor>(128, 128, 128)); CALL_SUBTEST_2(test_cuda_contraction_m<ColMajor>()); CALL_SUBTEST_3(test_cuda_contraction_m<RowMajor>()); CALL_SUBTEST_4(test_cuda_contraction_k<ColMajor>()); CALL_SUBTEST_5(test_cuda_contraction_k<RowMajor>()); CALL_SUBTEST_6(test_cuda_contraction_n<ColMajor>()); CALL_SUBTEST_7(test_cuda_contraction_n<RowMajor>()); CALL_SUBTEST_8(test_cuda_contraction_sizes<ColMajor>()); CALL_SUBTEST_9(test_cuda_contraction_sizes<RowMajor>()); }