// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> using Eigen::Tensor; using Eigen::RowMajor; static void test_1d() { Tensor<float, 1> vec1(6); Tensor<float, 1, RowMajor> vec2(6); vec1(0) = 4.0; vec2(0) = 0.0; vec1(1) = 8.0; vec2(1) = 1.0; vec1(2) = 15.0; vec2(2) = 2.0; vec1(3) = 16.0; vec2(3) = 3.0; vec1(4) = 23.0; vec2(4) = 4.0; vec1(5) = 42.0; vec2(5) = 5.0; float data3[6]; TensorMap<Tensor<float, 1>> vec3(data3, 6); vec3 = vec1.sqrt(); float data4[6]; TensorMap<Tensor<float, 1, RowMajor>> vec4(data4, 6); vec4 = vec2.square(); float data5[6]; TensorMap<Tensor<float, 1, RowMajor>> vec5(data5, 6); vec5 = vec2.cube(); VERIFY_IS_APPROX(vec3(0), sqrtf(4.0)); VERIFY_IS_APPROX(vec3(1), sqrtf(8.0)); VERIFY_IS_APPROX(vec3(2), sqrtf(15.0)); VERIFY_IS_APPROX(vec3(3), sqrtf(16.0)); VERIFY_IS_APPROX(vec3(4), sqrtf(23.0)); VERIFY_IS_APPROX(vec3(5), sqrtf(42.0)); VERIFY_IS_APPROX(vec4(0), 0.0f); VERIFY_IS_APPROX(vec4(1), 1.0f); VERIFY_IS_APPROX(vec4(2), 2.0f * 2.0f); VERIFY_IS_APPROX(vec4(3), 3.0f * 3.0f); VERIFY_IS_APPROX(vec4(4), 4.0f * 4.0f); VERIFY_IS_APPROX(vec4(5), 5.0f * 5.0f); VERIFY_IS_APPROX(vec5(0), 0.0f); VERIFY_IS_APPROX(vec5(1), 1.0f); VERIFY_IS_APPROX(vec5(2), 2.0f * 2.0f * 2.0f); VERIFY_IS_APPROX(vec5(3), 3.0f * 3.0f * 3.0f); VERIFY_IS_APPROX(vec5(4), 4.0f * 4.0f * 4.0f); VERIFY_IS_APPROX(vec5(5), 5.0f * 5.0f * 5.0f); vec3 = vec1 + vec2; VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f); VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f); VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f); VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f); VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f); VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f); } static void test_2d() { float data1[6]; TensorMap<Tensor<float, 2>> mat1(data1, 2, 3); float data2[6]; TensorMap<Tensor<float, 2, RowMajor>> mat2(data2, 2, 3); mat1(0,0) = 0.0; mat1(0,1) = 1.0; mat1(0,2) = 2.0; mat1(1,0) = 3.0; mat1(1,1) = 4.0; mat1(1,2) = 5.0; mat2(0,0) = -0.0; mat2(0,1) = -1.0; mat2(0,2) = -2.0; mat2(1,0) = -3.0; mat2(1,1) = -4.0; mat2(1,2) = -5.0; Tensor<float, 2> mat3(2,3); Tensor<float, 2, RowMajor> mat4(2,3); mat3 = mat1.abs(); mat4 = mat2.abs(); VERIFY_IS_APPROX(mat3(0,0), 0.0f); VERIFY_IS_APPROX(mat3(0,1), 1.0f); VERIFY_IS_APPROX(mat3(0,2), 2.0f); VERIFY_IS_APPROX(mat3(1,0), 3.0f); VERIFY_IS_APPROX(mat3(1,1), 4.0f); VERIFY_IS_APPROX(mat3(1,2), 5.0f); VERIFY_IS_APPROX(mat4(0,0), 0.0f); VERIFY_IS_APPROX(mat4(0,1), 1.0f); VERIFY_IS_APPROX(mat4(0,2), 2.0f); VERIFY_IS_APPROX(mat4(1,0), 3.0f); VERIFY_IS_APPROX(mat4(1,1), 4.0f); VERIFY_IS_APPROX(mat4(1,2), 5.0f); } static void test_3d() { Tensor<float, 3> mat1(2,3,7); Tensor<float, 3, RowMajor> mat2(2,3,7); float val = 1.0f; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { mat1(i,j,k) = val; mat2(i,j,k) = val; val += 1.0f; } } } Tensor<float, 3> mat3(2,3,7); mat3 = mat1 + mat1; Tensor<float, 3, RowMajor> mat4(2,3,7); mat4 = mat2 * 3.14f; Tensor<float, 3> mat5(2,3,7); mat5 = mat1.inverse().log(); Tensor<float, 3, RowMajor> mat6(2,3,7); mat6 = mat2.pow(0.5f) * 3.14f; Tensor<float, 3> mat7(2,3,7); mat7 = mat1.cwiseMax(mat5 * 2.0f).exp(); Tensor<float, 3, RowMajor> mat8(2,3,7); mat8 = (-mat2).exp() * 3.14f; Tensor<float, 3, RowMajor> mat9(2,3,7); mat9 = mat2 + 3.14f; Tensor<float, 3, RowMajor> mat10(2,3,7); mat10 = mat2 - 3.14f; Tensor<float, 3, RowMajor> mat11(2,3,7); mat11 = mat2 / 3.14f; val = 1.0f; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_APPROX(mat3(i,j,k), val + val); VERIFY_IS_APPROX(mat4(i,j,k), val * 3.14f); VERIFY_IS_APPROX(mat5(i,j,k), logf(1.0f/val)); VERIFY_IS_APPROX(mat6(i,j,k), sqrtf(val) * 3.14f); VERIFY_IS_APPROX(mat7(i,j,k), expf((std::max)(val, mat5(i,j,k) * 2.0f))); VERIFY_IS_APPROX(mat8(i,j,k), expf(-val) * 3.14f); VERIFY_IS_APPROX(mat9(i,j,k), val + 3.14f); VERIFY_IS_APPROX(mat10(i,j,k), val - 3.14f); VERIFY_IS_APPROX(mat11(i,j,k), val / 3.14f); val += 1.0f; } } } } static void test_constants() { Tensor<float, 3> mat1(2,3,7); Tensor<float, 3> mat2(2,3,7); Tensor<float, 3> mat3(2,3,7); float val = 1.0f; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { mat1(i,j,k) = val; val += 1.0f; } } } mat2 = mat1.constant(3.14f); mat3 = mat1.cwiseMax(7.3f).exp(); val = 1.0f; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_APPROX(mat2(i,j,k), 3.14f); VERIFY_IS_APPROX(mat3(i,j,k), expf((std::max)(val, 7.3f))); val += 1.0f; } } } } static void test_boolean() { Tensor<int, 1> vec(6); std::copy_n(std::begin({0, 1, 2, 3, 4, 5}), 6, vec.data()); // Test ||. Tensor<bool, 1> bool1 = vec < vec.constant(1) || vec > vec.constant(4); VERIFY_IS_EQUAL(bool1[0], true); VERIFY_IS_EQUAL(bool1[1], false); VERIFY_IS_EQUAL(bool1[2], false); VERIFY_IS_EQUAL(bool1[3], false); VERIFY_IS_EQUAL(bool1[4], false); VERIFY_IS_EQUAL(bool1[5], true); // Test &&, including cast of operand vec. Tensor<bool, 1> bool2 = vec.cast<bool>() && vec < vec.constant(4); VERIFY_IS_EQUAL(bool2[0], false); VERIFY_IS_EQUAL(bool2[1], true); VERIFY_IS_EQUAL(bool2[2], true); VERIFY_IS_EQUAL(bool2[3], true); VERIFY_IS_EQUAL(bool2[4], false); VERIFY_IS_EQUAL(bool2[5], false); // Compilation tests: // Test Tensor<bool> against results of cast or comparison; verifies that // CoeffReturnType is set to match Op return type of bool for Unary and Binary // Ops. Tensor<bool, 1> bool3 = vec.cast<bool>() && bool2; bool3 = vec < vec.constant(4) && bool2; } static void test_functors() { Tensor<float, 3> mat1(2,3,7); Tensor<float, 3> mat2(2,3,7); Tensor<float, 3> mat3(2,3,7); float val = 1.0f; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { mat1(i,j,k) = val; val += 1.0f; } } } mat2 = mat1.inverse().unaryExpr(&asinf); mat3 = mat1.unaryExpr(&tanhf); val = 1.0f; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_APPROX(mat2(i,j,k), asinf(1.0f / mat1(i,j,k))); VERIFY_IS_APPROX(mat3(i,j,k), tanhf(mat1(i,j,k))); val += 1.0f; } } } } static void test_type_casting() { Tensor<bool, 3> mat1(2,3,7); Tensor<float, 3> mat2(2,3,7); Tensor<double, 3> mat3(2,3,7); mat1.setRandom(); mat2.setRandom(); mat3 = mat1.cast<double>(); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_APPROX(mat3(i,j,k), mat1(i,j,k) ? 1.0 : 0.0); } } } mat3 = mat2.cast<double>(); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_APPROX(mat3(i,j,k), static_cast<double>(mat2(i,j,k))); } } } } static void test_select() { Tensor<float, 3> selector(2,3,7); Tensor<float, 3> mat1(2,3,7); Tensor<float, 3> mat2(2,3,7); Tensor<float, 3> result(2,3,7); selector.setRandom(); mat1.setRandom(); mat2.setRandom(); result = (selector > selector.constant(0.5f)).select(mat1, mat2); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_APPROX(result(i,j,k), (selector(i,j,k) > 0.5f) ? mat1(i,j,k) : mat2(i,j,k)); } } } } void test_cxx11_tensor_expr() { CALL_SUBTEST(test_1d()); CALL_SUBTEST(test_2d()); CALL_SUBTEST(test_3d()); CALL_SUBTEST(test_constants()); CALL_SUBTEST(test_boolean()); CALL_SUBTEST(test_functors()); CALL_SUBTEST(test_type_casting()); CALL_SUBTEST(test_select()); }